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Growth literature often uses the Brody, Gompertz, Verhulst, and von Bertalanffy models. Is there a rationale for
the preference of these classical named models? The versatile five-parameter Bertalanffy-Piitter (BP) model
generalizes these models. We revisited peer-reviewed publications from the years 1970-2019 that fitted growth
models to together 122 mass-at-age data of sheep and goats from 19 countries and studied the best-fit BP-models
using the least-squares method. None of the named models was ever best-fitting. However, for 70% of the data a
single non-sigmoidal model had an acceptable fit (normalized root mean squared error < 5% and F-ratio test >

5% in comparison to the best-fit): the Brody model. The inherently non-sigmoidal character was further un-
derlined, as there were only 39% of the data, where the best-fitting BP-model had a discernible inflection point.
For these data, conclusions of biological interest could be drawn from the sigmoidal best-fit BP-models: the
maximal weight gain per day was about 55% higher than the natal weight gain per day.

Introduction

Domestic sheep (Ovis aries) and goats (Capra aegagrus hircus) are
raised primarily for fibers (wool, hair), milk, meat, and hides. Since
their domestication ca. 11,000 years ago (Alberto et al., 2018; Pereira &
Amorim, 2010) they have been amongst the most important species in
livestock, with a global head count of 1.1 billion sheep and 0.95 billion
goats in 2010 (FAO, 2020; Gilbert et al., 2018). Different breeds are
adapted to multiple environments, whence they are raised in a wide
range of production systems.

In view of the economic importance of sheep and goats, there are
multiple studies in animal science to characterize their growth patterns.
These studies fitted common models to size-at-age data, such as simple
linear or exponential growth, but also the negative exponential growth
model, the Brody model, and models with sigmoidal (S-shaped) growth
curves were considered. Examples for the latter are the models of von
Bertalanffy, Gompertz, Richards, or Verhulst (logistic growth). A search
in Google Scholar identified approximately 22,500 and 15,500 papers
related to the use of the Brody model for sheep and goats, respectively,
followed by the Verhulst model (about 5500 and 3500 hits), the
Gompertz model (ca. 4000 and 2000 hits), and the von Bertalanffy
model (ca. 2500 and 1500 hits).

The Bertalanffy-Piitter (BP) model (Piitter, 1920) generalizes all

these models (it uses two additional parameters). Moreover, its para-
meters have a biological interpretation (Bertalanffy, 1957). Therefore,
in this paper we revisit data from literature, seek the best fitting BP-
models and ask, if in comparison to the best-fit models certain simple
three-parameter model may be particularly suitable for the modeling
the growth of small ruminants: Why was the Brody model so dominant
in growth studies?

Materials and methods
Materials

We collected the data in spreadsheets, using Excel of Microsoft. To
retrieve data from published graphics we used Digitizelt software. We
used Mathematica of Wolfram Research for computer algebra, in-
cluding optimization (explained below) and statistical analysis.

For the statistical analysis, we aimed at keeping the samples as large
as possible. Where an informal check revealed possible differences, e.g.
between species, we first tested for such differences. We used non-
parametric tests: the Mann-Whitney test checked for equal location
parameters and the Conover test for equal standard deviations. In case
that these differences were not statistically significant, we pooled the
data (i.e. we collected them across different species). A priori, for
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several biological parameters, such as breeds, we did not expect to find
significant differences for the goodness of fit. (As the number of breeds
was high, such tests would require a low P-value and therefore large
samples to avoid errors of type-I; c.f. Miller, 1981). We then tested if the
pooled data could be described by a common probability distribution.
We used the Anderson-Darling test for distribution assumptions
(Evans, Drew & Leemis, 2017), whereby we considered the normal, the
lognormal and the Laplace distribution. Subsequently, we used the
tested distribution to draw further inferences.

Mass-at-age data

We searched Science Direct, Google Scholar, Research Gate and
Web of Science for peer-reviewed publications since 1970 with mass-at-
age data about the growth of sheep and goats. We searched primarily
for papers that fitted size-at-age data to certain named growth models,
as we hoped to add information to that papers by identifying the best-fit
BP-model. We used the keywords goat, sheep, growth model in com-
bination with Brody, von Bertalanffy, Gompertz, and Verhulst. We
thereby identified 53 publications (57% from 2010 to 2019) that in
most cases studied these data with the aim of optimizing breeds and
husbandry practices.

In these papers and their supporting information (if available) we
searched for mass-at-age data in tables or graphics. Where a paper re-
ferred to an accessible primary source, we searched it, too. We did not
consider papers that published best-fit model parameters without pro-
viding the data or an accessible primary source. In the average
(Table 1), data were comprised of np = 50 data-points (median
np = 12) and they covered ny = 5 to 296 points of time (mean ny = 22,
median ny = 12). We discarded papers that provided only data with ny
< 5 points of time, as then the optimization of five parameters would
result in overfitting. For 16 data, the data-points were retrieved from
graphics. (In Table 1 the first and/or last points of time, to and t;qy,
were not integers.) One source provided individual growth data (da-
tasets G11 to G22). For the other sources, the data were averages of
size-at-age data (with np = ny). Most average data did not inform about
the spread (standard deviation) or about how many animals were
weighed at each point of time.

Table 1 summarizes information about the data that mattered for
data fitting. 65% of the data started with natal birth. However, owing to
different research questions (e.g. comparing growth before or after
weaning) and different methods of data collection (e.g. weighing lambs
sold at the market) there were also data, where t,, the first point of
time, was significantly larger for systematic reasons. The maximal age,
tnax ranged from 2 month (lambs before weaning) to 30 years (wildlife,
where the age was estimated). Thereby, 46% of data were for young
animals only (kids and lambs of age at most 9 months) and 29% were
long term observations (., of 2 years or more). For some data nu-
merous ages were reported (e.g. GO1: ny = 252). In part this was due to
the weighing of smaller fractions of large samples at different days. For
additional information, all data identified the species and the home
countries of the animals, 87% specified the breed and 57% specified
sex. Thereby, about half of the samples (62 of 122) were controlled for
both breed and sex and half were not. Several data differentiated be-
tween single and twin birth (21% of the data). Other considerations
were the climate (4%: desert, humid, sub-humid), whether birth was in
spring or in autumn (3%), and in what year (11%). Further and more
detailed information about the surveyed animals is provided in the
references below.

Summarizing, we studied 122 data from 19 countries across the
world (Fig. 1): 29 domestic goat data came from five countries (Brazil,
Mexico, Pakistan, Turkey, and Tunisia). 88 domestic sheep data origi-
nated from 16 countries (Algeria, Benin, Brazil, Ghana, Greece, India,
Iran, Mexico, New Zealand, Nigeria, Pakistan, Russia, Slovakia, Spain,
Turkey, and United Kingdom). 5 wildlife data about bighorn and
thinhorn sheep (Ovis canadensis and Ovis dalli) were from Canada and
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the United States.

As to the sources and the breeds of goats, GO1-GO2 were Anglo
Nubian (and crossbreds) from Brazil (Arre et al., 2019; Cavalcante et al.,
2013; Santos et al., 2018), G03-G08 colored and white Angora from
Turkey (Cak et al., 2017; Odzdemir et al., 2009), G09-G10 Beetal from
Pakistan (Teleken, Galvao & Weber, 2017; Waheed, Khan & Sarwar,
2010), G11-G22 Boer from Mexico (Garcia-Muniz, Ramirez-Valverde,
Nunez-Dominguez & Hidalgo, 2019), G23 Repartida from Brazil
(Pires et al., 2017), G24 Saanen from Turkey (Kor, Baspinar, Karaca &
Keskin, 2006), and G25-G29 unspecified breeds from Tunisia and
Turkey (Mabrouk et al., 2010; Tatar, Tekel, Ozkan, Baritci & Dellal,
2009).

For the sheep, SO1 were Awassi from Turkey (Bilgin et al., 2004),
S02-S06 Baluchi from Pakistan and Turkey (Igbal et al., 2019;
Tariq et al., 2013), SO7 Blackbelly from Mexico (Jimenez-Severiano
et al.,, 2010), SO8 Daglic from Turkey (Akbas, Taskin, & Demirdren,
1999), S09 Deccani from India (Bangar, Lawar, Nimase & Nimbalkar,
2018), S10 Dorper from Brazil (Malhado, Carneiro, Affonso, Souza &
Sarmento, 2009), S11-S12 Hemsin from Turkey (Kopuzlu, Sezgin,
Esenbuga & Bilgin, 2014), S13-S14 Ile-de France from Brazil (Falcao
et al., 2015; Moreira et al., 2016), S15 Karachai from Russia (Semyonov
& Selkin, 1989), S16-S17 Karagouniko from Greece
(Goliomytis, Orfanos, Panopoulou & Rogdakis, 2006; Teleken et al.,
2017), S18-S34 different varieties and crossbreds of colored and white
Karaman from Turkey (Aytekin, Zulkadir, Keskin & Boztepe, 2010;
Bilgin et al., 2004; Daskiran, Koncagul & Bingol, 2010; Gokda, Ulker,
Karakus, & Firat, 2006; Keskin, Dag, Sariyel & Gokmen, 2009; Kucuk &
Eyduran, 2009; Kum, Karakus & Ozdemir, 2010), S35 Kivircik from
Turkey (Abbas et al, 1999), S36 Kordi from Iran
(Mohammadi, Mokhtari, Saghi & Shahdadi, 2019), S37 Mehraban from
Iran (Bathaei & Leroy, 1998), S38 Morada Nova from Brazil (Paz et al.,
2018), S39-S40 Ouled Djellal from Algeria (Zidane, Niar & Ababou,
2015), S41-S42 Romney from New Zealand (Hancock, Oliver, McLean,
Jaquiery & Bloomfield, 2011), S43-S45 Santa Ines from Brazil
(Santos et al., 2014; Sarmento et al., 2006; Silva et al., 2012), S46-5S47
Scottish Blackface from the UK (Friggens, Shanks, Kyriazakis, Oldham &
McClelland, 1997), S48-S49 Segurena from Spain Lupi, Nogales, Ledn,
Barba Capote and Delgado, (2015), S50-S51 Shetland from the UK
(Friggens et al., 1997), S52 Sonadi from India (Gautam, Kumar, Waiz &
Nagda, 2018), S53-S54 Spanish Merino from Spain (Lépez et al., 2018),
S55 Suffolk from the UK (Lewis & Brotherstone, 2002), S56 Texel from
Brazil (Sieklicki et al.,, 2016), S57-S59 Thalli from Pakistan
(Igbal, Waheed, Huma & Faraz, 2019; Teleken et al, 2017,
Waheed et al., 2016), S60-S61 Tsigai and S62 Valachian from the Slovak
Republik (Makovicky et al., 2017), S63-S64 Welsh Mountain from the
UK (Friggens et al., 1997), S65-S76 West African Dwarf from Benin and
Ghana (Gbangboche et al., 2006 and 2008; London & Weninger, 2011),
S77 Yankasa crossbred from Nigeria (Raji, Okoro & Aliyu, 2013), and
S78-S88 unspecified breeds from New Zealand and Pakistan
(Cruickshank & Thomson, 2008; Ullah, Amin & Abbas, 2013).

For the wildlife, W01 were Bighorn from Canada (Blood, Flook &
Wishart, 1970) and W02-WO05 Thinhorn from Canada and the USA
(Bunnell & Olson, 1976; Heimer, 1972; Nichols & Bunnell, 1999).

BP-models

The growth function m(t) of the Bertalanffy-Piitter (BP) model de-
scribes mass, m, at time, t. It is a solution of the following differential
equation (Piitter, 1920), which can be solved analytically, though in
general not by means of elementary functions (Ohnishi, Yamakawa &
Akamine, 2014).

m'(t) = pm()* — g-m(t)° 1)

The parameters of Eq. (1) are determined from fitting the model to
mass-at-age data. Four parameters are displayed in the equation,
namely the non-negative exponent-pair a < b and the constants p and q.
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Table 1
Characteristics of the mass-at-age data.
No Sex to tinax unit min max np nr No Sex to tinax unit min max np nr
GO1 F 1.3 899.1 D 3.1 39.8 252 252 S33 FM 0 6 M 4.7 37.8 7 7
G02 FM 0.2 184.8 D 1.9 17 25 25 S34 FM 0 6 M 4.1 37.7 7 7
GO03 FM 0 150 D 2.4 17 11 11 S35 M 0 420 D 3.7 69.1 14 14
G04 FM 0 150 D 1.9 13.6 11 11 S36 FM 0 360 D 4 41.6 13 13
GO5 F 0 12 M 2.8 16.4 13 13 S37 FM 6 30 M 37.8 68.3 7 7
G06 M 0 12 M 2.9 22.7 13 13 S38 FM 0 680.5 D 2.5 34.1 26 26
GO7 FM 0 12 M 3 19.1 13 13 S39 FM 0 90 D 3 14.5 13 13
GO08 FM 0 12 M 2.7 20 13 13 S40 FM 0 90 D 3.2 16.4 13 13
G09 F 0 360 D 2.7 20.8 13 13 S41 F 0 360 M 6.6 45.1 18 18
G10 M 0 360 D 2.7 22.2 13 13 S42 F 0 360 M 5.3 45.4 18 18
G11 F 1 387 D 3.5 54 42 31 S43 FM 0 336 D 3.4 27 7 7
G12 F 1 375 D 3 49.5 31 18 S44 FM 0 168.4 D 3.5 22.3 7 7
G13 F 1 371 D 3.9 51 7 5 S45 FM 61.2 790.3 D 36.3 118.2 21 21
G14 F 1 380 D 3.5 55 24 16 S46 F 8 48 w 16.1 67.2 12 12
G15 F 1 1944 D 2.2 79.2 156 35 S47 M 8 44 w 18.2 74.1 11 11
G16 F 1 1574 D 1.5 80.2 201 62 S48 F 0 80 D 3.5 20.2 6 6
G17 F 1 385 D 3.2 66 65 44 S49 M 0 80 D 3.5 22 6 6
G18 F 1 733 D 2.3 67 166 83 S50 F 8 48 w 15.7 43.5 12 12
G19 F 1 571 D 2 58 685 155 S51 M 8 48 w 17.8 61 12 12
G20 F 1 454 D 2 60 720 186 S$52 FM 0 12 M 3.3 23.2 13 13
G21 F 1 198 D 1.2 54 271 74 S53 F 0.1 117.2 D 4.1 26 78 78
G22 F 1 1944 D 1.2 80.2 2068 296 S54 M 0 117.2 D 4 28.9 86 86
G23 FM 0 270 D 5.2 15.4 10 10 S55 FM 1.4 150.8 D 0.8 62.8 7 7
G24 F 14.7 500.6 D 5.6 46.5 32 32 S56 M 0 120 D 4 32.6 9 9
G25 F 0 12 M 3.3 28.1 13 13 S57 F 1 720 D 3.5 38.8 10 10
G26 M 0 12 M 3.1 35 13 13 S58 M 1 720 D 3.7 48.5 10 10
G27 FM 0 150 D 2.3 13.7 6 6 S59 FM 0 365 D 3.1 28.9 13 13
G28 FM 0 150 D 2.5 15 6 6 S60 FM 0 270 D 4.9 38.7 15 15
G29 FM 0 150 D 2.4 10 6 6 S61 FM 0 270 D 4.9 38.7 15 15
So1 F 0 36 M 4.4 49.3 9 9 S62 FM 0 63 D 4.8 22.4 10 10
S02 F 1 720 D 3.6 39.2 10 10 S63 F 8 48 w 16.8 56.8 12 12
S03 M 1 720 D 3.6 47 10 10 S64 M 8 48 w 17.8 66.6 12 12
S04 FM 1 720 D 3.6 43.5 10 10 S65 F 0 180 D 1.9 16.8 7 7
S05 FM 1 720 D 3.4 42.5 10 10 S66 M 0 180 D 1.9 17.8 7 7
S06 FM 0 360 D 3.6 36 8 8 S67 FM 0 180 D 2.2 17.9 7 7
S07 M 28 168.6 D 6.9 40.5 11 11 S68 FM 0 180 D 1.6 16.7 7 7
S08 M 0 420 D 6.3 60.4 14 14 S69 F 0 119.3 D 1.8 7.2 18 18
S09 M 0 18 M 3.3 30.9 18 18 S70 M 0 119.2 D 1.9 7.7 18 18
S10 FM 0 210 D 3.4 27.5 8 8 S71 FM 0 118.9 D 1.9 7.7 18 18
s11 F 0 36 M 4 61 8 8 S72 FM 0 118.9 D 1.8 7.1 18 18
S12 M 0 36 M 4 75 8 8 S73 FM 0 105 D 1.7 7.6 7 7
S13 F 0 120 D 4.7 36.9 9 9 S74 FM 0 105 D 1.8 8.4 7 7
S14 F 0 210 D 4.6 43.2 8 8 S75 FM 0 105 D 1.4 6.6 7 7
S15 F 0 60 M 3.6 45 7 7 S76 FM 0 105 D 1.6 7.2 7 7
S16 F 0 720 D 4.7 77.9 17 17 S77 FM 1 20 w 5.1 15.7 20 20
S17 M 45 720 D 18.3 96.5 16 16 S78 F 0 344 D 4.3 58.7 8 8
S18 F 0 36 M 4.1 52.8 9 9 S79 M 0 344 D 4.7 61.2 8 8
S19 FM 0 180 D 4.7 33.6 7 7 S80 F 0 344 D 3.5 50.6 8 8
S20 FM 0 6 M 4.1 36 7 7 S81 M 0 344 D 3.7 529 8 8
S21 F 1 198 D 4.3 39.9 16 16 S$82 M 0 730 D 3.6 45.7 15 15
S22 M 1 198 D 4.7 45.4 16 16 S83 F 0 730 D 3.5 37.9 15 15
S23 FM 1 198 D 4.6 43.1 16 16 S84 FM 0 730 D 3.6 41.9 15 15
S24 FM 1 198 D 3.8 40.6 16 16 S85 FM 0 730 D 3 40.2 15 15
S$25 F 0 180 D 4.6 33.5 7 7 S86 FM 0 365 D 3.5 33.7 13 13
S$26 FM 0 180 D 4.3 30.4 7 7 S87 FM 0 730 D 3.5 41.7 15 15
S27 F 0 480 D 4.4 51.1 17 17 S88 FM 0 730 D 3.5 41.2 15 15
S28 M 0 480 D 4.5 65.7 17 17 Wwo1 FM 1 7 Y 76 237.3 7 7
S$29 F 1 8 M 13.8 37.9 8 8 Wo02 F 0.1 13.6 Y 3 54.9 15 15
S30 F 1 8 M 17.6 44.3 8 8 Wo3 M 0.1 11 Y 4.7 82.9 10 10
S31 F 1 44 M 16.2 79.2 18 18 Wwo4 FM 0 11 Y 8.2 82.4 9 9
S$32 FM 0 6 M 4.7 39.5 7 7 WO05 FM 1 9 Y 28.5 49.5 9 9

Note: to, tmax first/last age, using the units D/W/M/Y: day/week/month/year; min, max: minimal/maximal mass (kg); np, ny: number of data points and of points of

time.

An additional parameter is the initial value, i.e. m(ty) = ¢ > 0, where t,
is the first considered point of time (e.g. top = O for natal mass).

The BP-model generalizes several three-parameter models used in
literature and therefore it allows for a unified presentation: Each ex-
ponent-pair (a, b) defines a unique model BP(a, b) that uses only three
parameters (p, ¢, c). Fig. 2 plots the exponent-pairs of well-known
special instances used in animal sciences and compares them with the
exponent-pairs (yellow region) that this paper scanned in an initial

search for the optimal model parameters. The von Bertalanffy (1949)
model is BP(2/3, 1); the generalized Bertalanffy model is a four para-
meter BP-model with b = 1 and the free parameters a < 1, ¢, p and gq.
BP(0, 1) is the model of bounded exponential growth (monomolecular
model) of Brody (1945). The Gompertz (1832) model is the limit case
BP(1, 1) with a different differential equation, where b converges to
a = 1 from above (Marusic & Bajzer, 1993). The Richards (1959) model
is a four parameter BP-model with a = 1 and the free parametersb > 1,
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Fig. 1. World map; countries with data in red (plot using Mathematica 12.1).
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Fig. 2. Exponent-pairs of selected named models (blue dots), of the best-fit
model (big black dot), of models with acceptable F-ratios (P-value above 5%) in
green, of models with acceptable NRMSE < 5% (red), and remaining grid-
points (yellow), based on GO5. .

¢, p and q. BP(1, 2) is the Verhulst (1838) model of logistic growth. The
West model BP(3/4, 1) is the most recent of these named models
(West, Brown & Enquist, 2001).

The literature sources for our data fitted each dataset in the median
to four named BP-models. The most often used model, fitted to 89 of
122 data (73%), was the Gompertz model BP(1, 1). Rank two, fitted to
81 data (66%) was achieved by logistic growth BP(1, 2). Some authors
(7 data) considered the special case of exponential growth (g = 0).
Rank three, fitted to 75 data (61%), was achieved by the Brody model
BP(0, 1). For 18 data the sources considered its special case of linear
growth (q = 0) and for 13 data the sources considered the special case
(Mitscherlich model) of negative exponential growth (initial condition
m(0) = 0). The von Bertalanffy model BP(2/3, 1) was fitted to 69 data
(57%) and the Richards model to 33 data (27%). For 33 data (also)
models of other classes were considered and for 20 data (16%) the
sources did not mention any growth model. The main reasons, why so
many authors choose these models, were their wide use in literature
and the relative ease of data-fitting for three-parameter models.

The named growth models have been used for multiple purposes:
Applications range from biological models for the length or mass of
different species of animals, of the growth of plants (the original mo-
tivation for the Richards model), to ecological models for the sizes of
animal populations or the spread of epidemies and to economic models
for the growth of the capital stock (Solow-Swan model; it equals the
generalized Bertalanffy model). Even in the field of biotechnology,
where traditionally a different model of bacterial growth has been used
(model of Monod, 1949), for certain strains the BP-model turned out to
be superior (Brunner & Kiihleitner, 2020). Piitter (1920) and
Bertalanffy (1949, 1957) proposed a biological argument, why BP-
models would be suitable for the modeling of the growth of animals.
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They explained growth in terms of the allocation of metabolic energy
between growth and sustenance of an organism, whereby they per-
ceived the parameters a, b as “metabolic scaling exponents” (Pauly &
Cheung, D. 2017). For vertebrates they argued in favor of BP(0, 1) for
length growth (VBGM in fishery science) and BP(2/3, 1) for mass
growth. A completely different biological explanation of growth
(West et al., 2001) led to BP(3/4, 1). This approach was later adapted to
explain e.g. the growth of birds from bird-biology (West, Brown &
Enquist, 2004) and the growth of forests from botanist principles
(West, Enquist & Brown, 2009). However, also environmental factors
matter for growth and when determining the best-fit models, different
ambient conditions may result in different best-fit exponent-pairs.

We conclude that fundamentally different growth phenomena could
be and have been described by the same models. The common basic
assumptions for the considered phenomena are an increase of the data
(e.g. no starvation) and the presence of at most one inflection point (i.e.
modeling one growth phase). Any BP-model may be used to describe
such phenomena, but some models will fit better than others. In this
study we aim at finding the better fitting ones for the growth of goats
and sheep.

Alternative parametrization

An advantage of using BP-models with variable exponent-pairs is
the added flexibility for the location of the inflection point. For ex-
ample, for the logistic growth model (a = 1, b = 2) the mass at the
inflection point is always half of the asymptotic mass. For variable
exponent-pairs different fractions between these masses are realized.
The formulas for the asymptotic mass My, (unbounded growth for
q = 0) and the mass at the inflection point m;,s (no inflection point for
a = 0) are displayed in Eq. (2) below; the age t;,q at the inflection point
is computed numerically.

1

1
b-a a\b-a
Mipax = (2) and Mt = (_) Mypax
q b (2)

Some authors (e.g. Knight, 1968) were concerned that computations
of the asymptotic mass (mature body mass) or of the inflection point
would be unreliable extrapolations, if these values exceeded the max-
imal observed mass substantially (Table 1: max) or if t;,z was outside
the timespan of data collection. In the results, we therefore did not
report such inflection points. Instead, we informed NA1, if there was no
inflection point (a = 0) or if it was not observable because there was
NA2 a too low mass (m;,z below the minimal observed mass or below
the initial value) or NA3 a too high mass (m;,; above the maximal
observed mass), NA4 a too early inflection (tinz < to) or NAS a too late
one (tiyg > tma). Further, we did not report asymptotic weights above
1000 kg.

In literature there are alternative parametrizations, which use some
or all of the parameters initial mass (natal mass), asymptotic mass mqy,
the ratio mja/Mmax, the age t,z at maximal growth (inflection point),
and the slope m%,y; at the inflection point or natal slope m’ (Tjgrve &
Tjerve, 2017). We used the parametrization of Eq. (1), because for data-
fitting we worked directly with the numerical solutions of the differ-
ential equation. Further, using the method of least squares, BP-models
in general underestimate m,,., whence sufficiently long series of
measurements are needed to identify the asymptotic mass, even if
further growth is barely discernible. Such long-term measurements are
rare.

Goodness of fit

We aimed at finding parameters that minimized SSE, the sum of
squared errors. If m(t) is a solution of Eq. (1), using certain exponents a
< b and parameters p, ¢, ¢, and if (t;, m;) are n mass-at-age data (we use
the number n = np of data points of Table 1), then SSE is defined by
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Table 2
Model comparison using the F-ratio test.

Veterinary and Animal Science 10 (2020) 100135

Model SSE Degrees of freedom
Model A: simple model SSa DFp = n-pa
Model B: best-fit BP-model SSg DF,=DFg = n—pg
Difference SSA-SSp DF, =DF,-DFg
F-value SSp — SSB
_ DEA—DFp
-
DFp
P-value = 1-CumulativeFRatioDistributionFunction(F, DF;, DF,)

Note: n = np number of data points used for optimization, p, and pp number of model parameters.

Eq. (3):

SSE = ) (m; — m(t))*
E 3)

When assessing, whether the fit of a certain three-parameter BP-
model A can be improved significantly by the best-fit five-parameter
BP-model B we apply the F-ratio test using the scheme outlined in
Table 2. A P-value below 5% indicates a significant improvement by the
best-fit model, where the worse fit of model A could no longer be ex-
plained by random fluctuations owing to the higher degrees of freedom.
We therefore accept the simpler model A if the P-value is higher than
5%.

To compare the goodness of fit across different data, we report a
normalization NRMSE of the root mean squared error RMSE. NRMSE
defines a dimensionless measure for the goodness of fit, namely RMSE
as a fraction of the maximal observed mass, whereby Eq. (4) uses the
notation of formula (3):

RMSE = JSSE/n and NRMSE = M55
T ©)
i<n

For this paper, an acceptable fit means NRMSE < 5%. Fig. 2 illus-
trates the two concepts of acceptability for GO5. The exponent pair of
the best-fit model is surrounded by the exponent-pairs of models with
acceptable F-ratios (green area). For these models, NRMSE was accep-
table, too. In addition, there were models with acceptable NRMSE,
whose F-ratio was not acceptable (red area). We used GO5 for this il-
lustration, as there were no exponent-pairs with an acceptable F-test
and a too high NRMSE. (For other data, this situation occurs, e.g. Brody
model for G01.)

Data fitting

Previously data fitting was troublesome for the BP-model (numer-
ical instability), as variations in one parameter could be offset by sui-
table changes of the other parameters. Standard optimization tools
were not able to find all five best-fit parameters for model (1). In recent
papers, this difficulty was overcome (e.g. Brunner, Kiihleitner, Nowak,
Renner-Martin & Scheicher, 2019; Renner-Martin, Brunner, Kiihleitner,
Nowak & Scheicher, 2019) and the BP-model achieved an excellent fit
to the data, resulting in significant improvements over previous studies
(e.g. Brunner et al., 2019; Renner-Martin et al., 2019).

We used the following strategy: We minimized (3) for three para-
meters, i.e. we identified the best fitting model parameters (p, g, c) for a
fixed exponent-pairs (a, b) and repeated this for all exponent-pairs (a, b)
on a grid with step size 0.01 in both directions (Fig. 1). To speed up the
computations, we started with a small grid. If the search identified a
best-fit exponent-pair on the boundary of the grid, we added more grid-
points and continued optimization, until we found a best-fit exponent-
pair surrounded by sub-optimal grid-points. We thereby searched grids
with 12,686 to 189,523 grid-points (mean value 37,748). These com-
putations took about Y% to 1% weeks CPU-time per dataset, whereby we
used eight PCs for commercial use (Intel core i7 processors) in parallel.

Fig. 2 illustrates this search for GO5, which resulted in a polygonal
shape of the yellow region. The exponent-pairs of several named models
remained outside the search grid.

For each grid-point (a, b), the optimization of p, q, and ¢ was done
using a custom-made variant of the method of simulated annealing
(Vidal, 1993). The details and the Mathematica-code were outlined in
other papers (Brunner et al., 2019; Renner-Martin, Brunner, Kiihleitner,
Nowak & Scheicher, 2018 and 2019). Our strategy assured positive
parameters (p, q, ¢) and therefore bounded growth functions.

The outcome was exported into a spreadsheet, whose columns listed
the best fit parameters q, b, ¢, p, q, and SSE for each grid-point. The best-
fit exponent-pair (ayin, bmin) Was identified with an accuracy of 0.01 (as
we searched only grid points). Thereby we used the grid-point (0.67, 1)
to represent the von Bertalanffy model and (1, 1.01) for the Gompertz
model. The parameters of the best-fit model, pin, Gmin, and Cpin, Were in
the same row, where the least value of SSE was attained. These para-
meters were optimized with a higher accuracy. For some data this re-
sulted in extremely small values for g: For S08, the optimal g-value was
too small to be recorded properly by Excel; it changed it to g = 0.

Results and discussion
Best fit models

Our paper focuses on the question mentioned in the introduction:
Why was the Brody model mentioned so often in growth studies about
small ruminants? We thereby aimed at finding single models that in
general would fit well to any data and found that the Brody model was
amongst these models. As a yardstick for the assessment of the good fit
we used the best-fit BP-models, whence we first analyzed these models.

The literature sources for our data considered unbounded models
(e.g. linear and exponential growth), bounded non-sigmoidal growth
functions (e.g. Brody model) and bounded sigmoidal models (e.g. lo-
gistic growth). Which of these growth patterns were supported by the
present data when the best-fit BP model was used? Table 3 informs for
each data about the parameters of the best fitting BP-growth curve,
Table 4 lists the asymptotic mass (if not excessive or infinite) and the
inflection points (if observable within the timespan of the respective
data) to inform about the shape of the growth curve, and Fig. 3 plots the
best-fit exponent-pairs (a, b) with different colors for goats, sheep, and
wildlife. For our data, none of the above-mentioned named three-
parameter models was optimal.

Table 3 reports the goodness of fit of it in terms of NRMSE. It ranged
from 0.01% to 12.3%, whereby the medians differed between the
species: 4.9% for wildlife, 3% for goat and 1.3% for sheep. The differ-
ences in NRMSE between sheep and goat respectively sheep and wildlife
were statistically significant (Mann-Whitney test, P-values below
0.0015), but not the difference between goats and wildlife (P-value
0.33). We nevertheless pooled the NRMSE values and found that the
Anderson-Darling test did not refute the hypothesis that the logarithms
of NRMSE were Laplace distributed (P-value 0.524, maximum like-
lihood parameters: mean value -4.139 and shape parameter 0.682).
Under this hypothesis, we could expect that for 9.3% of all data the
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Table 3
Best fit parameters and goodness of fit.
No a b c p q NRMSE No a b c P Q NRMSE
GO1 0.01 0.02 3.46 7.48 7.22 9.0% S33 0.45 4.75 4.8 217 0+ 0.9%
G02 0.33 6.47 2.35 0.05 0+ 1.7% S34 1.19 2.3 4.31 0.48 0.01 1.8%
GO3 0.82 1.16 2.32 0.09 0.03 1.6% S35 0 0.01 3.85 4.18 3.88 0.5%
G04 1.11 1.35 1.87 0.07 0.03 1.9% S36 0.22 0.4 3.61 0.61 0.31 3.2%
GO5 0.18 3.05 2.79 2.07 0+ 1.3% S37 0.01 1.01 37.78 7.99 0.11 0.0%
G06 0.6 0.75 2.77 5.87 3.67 4.7% S38 0 0.01 3.85 3.18 3.04 3.3%
GO07 0.26 4.52 3 1.72 0+ 3.0% S39 0.01 0.08 3.09 0.12 0+ 0.6%
GO08 0.39 0.54 2.59 8.41 5.31 3.7% S40 0.19 3.02 3.22 0.11 0+ 0.5%
GO09 0 3.01 2.86 0.07 0+ 0.7% S41 0 1.62 6.82 0.37 0+ 1.1%
G10 0 3.07 2,94 0.08 0+ 1.1% S42 0.48 0.65 5.18 0.45 0.23 1.6%
G11 0 5.48 3.84 0.19 0+ 3.3% S43 0.36 0.63 3.34 0.24 0.1 0.2%
G12 0.94 1.24 3.7 0.06 0.02 2.2% S44 0 4.38 3.6 0.16 0+ 0.4%
G13 0.85 1.3 3.95 0.05 0.01 1.8% S45 0.76 1.04 35.18 0.04 0.01 1.0%
G14 0.29 30.16 3.84 0.09 0+ 3.5% S46 0.01 0.24 14.38 4.01 117 1.6%
G15 0.54 0.55 2.87 2.78 2.66 4.7% S47 0.45 0.67 16.81 1.81 0.65 1.2%
G16 0.69 0.79 2.33 0.24 0.16 5.6% S48 0.51 4.11 3.56 0.07 0+ 0.9%
G17 0 2.06 4.64 0.26 0+ 7.6% S49 0.58 33.14 3.67 0.06 0+ 0.8%
G18 0.72 0.73 3.53 2.49 2.39 12.3% S50 0.98 1.29 14.76 0.25 0.08 2.0%
G19 0.77 1.02 3.52 0.1 0.04 12.2% S51 0.01 0.03 17.03 22.84 20.28 1.7%
G20 0 0.01 3.37 7.93 7.57 9.0% S52 0.1 0.27 3.15 12.26 6.93 2.1%
G21 0.21 0.22 4.23 0.11 0+ 9.9% S53 1.53 1.97 4.46 0.02 0.01 6.3%
G22 0.24 0.42 3.23 0.4 0.19 8.8% S54 1.27 1.61 4.03 0.06 0.02 7.2%
G23 0.02 0.03 5.16 3.51 3.39 2.3% S55 0.5 1.93 0.66 0.16 0+ 0.2%
G24 0 0.01 6.45 7.58 7.25 2.2% S56 0.04 0.33 4.04 0.7 0.21 0.8%
G25 0 0.19 3.37 26.67 14 2.4% S57 0.01 0.25 3.33 0.4 0.16 1.2%
G26 0.01 0.18 3.12 40.09 21.85 3.0% S58 0.17 0.18 3.41 6.1 5.86 1.1%
G27 0 0.02 2.54 0.66 0.57 1.5% S59 0.78 0.95 1.57 0.15 0.08 3.9%
G28 0.22 66.27 2.52 0.06 0+ 0.5% S60 0.95 0.96 4.91 217 2.09 2.0%
G29 0.53 95.21 2.55 0.02 0+ 2.9% S61 1.06 1.07 4.92 2.19 212 0.4%
S01 0.01 0.02 5.47 306.81 295.05 2.8% S62 0.37 0.38 6.02 0.12 0.02 3.0%
S02 0.12 0.42 3.48 0.26 0.08 1.6% S63 0.77 0.99 15.72 0.56 0.22 1.5%
S03 0.05 0.06 3.3 6.93 6.65 1.6% S64 0.01 0.17 16.5 5.66 2.48 1.7%
S04 0.09 0.23 3.4 0.54 0.31 1.4% S65 0.87 1.1 1.82 0.09 0.04 1.8%
S05 0.12 0.13 3.15 4.62 4.43 1.9% S66 0.75 0.99 1.78 0.11 0.05 1.8%
S06 0.29 0.47 3.53 0.32 0.16 0.8% S67 0.95 0.96 2.09 1.54 1.5 1.5%
S07 0.45 1.21 6.78 0.11 0+ 0.7% S68 0.81 0.99 1.51 0.13 0.08 1.9%
S08 0.01 9.6 6.29 0.13 0 0.3% S69 0.02 0.03 1.92 8.27 8.09 1.7%
S09 0.44 0.59 2.98 10.38 6.2 1.4% S70 0 0.01 2.02 6.34 6.19 1.7%
s10 0 8.28 3.55 0.14 0+ 0.7% S71 0 0.01 1.99 7.38 7.22 1.7%
S11 0.04 0.05 4.68 371.67 356.51 2.9% S72 0 0.01 1.92 6.44 6.3 1.7%
S12 0 0.43 4.42 11.58 1.73 3.7% S73 0 0.01 1.71 5.77 5.63 1.1%
S13 0.86 1.16 4.69 0.12 0.04 1.3% S74 0 0.01 1.81 5.7 5.54 0.6%
S14 0.02 2.46 4.68 0.27 0+ 1.6% S75 0.03 0.04 1.38 3.95 3.85 0.5%
S15 0.03 0.25 4.18 16.54 7.17 3.7% S76 0 0.01 1.61 3.93 3.82 0.8%
S16 0 17.43 7.41 0.13 0+ 5.6% S77 0.01 0.02 5.56 33.39 32.12 0.2%
S17 0.01 29 18.32 0.15 0+ 4.0% S78 0.02 0.05 4.81 291 2.5 2.5%
S18 0.14 0.4 3.86 13.07 4.68 1.9% S79 0 0.06 5.57 2 1.49 2.5%
S19 0.01 0.14 4.76 0.69 0.37 0.5% S80 0 0.09 3.85 1.13 0.74 2.7%
S20 0.56 7.06 4.32 1.66 0+ 1.6% S81 0.04 0.09 4.76 2.01 1.6 2.8%
S21 0.64 7.77 4.59 0.04 0+ 1.3% S82 0.14 0.38 3.36 0.33 0.13 0.8%
S22 0.5 11.61 5.6 0.06 0+ 1.3% S83 0.07 0.49 3.36 0.24 0.05 1.1%
S23 0.4 11.21 5.51 0.07 0+ 1.3% S84 0.05 0.51 3.45 0.25 0.04 0.9%
S24 0.64 7.74 4.59 0.04 0+ 1.3% sS85 0.02 0.84 3.02 0.15 0.01 1.1%
S$25 0.12 9.23 4.84 0.14 0+ 1.2% S86 0.13 0.3 3.42 0.43 0.22 1.2%
526 0 0.06 4.3 1.75 1.35 0.6% S87 0.15 0.41 3.39 0.3 0.11 0.9%
S27 0 0.78 4.41 0.21 0.01 1.3% S88 0.08 0.28 3.37 0.4 0.18 1.1%
$28 0.01 0.02 4.4 6.25 5.91 1.3% wo1 0.03 0.16 80.02 293.84 139.45 2.0%
$29 1.56 1.87 13.7 0.27 0.09 0.9% wo2 0.89 1.15 3.69 13.88 5.04 4.9%
S30 1.24 1.79 17.54 0.42 0.05 1.3% Wo03 0 1.25 4.78 44.41 0.2 7.1%
S31 0 0.17 16.65 30.59 14.85 5.1% wo4 0 1.07 8.5 27.4 0.28 6.4%
$32 0.83 2.66 4.81 0.88 0+ 0.9% W05 0.03 0.38 28.94 53.02 13.73 3.7%

Note: Parameters rounded to 2 decimals; 0+ is a small positive number.

best-fit model would not have an acceptable fit (i.e. NRMSE = 5%). The
present sample met this expectation approximately: The best-fit model
was not acceptable for 14 (11% of 122) data, namely 8 (28% of 29)
goats, 4 (5% of 88) sheep, and 2 (40% of 5) wildlife.

While unbounded growth is unrealistic, the initial phase of growth
often displays an exponential growth pattern, whence data that cover
only this initial phase may result in an unbounded growth model. For
the BP-model, unbounded growth is characterized by the parameter
q = 0. Although our optimization strategy was designed to ensure

positive parameters, g-values close to zero were obtained for 32 data
(26% of 122 data with 0+ in Table 3). Some of these values were ex-
tremely small, e.g. ¢ =7-10"" for G28. However, in view of the
asymptotic mass (Table 4), these low parameter values did not always
indicate unbounded growth. For instance, for G28 the asymptotic mass
was 15kg. (This was also the maximal mass observed for these data).
There were only six data with excessive asymptotic mass (above
1000 kg), namely G21, G27, S08, S35, S39, and S62. Thus, as excessive
(or unbounded) growth was observed for only 5% of 122 data, we
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Table 4
Asymptotic mass and inflection point based on the best-fit BP-model.

No Mmax Ming tinel No Mpmax Ming tingl No Mimax Ming tingl No Mimax Ming tingl
GO1 36.3 NA2 NA2 S03 60.9 NA2 NA2 S33 38.3 22.1 2.7 S63 69.2 22.1 12.8
G02 17.8 11 106.4 S04 50.5 NA2 NA2 S34 38.4 21.2 2.9 S64 176.4 NA2 NA2
GO03 18.9 6.8 38.1 S05 57.8 NA2 NA2 S35 exc NAl NAl S65 20 7.2 59.8
G04 15.2 6.7 59.1 S06 45.3 NA2 NA2 S36 44.3 NA2 NA2 S66 21.3 6.7 48.1
GO5 16.4 6.1 1.3 S07 69.8 19 77.9 S37 70.2 NA2 NA2 S67 21.4 7.5 56.2
G06 23.1 5.2 0.8 S08 exc NA3 NA3 S38 71.2 NAl NA1l S68 19.6 6.4 51.5
GO07 18.3 9.4 2.4 S09 31 4.4 0.3 S39 exc NA3 NA3 S69 8.2 NA2 NA2
GO8 21.5 NA2 NA2 Ss10 28.4 NA1l NA1l S40 24.7 9.3 41.1 S70 10.8 NA1l NA1l
GO09 23.3 NA1l NA1l S11 64.4 NA2 NA2 S41 45.6 NA1l NA1l S71 9.9 NA1l NA1l
G10 23.9 NA1l NA1l S12 83 NA1l NA1l S42 45 7.6 7.8 S72 9.3 NA1 NA1l
G11 51.6 NA1 NA1 S13 43.7 16.1 38.8 S43 290.1 NA4 NA4 S73 13 NA1 NA1
G12 49.1 19.5 87 S14 46.8 6.5 6.6 S44 23.2 NA1l NA1l S74 16.3 NA1l NA1l
G13 52.9 20.6 93.6 S15 44.7 NA2 NA2 S$45 126.2 41.2 91.3 S75 14.1 NA2 NA2
G14 51.7 44.2 201.5 S16 69.6 NA1 NA1 S46 207.7 NA2 NA2 S76 17.7 NA1 NA1
G15 70.9 NA4 NA4 S17 92.5 70.3 375.8 S47 104.6 NA2 NA2 S77 49.5 NA2 NA2
G16 69.3 17.9 82.8 S18 51.9 NA2 NA2 S48 24.7 13.9 51.2 S78 166 NA2 NA2
G17 59.9 NA1 NA1l S19 134.4 NA2 NA2 S49 22 19.4 64.6 S79 130.7 NA1 NA1
G18 54.9 13.8 50.5 S20 35.3 23.9 3 S50 46.6 19.2 121 S80 108.9 NA1 NA1
G19 51.7 16.8 72.5 S21 40.7 28.7 125.5 S51 381 NA2 NA2 S81 99.6 NA2 NA2
G20 106.4 NA1 NA1l S22 45.2 34 123.1 S$52 28.7 NA2 NA2 S$82 51.1 NA2 NA2
G21 exc NA3 NA3 S23 43.2 31.8 120.7 S53 22.8 12.9 40.5 S83 40.6 NA2 NA2
G22 69.9 NA2 NA2 S24 40.7 28.7 125.4 S54 25.3 12.6 35.8 S84 45.7 NA2 NA2
G23 30.7 NA2 NA2 S25 34.1 21.2 88.7 S55 70 27.2 63.2 S85 44.7 NA2 NA2
G24 78 NA1l NA1 S26 74.6 NA1 NA1 S$56 66.7 NA2 NA2 S86 47.7 NA2 NA2
G25 29.7 NA1l NA1 S27 72.7 NA1 NA1 S57 44.4 NA2 NA2 S87 45.5 NA2 NA2
G26 35.6 NA2 NA2 S28 266.8 NA2 NA2 S58 56.6 NA2 NA2 S88 47.3 NA2 NA2
G27 exc NA1 NA1l S29 39.2 21.8 2.6 S59 28.4 8.9 58.5 wo1 309 NA2 NA2
G28 15 13.8 127.4 S30 45.4 23.3 1.9 S60 38.3 13.4 34.9 wo2 49.1 18.3 0.6
G29 10 9.4 127.4 S31 70.1 NA1l NA1l S61 27.6 10.8 24.8 Wwo3 75.3 NA1l NA1l
So1 49.8 NA2 NA2 S$32 42.4 22.4 3 S62 exc NA3 NA3 wo4 73.4 NA1 NA1
S02 43.4 NA2 NA2 W05 47.5 NA2 NA2

Note: mass in kg, t,q in the units of Table 1, exc = excessive asymptotic mass, NA= no/not observable inflection point.
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Fig. 3. Best-fit exponent-pairs for goats (green), sheep (blue) and wildlife (red)
intheregion0<a<150<b=<2.

conclude that unbounded growth was rather exceptional.

Mass growth in general has a sigmoidal (S-shaped) pattern, with fast
initial growth that slows down later. However, growth data may not
always display this pattern, e.g. if only data close to the termination of
growth have been collected. For the present data, we distinguished
between properly non-sigmoidal models, characterized by the para-
meter a = 0 (NA1 in Table 4) and rather non-sigmoidal growth curves,
where the inflection point (it demonstrates the sigmoidal character)
could not be discerned from the data (with reasons NA2-NA5 in
Table 4). For the present data, the best-fit parameter a = 0 was ob-
served in 28 cases (23% of 122 data) and for another 46 data (38%) the
inflection point could not be discerned from a plot of the data (NA2-
NAS). Thus, in total 74 of the data (61%) had a best-fit growth curve of
a rather non-sigmoidal character, of them 16 (55% of 29) for goats, 54

(61% of 88) for sheep and four (80% of 5) for wildlife. We conclude that
for the present data growth curves of a rather non-sigmoidal character
were prevalent for all species.

Data with discernible inflection points

For 48 (39% of 122) data there was an inflection point and it was
discernible from the data (14 goats, 33 sheep, 1 wildlife). There was no
significant difference in the goodness of fit (NRMSE) for data with ra-
ther non-sigmoidal growth curves and data with discernible inflection
points (medians 1.7% and 1.6%, respectively, P-value for the Mann-
Whitney test for location 0.848, and for the Conover test for variance
0.178).

For the sigmoidal growth curves the inflection point (Table 4)
provides additional biologically relevant information, as at this point
growth is fastest. As our data were comprised of different species and
within the species of different breeds with different typical sizes, our
analysis considered the quotient my,q/mmq, of mass at the inflection
point over asymptotic mass to eliminate size dependency: In view of
Eq. (2) this quotient depends on the best-fit exponent-pair, only. This
allowed us to pool the data (i.e. the data of all species were considered).
For, the Anderson-Darling test did not refute the hypothesis of a normal
distribution of the logarithms of these quotients (P-value 0.1, maximum
likelihood parameters: mean value —0.82 for the logarithms, standard
deviation 0.46). Thus, in the median the mass at the inflection point
was about 43.9% of the asymptotic mass, compared to 29.6% of the von
Bertalanffy model, 36.8% of the Gompertz model and 50% of logistic
growth. (All of these fractions were in the 90% confidence interval
between 20.6% and 93.9%.)

For the time variable, we considered the quotient t;nq/tmax Of the age
at the inflection point over the time of the last measurement and pooled
the data again. For the 48 considered data, this quotient was in the
interval between 0 and 1, as we had removed all other data as rather



N. Brunner and M. Kiihleitner

massgain

minflF----------—-—--2

mof - - -

mass

mO minfl mmax
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non-sigmoidal. The hypothesis of a normal distribution of these quo-
tients was not refuted (Anderson-Darling test, P-value 0.17) and the
maximum likelihood parameters were mean value 0.347 with standard
deviation 0.224 for these quotients. (Under this distribution, only 0.1%
of quotients were expected to be larger than 1 but still 6% could be
smaller than 0.)

Another question of biological interest asks: By how much did the
speed of growth increase from t= 0 (birth) to t= t;;z (maximal
growth)? To this end we evaluated the quotient m’,a/m’ (see Fig. 4):
Thereby, m ' is the right-hand side of (1), when m;,q was substituted
for mass (maximal mass gain per day). Similarly, for m", the estimate c
for m(to) was substituted. As for this evaluation we considered only data
with t, < 1, c estimated natal mass m,. Further, we considered only
data, where the best-fitting growth curve had an acceptable fit: NRMSE
< 5%. This reduced the count of the considered data to 28 (8 goats, 19
sheep and 1 wildlife). We expect that in average this quotient will be
different for different species. However, for the present data we could
not confirm a significant difference, as there were too few re-
presentatives left for each species, and we pooled the data. The An-
derson-Darling test indicated a good fit of the logarithms of the quo-
tients to a normal distribution (P-value 0.533). The maximum-
likelihood parameters were 0.439 for the mean value and 0.308 for the
standard deviation. (We expect the standard deviation will be lower if
the computation is based on studies with larger samples controlled for
e.g. sex, breed, and nutrition.) The corresponding lognormal distribu-
tion resulted in mean value 1.63 and median 1.55 for the quotients.
Thus, for 50% of data we can expect that the estimated natal speed of
growth increases by up to 55% and for 50% of data the increase will be
even higher.

Finally, we explored the differences between data supporting either
non-sigmoidal or sigmoidal models. As shown in Fig. 3, the best-fit
exponent-pairs spread over a large region with a concentration of ex-
ponent-pairs close to the lines a = 0 and a = b. Both lines were asso-
ciated to growth curves of a rather non-sigmoidal character. Comparing
data with rather non-sigmoidal growth curves and data with discernible
inflection point, for the latter the best-fit exponent a was stochastically
higher (median a = 0.645 and 0.75 for sigmoidal goats and sheep, re-
spectively, compared to median a = 0 and 0.01 for rather non-sig-
moidal growth curves, P-values below 0.0001 using the Mann-Whitney
test). Further, for the latter the exponent-difference b—a was stochasti-
cally higher (median b-a = 0.395 and 0.55 for sigmoidal goats and
sheep, respectively, compared to median b-a = 0.15 and 0.16 for rather
non-sigmoidal growth curves, P-values below 0.013).

In addition, the sheep-data with rather non-sigmoidal growth curves
differed significantly in the following aspects from the data with dis-
cernable inflection points: For the former, the study durations (differ-
ence t,q — to in days) were stochastically higher, in the median 360
days compared to 180 days (P-value 0.0014, using the Mann-Whitney
test), and also the average timespan between successive weight
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Table 5
Count of datasets with an acceptable fit to the indicated named models.
Brody von Gompertz@@ Verhulst@@@
model Bertalanffy@@ @@model @(logistic)
@@model model
not in grid 1 43 64 67
NRMS criterion
acceptable 104 63 41 39
not acceptable 17 16 17 16
F-ratio test criterion
acceptable 94 58 36 33
not acceptable 27 21 22 22
both criteria
acceptable 86 47 27 21
not acceptable 35 32 31 34

Notes: The table counts, for how many data the model had the following
outcome: not in grid indicates that this model was not in the search grid, as its
exponent-pair was too remote from the best-fit exponent-pair; criterion NRMSE
means NRMSE < 5%; F-ratio test criterion means an P-value < 5% for the
comparison of this model with the best fit model; not acceptable means that one
of these criteria was not satisfied (although the exponent-pair of the model was
in the grid).

measurements (the quotient (t,,o, — to)/ny) was stochastically higher, in
the median 30 days compared to 25.7 days (P-value 0.0004).

Fit for named models

Next, we searched for models that achieved an acceptable fit to as
much data as possible. We used two criteria, NRMSE < 5% (the plot
showed a growth curve close to the data) and F-ratio test with P-value
> 5% (the best-fit model did not achieve a statistically significant
improvement of the fit): A model had an acceptable fit if both criteria
were satisfied. We confined the search to a < 1 and a < b< 3 and
identified six models with an acceptable fit to 90 (74% of 122) data: BP
(0.02, 1.1), BP(0.02, 1.12), BP(0.06, 0.99), BP(0.06, 1.02), BP(0.16,
0.77), and BP(0.24, 0.71). Thus, for the present dataset, the count of 90
was the maximum number of data to which a single three-parameter
model BP(a, b) could have an acceptable fit in terms of both aspects
NRMSE and F-ratio test.

Table 5 compares this outcome with the fits for the models of von
Bertalanffy, Brody, Gompertz, and Verhust. For the Brody model
NRMSE was acceptable for 104 data (for the best-fit models: 108 data),
the F-ratio was acceptable for 94 data and the fit was acceptable under
both aspects for 86 data (70% of 122 data), which was close to the best
performance for a single model. To illustrate the good fit, Fig. 5 plots
the transformed dimensionless data-points. There were 82 datasets with
an acceptable fit to the Brody model and asymptotic mass below
1000 kg. We used the best-fit parameters of this Brody model to define

normalized mass

: - transformed time
0.5 1.0 15 20 25 30 35

Fig. 5. Plot of data-points that were transformed using the Brody model with
the best fit to the dataset: For each of 82 datasets with acceptable fit and
asymptotic mass below 1000 kg, mass was divided by asymptotic mass and age
was divided by the age, at which 90% of asymptotic mass was reached. .
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the transformation for the data-points of the dataset and plot them.
Fig. 5 is the superimposition of these plots.

Amongst the other (sigmoidal) named models, the von Bertalanffy
model performed best with 38% acceptable fits compared to 17-22%
for logistic and Gompertz models. However, the exponent-pairs of these
models were so remote from the best-fit exponent-pairs that for
35% —55% of the data they were not even included in the search grid.

We conclude that the non-sigmoidal Brody model achieved almost
the best result that could be obtained by a single three-parameter model
BP(a, b). What was the reason for this good fit? We had only one source
with growth data from a controlled study that provided mass-at-age of
individual animals, which we collected in G11 to G22: The Brody model
had an acceptable fit to only one of these 12 data, while its fit was
acceptable for 85 of the 110 other data. Using a chi-squared test for
contingency (P-value 0.7-1077), this indicated that the Brody model
would rather not be suitable for large collections of individual data
from controlled studies. We obtained another significant contingency
(P-value 0.011) when we distinguished between stratified data, where
females and males were collected separately, and pooled data: The
Brody model had an acceptable fit for 43 of the 70 stratified data and
for 43 of the 52 pooled data. We conclude that the growth curves of
females and males may both be sigmoidal, but if the sigmoidal char-
acter is only slightly pronounced, it may be lost from averaging over
female and male animals. The same reasoning about averaging may
apply for other factors, too. We therefore conjecture that the reasons for
the dominance of the Brody model were on the one hand the barely
noticeable sigmoidal character of the growth curves and on the other
the study design of our source papers. For, the sample sizes for these
papers often did not allow an additional stratification (e.g. sex, season
of birth, or order of birth for twins): In the median the size of the pooled
data (FM) was np = 10 and np = 13 of the data stratified by sex (Mann-
Whitney test: P-value 0.002).

Conclusion

Our research confirmed that the intuition of the authors of the
source papers was right, who used the common three-parameter models
of BP-type to identify the growth patterns for goats and sheep, namely
the models of von Bertalanffy, Gompertz, and Verhulst with a sigmoidal
growth curves and the non-sigmoidal Brody model. For the present
data, most of which came from studies with small samples, and amongst
the named models, the model of Brody was the most sensible choice for
data-fitting, as this model achieved an acceptable fit to 70% of data
(Fig. 5), which was close to the maximum number of data that could be
fitted by a single three-parameter BP-model. This outcome may explain,
why this model is mentioned so often in growth studies about sheep and
goat. We may therefore recommend this model for small samples,
particularly if the samples bring together different types of animals (e.g.
females and males).

Using general BP-models confirmed the inherent non-sigmoidal
character of our data: There were only 39% of data, where the best-
fitting BP-model had a discernible inflection point. These genuinely
sigmoidal best-fit models were of interest because from them biologi-
cally relevant conclusions could be drawn, e.g. a comparison of natal
weight gain per day m’, with maximal weight gain m .
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