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Abstract The search by swimmers for a small target in a bounded domain is ubiqui-
tous in cellular biology, where a prominent case is that of the search by spermatozoa for
an egg in the uterus. This is one of the severest selection processes in animal reproduc-
tion. We present here a mathematical model of the search, its analysis, and numerical
simulations. In the proposed model the swimmers’ trajectories are rectilinear and the
speed is constant. When a trajectory hits an obstacle or the boundary, it is reflected
at a random angle and continues the search with the same speed. Because hitting a
small target by a trajectory is a rare event, asymptotic approximations and stochastic
simulations are needed to estimate the mean search time in various geometries. We
consider searches in a disk, in convex planar domains, and in domains with cusps.
The exploration of the parameter space for spermatozoa motion in different uterus
geometries leads to scaling laws for the search process.
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1 Introduction

Searches for a small target by random particle or by random switching dynamics
depend critically on the local geometry of the target and the global geometry of the
domain, as revealed recently by analytical, numerical methods and by stochastic sim-
ulations of molecular motion, viral trafficking, or prey search (Holcman and Schuss
2004; Redner 2001; Benichou et al. 2007; Holcman and Schuss 2013, 2014; Ward
et al. 2010; Kurella et al. 2015; Cheviakov et al. 2012; Schuss 2010). Asymptotic
formulas for the expected search time were found for diffusive motion (Holcman and
Schuss 2013), but much less is known for other search processes. The problem under
consideration here is that of estimating the mean search time of spermatozoa for an
egg lodged in the uterus or in the fallopian tubes. This search is one of the most severe
selection processes of one among hundreds of millions spermatozoa. How the winner
is selected remains unclear and may depend on many parameters of the spermatozoa
and the uterus. It is also unclear how to quantify geometrical parameters of the uterus.
For example, how does a drop in the initial number of sperms affect fertility?

Between 1989 and 2005 the concentration of sperm cells in human semen has
dropped significantly and continuously at an average rate of 1.9 %/year, leading to
a reduction of 32.2 % in sperm count over 16 years (Rolland et al. 2013). Do these
changes in concentration really matter? It is well documented that reducing the con-
centration of spermatozoa by four leads to infertility, but how such a result can be
explained? because it still remains millions Reynaud et al. (2015). We still do not
understand the role of the huge redundancy in sperm population. Motivated by these
questions, we develop here a mathematical model of spermatozoa motion based on
a simplified dynamics and on some elements of the uterus geometry. Our goal is to
estimate the expected arrival time of a spermatozoon (a sperm cell) to a given neighbor-
hood of a small egg. In that neighborhood, the motion of a spermatozoon is modified,
because it responds to chemotaxis gradient generated by the egg (Armon et al. 2014;
Armon and Eisenbach 2011; Teves et al. 2009). This terminal phase of the search is
not studied here.

Classical models of spermatozoa motion include the beating of flagella in viscoelas-
tic fluids (Fu et al. 2008) and attraction to a flat wall due to hydrodynamic interactions
of the swimmer with the surface (Elgeti et al. 2010; Berke et al. 2008; Smith et al. 2011;
Gaffney et al. 2011; Kantsler et al. 2014, 2013). For high spermatozoa concentration,
collective modes of locomotion, different from those displayed by isolated cells, have
been described by long-time kinematics of their relative locomotion (Michelin and
Lauga 2010). The study of asymmetric flagellar bending was based on cytoplasmic
calcium dynamics in the flagellum (Olson et al. 2011). The trajectories of spermato-
zoa can also be influenced by fluid motion (Marcos et al. 2012). However none of the
present studies have addressed the generic question of the search of a small egg in the
context of the uterus. Indeed, we shall explore here the role of the uterus geometry,
quantified by various parameters such as the height, width, the radius of the cervix g,
local curvature near the fallopian tubes or the aspect p = L/ W (as shown in Fig. 4) that
measures the non-convexity, all should be key parameters in directing the spermatozoa
toward the egg, yet this possibility has not been explored so far. However, contrary to
the mentioned references, in the present work, we will use a very crude model of the
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Fig.1 Schematic representation of the human uterus, showing the fallopian tubes, ovaries, cervix, vagina,
and the ovum. We emphasize various location of the target (round dashed circle)

spermatozoa motion, approximated as a ballistic directed motion, to derive asymptotic
formula for the search process in convex geometries and use numerical simulations
for non-convex ones. The novelty and difficulty here are in geometry of the uterus-like
domain, where the motion occurs and the search for the small egg target.

We recall that the adult female uterus (Gray et al. 1974) is pear-shaped and is
about 7.5 cm long, has a maximum diameter of 5 cm and a height of 3.4 cm, with a
mean volume of tens of cm?>. It is a hollow thick-walled non-convex muscular organ.
On its upper part, the uterine tubes open, one on either side, while below, its cavity
connects to that of the vagina. After an egg is released from the ovaries and moves
inside the uterine cavity through the uterine tubes, it waits for fertilization (see Fig. 1).
In summary, fertilization occurs most likely between the junction at the end of the
uterus and somewhere in the fallopian tube, but not inside the uterus. We thus define
the position of the target for this search process as the entrance of the fallopian tube,
modeled here as a small gap between straight line and quarter-ellipses (see Fig. 1).

In estimating the expected search time, we model the spermatozoa motion as recti-
linear far away from the egg, with random reflection when a trajectory hits the boundary
of the uterus. Indeed, we adopt this model here following recent in vivo movies that
we observed (courtesy of Reynaud K, private communication), where spermatozoa
motions were mostly ballistic for distances of millimeters, as long as they do not
encounter any obstacle. After hitting a small obstacle, the new direction was much
correlated to the previous one, which is a significant deviation from a classical random
walk. However, after hitting a wall and for trajectories that immediately returned to
the bulk, the reflected angle was not correlated with the initial one. Other reflection
behaviors include motion along the boundary, as observed in microfluidic chambers
(Denissenko et al. 2012). It is however unclear at this time what exactly is the sper-
matozoa motion in vivo at long distances of centimeter sizes. We further construct
numerical simulations of the search to explore a part of the phase-space, especially
for non-convex shape geometry, where we have not yet found a fruitful analytical
approach. Mathematically, finding a small target by this search process with deter-
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ministic reflection is analogous to the escape from a billiard table through one and two
small holes (Bunimovich and Dettmann 2005).

This manuscript is organized as follows. We start with describing a crude rectilinear
model for the swimmer motion and use it to estimate the time to find a small target
(one of the two small fallopian entrances, which are two well-separated small targets,
see Fig. 1). The swimmer motion is modeled as that of a point moving at constant
speed in a fixed direction. It is reflected at the boundary in a random direction and
absorbed when it hits the small target (of size ). We estimate analytically the arrival
time to the small target for different situations: starting with the unit disk, followed
by the three-dimensional ball and then for more general two-dimensional convex
domains (that are small deviation of a disk). We explore non-convex geometries by
numerical simulations in dimension two. For non-convex domains, there are regions,
including the one where the target is located, which are not accessible to direct rays,
leading to a difficulty in computing the probability to find the target in finite time. The
present approach provides a framework for the study of various parameters involved
in the search process and reveals the role of the geometry in defining the search
time.

2 A crude model of spermatozoa motion
2.1 Model simplifications

Spermatozoa motion results from the flagella beating attached to the round head. The
ensemble head plus flagella allows the spermatozoa to swim in a complex medium,
inside or on the surface of a domain. At a micrometer scale, the details of the sperma-
tozoa geometry are relevant to the prediction of its motion, to account for the variety
of displacements and of its orientation. For example, spermatozoa are reflected along
a corner or at a surface with different properties, with random angles that are different
from the mechanical and optical rules of the Snell-Descartes law of reflection (Kantsler
et al. 2013; Ishimoto and Gaffney 2014).

In the present study, we focus on long-scale motion on the order of centimeters. We
neglect the effect of any chemotaxis gradient that could direct the cell toward a specific
target. Thus the motion of a spermatozoon is simplified to that of a point, which away
from any boundary, is ballistic or rectilinear with a constant velocity (Prez-Cerezales
et al. 2015). We postulate that when a spermatozoon hits a surface it is reflected at
a random angle, uniformly distributed in the tangent half-space. Thus the simplified
model of spermatozoon motion in a bounded domain €2 is assumed rectilinear with
constant velocity

X = vou, (1

where u is a fixed vector chosen on the unit sphere from a uniform distribution. Upon
hitting an obstacle at a boundary point X, the velocity changes to

X = v, 2)
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where v is chosen on the unit sphere in the supporting half space at X from a uniform
distribution, independently of u. This model captures the crude sperm dynamics,
neglecting the additional motion induced by the flagella and will be implemented in
the simulations performed here.

3 The expected search time in convex domains
3.1 Expected search time in a disk

When €2 is a planar circular disk of radius R, the velocity is vy, and the target is an arc
of length ¢ on the boundary, the probability p(¢) to hit the target in one step, starting
the search at any point on the circle, is

€
p(e) = 7R 3)

The probability to hit the target in exactly k steps is a geometric distribution g =
(1— p(s))k’l p(e). Thus the expected number of steps to the target is

2w R
pt

> 1
E[Npir] = D kgr = et “)

To determine the expected search time, we assume that the target is centered at x =
0, y = R and that k reflections occur at the uniformly distributed angles (61, ... 6)
(Fig. 2), where the angle of reflection is 6 = @ Each ray is represented by its
projection Re!% on the circle of radius R. The distance between the reflection points
is

Or — Ok—1

dr = 2R |sin 5 Q)
The expectation of the right hand side is given by
2 2
. k—9k 1 9k—9k 1| dOk dbr—1
Eo, .00, |: sin ——— i| / / T o (6)
/2 do 2
=2 / sm —. (N
0 7'[ 7'[

The time spent on a single ray is ©x = dj /vy, therefore the mean time to exit in N
steps is

4RN
= . ®)

TV

(. . Ok — 6
E[t|N]=v—0]EZZR sin —
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Fig. 2 Search for a small target in a disk and a ball. a Schematic representation of the dynamics in a disk:
the motion is reflected on the boundary at a random angle. The target size ¢ is on the boundary. b A path
with many random reflection escapes ultimately at the target (green dot). ¢ Probability density function
of the arrival time obtained from stochastic simulations. d The expected search time is the MFPT of the
trajectory to the target, obtained from stochastic simulations (blue circles) and compared to the analytical
(9) (red). e Search in a ball. f Comparison of the analytical curve (red) with the stochastic simulations (blue
circles). Non-dimensional parameters: R = 1, vy = 1 (color figure online)

Thus the mean first passage time to the target is

4R 8R*  8S

wuop(e)  wvoe  mwuoE

E[t] = > Elz|NI(1 - pe)" ' pe) =

N=1

©)
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where S = 7 R?. Formula (9) shows that the present search process is asymptotically
of the order %, as € goes to zero, much longer than the one for a free Brownian particle
with diffusion coefficient D, searching for a target of size ¢, in a two-dimensional
domain of surface S, for which the Narrow escape theory (Cheviakov et al. 2012;
Schuss et al. 2007) gives

E[r] ~ i logl + O(1). (10)
D e

The results of numerical simulations of a search for a small arc (Fig. 2a) in a circular
disk are shown in Fig. 2b, where the search starts at a point uniformly distributed
on the boundary (red point). The tail of the exit time density decays exponentially
(Fig. 2c). The increase at short times corresponds to a fraction of trajectories that
shoot-up directly to the target. Finally, the numerical approximation for the expected
search time is well matched by the asymptotic formula (9), where

Efz] ~ -
€
(Fig. 2d, where for the simulations, we took non dimensional parameters R = 1,
vo = 1).
The distribution of the number of search steps prior to hitting the target decays
exponentially, because

pr=Pr{N =k} = (1 — p(e))* ' p(e) = p(e) exp{(k — 1) log(1 — p(e))}. (11)

Thus, the probability density of the search time 7, is

Pr{, =t} = > Pr{t,=t|k}pi fort>> I. (12)
k

The exit time event {7, = t} can always be decomposed as t, = k1, + t*, where the
residual time 7* is distributed as

as, s < T,/2

(T — ), Tn/2 <5 < Tp,. (3)

Pr{t* =5} = [

where 1,, = 2R/vg (the maximum search time) and the normalization constant is

& = Ty Indeed the velocity is constant and the initial point is uniformly
JO -

distributed on the circle. Thus, as the number of steps before exit decays exponentially,
we have that

Tm
Pr{z, =t} :/ Prit, = k1, +t* =1t,t* = s} Pr{t* = s}ds, (14)
0

Pr{t,=kt, + 1" =1t,t" =5} ~Pr{t. =kt =t — s} ~ Pr{t.=kt,, =t} fort > 1.
(15)
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Thus,
Pr{z, =t} ~ exp(—Ast), (16)
where
Ae = log; ~ p(e). (17)
(I = p(e)

3.2 Expected search time in the three-dimensional ball

To compute the expected search time of a swimmer in a ball, we assume that the target
is a small disk centered at the north pole of the sphere and that the dynamics are (1)
and (2). The apex of the target is an angle 8 = 2¢ on the sphere, the solid angle at
any point on the sphere at position ¢ is in general a function of both variables ¢ and
¢, denoted Q2 (¢, €) (see Fig. 2), 0, ¢ are spherical coordinates on the sphere.

At each step of hitting the boundary, the probability for the trajectory to find the
target is p(6) = Q(¢, €)/2n. The solid angle Q2 (¢, &) depends on the position and
the size of the hole (Paxton 1959) and the exact expression for formula (62) is given
in Appendix A.2. However, in contrast to the case of a disk, the expected number of
steps to hit the target, or the search time, depends on the history, due to the dependence
of the probability on the variable ¢. Indeed, the probability to hit the target in k steps,
with the history angles ¢1, .., ¢k, is

k—1
p@e) [ —p @i o)l (18)

i=1

Thus the expected number of hits prior to escape is

oo k—1
E[Npis] = D_kE [p @, &) []11 = p(ei, 01 \«pl, m} : (19)
i=l

k=1

where the expectation is conditioned on all trajectories that are reflected with angles
(é1, --» Px—1), which are uniformly distributed in [0, 7 — ¢], while the last angle falls
into [ — &, ]. Thus, because all angles variables are i.i.d. random variables

1 2

E[Nyird = D kEp (¢,8)[1 —Ep (¢, )]

~ = , 20
par B @@y
where the mean solid angle is defined by
2r pmw—e¢ . T—€ .
Q) = L0 gﬂ Q (¢, e)singpdpdo _Jo Q(q&,e)smqbdq&. 1)

o Jo “singd¢do I +cose
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The solid angle at which the target is seen from the sphere centeris Q29 = 27 (1 —cos¢).
Note that limg_, ¢ 220/(2(¢, €)) = 2 (see Appendix A.2).

To calculate the expected search time, we first compute the mean Euclidean distance
along a ray between two consecutive reflecting points Py_1 = (¢r—1, 6x—1) and Py =
(¢x, Br) on the sphere, where (¢, 6) are the spherical angles uniformly distributed in
[0, 2] x [0, 7r]. First, on a ball of radius R,

d(Py, Pk,l)2 = Rz((sin Ok cos ¢ — sin G _1 cos ¢k,1)2
+ (sin O sin ¢y — sin G _1 sin ¢k—1)2
+ (cos 6 — cos Gk,l)z)
= 2R?(1 — sin G_ sin O cos(Pr — r_1)).

Thus,
2 2 2
ds = (d(Py, Pey1)) = preay s depi— 1/ d¢k/ do— 1/ db

X \/(1 — 8in O;_1 sin O cos(pr — Pr—1)). (22)

The integral (22) is evaluated numerically (Mathematica) to give an approximation
for the mean length on a sphere

ds = (d(Px, Pr+1)) =~ 1.32R. (23)

It follows that the expected hitting time after exactly N hits is

)

1 N
Efr|N] = -E [Zd(Pk, Pit1)

} _ 1.32RN
k=1

Vo

where vg is the moving speed of the swimmer, which is set to a constant value here.
Using (19), we finally get the general formula for the expected search time

o
_ dg 2
Elr] =D Elt[kIEp (4. &) [l —Ep (¢, o) ' = =———0  (24)
,; vo (§2(¢, €))
Hence using expression (21), it follows the estimate
2.64R
Elr] ———. (25)

vo (1 —cose)

Figure 2 compares the analytical approximation (25) with results of simulations. The
comparison confirms that the leading order of magnitude in the expansion of the
expected search time in powers of ¢ is ¢ 2. A numerical fit gives E[t] = 2.61(1 —
cosg)~1902 (R = 1), hence the expected search time for the target in the three-
dimensional ball is proportional to the surface area and inversely proportional to the
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square radius of the small target (relation 25). An asymptotic formula for an elliptic
target can be derived from formula 62 (Appendix A.2) involving elliptic integrals.

3.3 Expected search time in a two-dimensional convex domain

Next, we consider the search for a small target in a planar starlike domain 2. We
calculate the probability of a swimmer’s trajectory to hit a small target on the boundary
d%2 of the domain, which is parameterized in polar coordinates by r(6) so that in the
complex plane, Q(6) = r(0)e'?.

3.3.1 The probability to hit a small window

When a trajectory starts at Qg € d€2 it ends at another point Q1 € d<2 (see Fig. 3), the
probability that the angular deviation of the particle moving path Q¢ Q1 (assuming the
path is a straight line) will lie between angle ¥ and ¢ +d is P(d Q1| Qo) = d¥ /7,
in which ¥ is the angle between the moving path and the tangent line at point Q.

Based on triangle geometry in the plane, we obtain 7/2 + 8 = ¥ 4 «, in which
B is the angle between the line QpQ1 and the vertical direction (see Fig. 3) and «
is the angle of the tangent line at Qy, then it turns out that dyr = dp after applying
differentiation to the equation (« is constant). The line Qg Q1, can be written in polar
coordinate.

r cos(f@ — B) = constant,

in which (r, ) are polar coordinates in the plane. Therefore the coordinates of the
points Qo = (rp, 60) and Q1 = (r1, 01) satisfy the equation

Vg

Fig. 3 Particle moving from point Qg to Q1
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rocos (6o — ) =ricos (61 — B), (26)
where ro = r(6p) and r; = r(61). Expanding (26) and rearranging, we obtain

tan § = r 0?591 — 70 C.OSQO _ N(Gl). 27
ro Sin 6y — ry sin 6y D(6y)

Differentiating (27), we get

dp 1
6, — D))’

(1 + tan /3) (28)

(D(el)dN(el) dD(Ql))’

79] ( l)
hence

[V1 sin(61 — 6p)]

2
1 dN _dD T
dﬁ:ﬁ(D——N—)delz 5 d do,.
D+ N do; do ri + ro 2rirg cos (01 — 6p)

Therefore, the probability density of hitting the target in one step, P(d Q1|Qp), can
be written as

d
r2 —ro— 01 — 60)]
iy ds rod [r1 sin (6, 0
P =—=—= e
( Ql'QO) T T ( 1 +r0 —2r1r0COS (01 0())) 1 ( 9)

In contrast to the case of a circle, here the density depends on the initial position.

3.3.2 The probability of hitting the target after n steps

The probability for a swimmer starting at Qg € 9€2 to hit a small arc 92, of length
|092,] = &, centered at Q1 € 9L, is

PL(Qo) = / P (d01]00). (30)

Q%

The probability to hit the target after bouncing #» times in the boundary 92, = 92 —
02, 1s

Py (Qo) = / /"'/P(dQn|Qn—l)P(dQn—l|Qn—2)"'P(dQ1|QO)- 31
Q. 0Q, 0%,

————
n—1

There is no general simplifying form for this multiple integral. We consider, therefore,
a perturbation of a circle.
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3.3.3 Perturbation of a circle

A perturbation of the unit circle can be written as

r@) =1+no(0), (32)

which for n <« 1 is a small amplitude deviation, as long as p is a function that keeps
the domain convex. Substituting (32) in (29) and expanding to leading order in powers
of n we obtain

U

P(dQ1|Qo)——[ T cos (@1 — )

d
(—po+pl - d—g‘ sin (6 —90))] g, (33)
1

which allows to approximate the exit probability after ' iterations (relation (31)) as

Py (Qo) = ( )”“// /[+UZ cos(@k—ek 1)( Pk—1 ~+ Pk

Qg 092,
1
doi .
——Zsin Bk — Ok—1) ) | dOy - - - db,. (34)
Aoy
Forn < landn > 2
1\" .
Py (Qo) = (E) e —&)" '+ nPy(e) + O, (35)
and
PI(Q0) = (52) +nPi(clbo) + 0P, (36)
where

n

5o (] g
el 0)_(271) [ [] =11—cos(9k—0k D

0, 02, L)r

n— 1
+ dp in (O — Gr_1) 37
—Pk—1 Pk d9 S k k—1

This can be further simplified to
Py(el60) = On(e) + Ru(e) + Tule),
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with
1 i’lfl
Qn(8)=(n—1)(5) 10911082 " 2K (f,) forn >2
01\
Ry(e) = K> (f,09,) forn >1
2
T, (]60) = 991" 1%l / P(dQ1l6o)
n(elbo) = | — P 1160).
9%,
where
1
Kl(fp)=4n_2/ /fp(91,92)d91d92 (38)
9, 9%,
1
KZ(fpana)zm/ /fp(91,92)d91 do, (39
9 09
OOy = — +on— P2 o 6y — 1) (40)
- — — —=sin (6 — .
p(01,00) = T p1+ P2 6, h — 61

The operators K1 (f,,) and K>(f,, €2,) are well defined, because
lim f,(01,62) = —p. 41
6,—6

3.3.4 Number of hits before hitting the target
The expected number of steps E[ Vy;;] before hitting the target is expressed in terms
of the probability P,(Qy) to hit the target in n-steps, given the initial point Qy,

E[Npis] = D kPi_1(Qo). 42)
1

The expansion (34) for small ¢ and n gives to leading order

o 2 o 5
E[Nyir] = 3 kPio1(Q0) = = + 1 3 kP (el60). (43)
1 1
We decompose
> kBe_1(el6o) = Q(e) + R(e) + T (e, (44)
1
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with

(2)

0(e) = ZnQn 1) =

R(e) = Zan 1) = —Kz(f J6)

~ 1
Tt =S (o) = 2/, P01 160
1
to obtain for n < &,
2 472 n>

E[Nyir] = = + 20— Ki(fy) + 0 (8—2) . (45)

It follows that the expected number of steps prior to hitting the target depends on the
integral K (f,), which accounts for certain global properties of the boundary.

To compute the mean time before escape, we estimate the distance between two
points P(01) and P(6,) using the perturbation condition (32)

di2(01,62) = |P(B)P (6] = |r(@1)e'” — r(62)e™”]

1,0 i0 n 2
= [e"t — '] + m(ﬁl + 02)(1 —cos(61 + 62)) + O(n°)
6 —0 0, — 06
_ ol L2 n(p1 + p2) gin L0 o).
2 2
Thus,
27 2 b ( :
1 —62 P1 + 02
Eld] = / / 2|+ 2 ‘ d61d6 + O(r?)
0 0
2w 2w

0, — 6
1n( 12 2)‘ d6\dos + 0 ().

Because the time spent on a single ray is tx = di/vo, the expected search time in N
steps is

1 [ N
E(r |N] = -E [Z dk} = 3 Eld]. (46)

k=1
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Finally, (38) gives the expected search time as

o0
E(z|Qo) = > Elr | N1Py(Qo) “7)

N=1
g5 q 2 2w 0, —p 30

- + —//’O“Lp2 sin 22| d6,dey + 2L K1 (f,)
wluge  voe \ 2w 2 €

0 0
+ 0.

This expansion is valid for < ¢. It shows that the first perturbation term depends on
two integrals involving a generalized curvature function over the boundary. Although
we shall not use directly these estimations in the numerical analysis below, these
formulas reveal the geometrical features contributing to the search time. It would
certainly be interesting to obtain a full expansion to order &”.

4 Search for a small target in a uterus-like geometry: a simulation
approach

Consider the search problem for a small target in a two-dimensional non-convex
domain with cusps (Fig. 4) and assume the dynamics (1)—(2). The two-dimensional
domain in Fig. 4a captures some of the main features of the planar cross section of
the uterine cavity (see discussion of the three-dimensional approximation below). The
planar domain consists of two quarter-ellipses (black thick lines) underneath the upper
part which is made of a straight line (black line on the top). The left and right sides are
symmetric. The gaps between the straight line and the quarter-ellipses are the narrow
openings.

4.1 Estimate of the expected the search time from numerical simulations

The simulation of equations (1)—(2) with random reflections at the boundary, except
when a trajectory hits one of the two ending cusps, where it is terminated, gives the
results shown in Fig. 4b—d (see Appendix A.1 for the details of the simulations and
Table 1: we use the following non-dimensional parameters L =5, W = 2.5,¢ = 0.1,
8 = 0.3 and velocity v = 1). A typical trajectory before reaching a small target is
shown in Fig. 4a. The probability density function (pdf) Pr{z, = ¢} of the arrival time
to either one of the cusp opening (size ¢ = 0.1) is shown in Fig. 4b. The tail of the
distribution is well approximated by an exponential

Pr{t, =t} = exp(—At), fort> 1, (48)
where the rate is A = E[7,]!. The results of numerical simulations give the following

value for the mean time E[7.] = 84.9. The exponential approximation for the tail
seems valid for + > 100, but deviates slightly when 20 < ¢ < 100. The short-time
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Fig. 4 Search process in uterus-like geometry explored by simulations. a Schematic representation of
a two-dimensional uterus-like domain containing a typical trajectory before reaching a small target. b
Probability density distribution of the search time, when the target size ¢ = 1 non dimensional unit (L =5,
W = 2.5). ¢ Probability density distribution of arrival time for different target size ¢ and the inset is the
normalized pdf of arrival time normalized by the mean for various opening sizes 8. d The mean arrival
time in a uterus-like geometry decays approximately with Et = Ce—2/3, where the target size is ¢ and
C=174

Table 1 Parameters for the arrival time simulations

Parameter Description Value

Q Domain Q

€ Target size

w Width of the ellipse

L Height of the ellipse

vo Measured in vivo velocity of spermatozoa 75 ums L.

distribution is not studied here for ¢t < 20. We show the different pdfs as ¢ varies in
Fig. 4c. After rescaling the pdfs by their mean values, they all align into one universal
curve (Fig. 4c, inset), suggesting that a possible power scaling law for the pdf. To
explore this possibility, we estimated the search time for various values of ¢ (Fig. 4d).
Using alog-log plot, we compare the arrival time computed from stochastic simulations
(blue dots) and the approximation by a power law (read line) E[t] ~ Ce™. An optimal
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fitting procedure shows that « = 0.658 & 2/3. At this stage, we obtain the following
approximation

E[t] ~ Ce~2/3. (49)

The power law is an approximation for small ¢, but deviates as ¢ becomes of order
O(1) (¢ > 0.2 in Fig. 4e).

To convert in dimensional units, we use that a spermatozoa mean velocity is v =
75 wms~! (Reynaud K, private communication) and that for the length in Fig. 4 are
L=75cm, W =25cm, e =0.03cm,§ = 0.2 cm (where the non-dimensional
velocity was v = 1) and the non-dimensional arrival time was E[t] &~ 238 (Fig. 4). By
scaling with the velocity, we obtain the dimensional search time E[tpy ] = 238-130 =
30,940 s, which is about 8.6 h. This two-dimensional estimate provides a time scale
for the arrival to one of the two targets. Indeed, an egg is positioned at one of these
places, from which we obtain the expected search time as E[7;4¢¢/] & 17 h. This time
estimation is compatible to previous experimental report (Chang 1951). Finally, the
shortest time, which can be obtained by the concatenation the two straight lines (see
discussion below) gives an estimate of 1333 s, which is about 22 min.

4.2 Effect of changing some geometrical parameters on the search time

We now explore the consequences of changing various parameters on the arrival time,
this includes looking at the geometry of the uterus-like domain. We vary here several
parameters such as the target size ¢, the length L and the width W and the entrance
size §, which represents the cervix outside radius. First, by varying the size § (in range
[0.1 — 0.8]), while keeping the other parameters constant (Fig. 5a), we obtain that the
pdfs of arrival time show only a slight difference (less than 20 %). Thus, the numerical
simulations show that the cervix size § has little influence on the search time.
We next varied (Fig. 5b), the aspect ratio

L
= — € [0.25 —10], 50
0 We[ ] (50)

as indicated in Fig. 5 (the length of the quarter of an ellipse L and W are defined in
Fig. 4). For large aspect ratio p, the domain has a long narrow shape, while it is flat
and wide for small aspect ratio. The pdf of the search time for different aspect ratios,
while keeping the circumference of the quarter-ellipses fixed, is shown in Fig. 5b. Note
that curves (normalized by the maximum) obtained for different parameters, align to a
single curve (see inset of Fig. 5b), suggesting that the pdf has a scaling law structure.
Actually, all normalized pdfs for the search time with different opening size § and
aspect ratios p follow a universal curve (Fig. 5c), indicating that a general scaling law
is expected as a function of the two parameters. Finally, we estimated numerically,
the mean search time as a function of the aspect ratio (Fig. 5d): long narrow or flat
geometries are associated with short mean search time, while a unit aspect ratio (a
quarter-circle) has the maximum search time, four times larger. There is no theory
today to explain this maximum.
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Fig. 5 Exploring various parameters and the geometry of uterus-like domain. a Pdf of the search time for
& = 0.1 for various values of the cervix size §. b Changing the aspect ratio p = L/ W affects the pdf of
arrival time. The pdfs of the arrival time, normalized by the maximum are identical (inset). ¢ Normalized
pdfs for different parameters € and p. d Expected search time for various aspect ratios p. All fixed parameters
are the same as in Fig. 4

5 Discussion and conclusion

In this study, we presented the search process in a reduced domain presenting some
aspects of uterus geometry, such as opening sizes of oviduct and cervix. We varied
some parameters such as the aspect ratio p = % defining the shape of the uterus
and estimated the search time of a spermatozoon to the egg target site, in a cusp that
represents the entrance of the oviduct.

In the absence of guide mechanisms, random reflection is the key element that
determines the search time. We computed the expected search time in two- and three-
dimensional balls and domains that resemble the uterus geometry. We found that the
search time depends on the geometry of the domain. In two dimensions, we found for
& < 1 that

KS
Elz.] = U()_é"

61y
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where K is a constant, which we determined for a sphere and some convex domains.
When the domain contains ends of cusp geometry,

Elt] =

05 (52)

where K¢ is now a dimensional constant. We could only obtain the exponent o =
0.66 numerically. The exact relation with the geometry remains an open question.
The formula for a domain of arbitrary shape is unknown. Although the arrival time
decreases with the oviduct opening size, the opening size of cervix (parameter §)
had little effect. According to our numerical simulations, we found here that long
narrow shape (high aspect ratio p) leads to arrival time much shorter than for a round
uterus shape. These results should be considered as predictions because there are little
available data on this subject.

The search time for the rectilinear motion studied here, describing spermatozoa
motion, is much longer than for a diffusion particle, which is O (log %) in dimension
2 and O(%) for a cusp (Holcman and Schuss 2013). We conclude that spermatozoa
stay much longer in the domain before they can find the target, and when there are
many swimmers, this long period can be seen as a selection process based on intrinsic
spermatozoa properties, to select the fittest one. In three dimensions, we found that
E[z.] = Ii_svz in a ball of volume V. We conjecture that this formula is valid for
convex domains. However, for a domain with cusps, the scaling law may depend on
the local cusp property. Another surprising result is that the power law for the search
time in a cusp domain is smaller than 1, thus the search time is faster in a domain
with a cusp compared to the disk. This situation is exactly the opposite for Brownian
motion, where the search time becomes exponentially longer in a cusp (Schuss et al.
2007).

The present modeling approach allows for the first time to obtain laws for the
expected search time. Most of the previously published numbers were obtained from
empirical data, where spermatozoa were counted after opening the uterus at different
stages (Chang 1951). Modeling is a different approach that accounts for the local
motion and for the entire global geometrical structure of the uterus. Our approach
should certainly be complemented by in vivo endoscopy studies. But there are still
some difficulties in reconstructing the search process from the local data generated by
the endoscopy probe that can only access local domains of few microns.

Another consequence of the present analysis is that the number of swimmers matters
when we consider the first one that finds a neighborhood of the egg. By increasing the
number of trajectories (Fig. 6), when computing the arrival time of the first one, the
trajectories that are almost optimizing the search time are located in a neighborhood
around the optimal ones (white dashed lines in Fig. 6). The optimal trajectory is indeed
the geodesic that joins the initial point to the final egg location. The shortest search
time is achieved by the geodesic that minimizes the functional

T
Apin =inf/ d(s)ds, (53)
AT 0
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where d(s) is the Euclidean distance at time s and
Ar={x :x(0)=x,x(T)=y, wherex are piecewise constant trajectories}, (54)

as indicated by the results of our simulations (Fig. 6). Possible future directions include
the exploration of other parameters of the search process, such as the fitness of sperma-
tozoa, the time window when they can sense the presence of the egg and chemotaxis
processes, and so on. These elements should certainly be included in future models,
as well as a possible killing field, which should account for sperm degradation during
their sojourn time.

In summary, isometric shapes are not optimal for the search process and thus for
fertilization. The uterus of most animals including human and rabbit, have long narrow
shape, optimal for the search time and possibly fertilization, however, the optimization
search process may also depend on other factors, such as body size, dynamics, surface
of the uterus, uterus contraction and many more. The aspect ratio of the human uterus
is around 2 to 3, which does not give the optimal ratio according to our simulations
(Fig. 5) and we speculate that it might be associated with a lower fertility rate compared
to other species.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix
A.1 Simulation procedure

In our numerical simulations on a uterus-like domain, trajectories always start at the
bottom and moves according to Eqs. (1)—(2) inside the domain until the boundary,
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where trajectories are reflected with a random angle with respect to the tangent. In
case of the uterus-like domain, there are two small targets located at the end of the
two symmetrical cusps. The target can only be found by trajectories moving inside de
the domain.

The escape time of a trajectory from the domain is computed from the total length
before exiting, as the velocity is constant. For each case, the statistic is obtained for
30,000 runs. We did not see any differences by using additional simulations such as
50,000.

A.2 Probability that a trajectory enter the solid angle of the target in the three
dimensional ball

In this section, we compute the solid angle 2(¢, €) starting from any point (¢, 0)
located on a sphere. The solid angle subtended by a circular disk (Paxton 1959) is
summarized here.

By definition, the solid angle is given by the integral

np - dSp
o= [ (55)

where np - dsp is the area of the projection of the surface element dsp onto the plane

perpendicular to the radius R = |N P|, from the north pole to point P (see Fig. 7).
Specifically, Integral 55 can be written as:

ds cos 0 dBdp cos
z/%://pﬁ%z//sin&i@dﬁ (56)
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Fig.7 Solid angle subtended at points a over the interior or over the periphery of disk (rg < ry;); b outside
disk boundary (rg > ry) (these figures are screenshots from Poxtan’s paper; Paxton 1959)
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in which p = Ltan8 and L/R = cos6. When ry < r,, (see Fig. 7a), Eq. 56 can be

written as
Q T O T
— =/ / sinfdfdp =« —/ cos 05dp (57)
2 o Jo 0

After a few more steps and re-arrangements, Eq. 57 turns into

2L
Q=2m —

K (k) — Ao (5, k) (58)

max

where K (k) and Ag(€, k) are the complete elliptic integrals of the first and third kind,
respectively with

k* =1— (R1/Rmax)*
R} = L* + (rg — r)? (59)
£ =sin""(L/R)).

When rg > r,, (see Fig. 7b), Eq. 56 can be written as

Q Brmax 05 Bmax Bmax
— =/ / sin 0dOdp :/ cos 0,,dp —/ cos 0sdp (60)
2 0 O 0 0

Similarly, after certain steps and re-arrangements, Eq. 60 can be written as follows:

2L
Q. k) = ——

max

K (k) +mAo (&, k) (61)

In summary, the expression for the solid angle is

f L
27 — Kk)y—mAoE, k), ro<ry
max
= 2L
Qe =1 2L o P (62)
max
2L
- K(k)+7TA()(E,k), ro > I'm.
max

Q (&, k) is a function of € and ¢ as we shall see now. We apply formula 62 to the case
of a small hole of radius ¢ located at the north pole of the three-dimensional sphere.
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Fig. 8 Ratio Q¢/(Q2(¢, ¢) T T
computed numerically by using
Eqgs. 62-63
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We obtain for a point of coordinates (0, ¢)

R? = R*(1 — cos ¢)% + (Rsin(¢) — ¢)? (63)
R, = R*(1 —cos§)? + (Rsin(¢) + &)° (64)
k2( ) = 4e R sin(¢) 65)

)= 2R%(1 — cos ¢) + 2&R sin(¢) + &2
Sin(€) = R(1 —cos ¢) 66)

R%(1 — cos )2 + (Rsin(¢p) — €)%

We then used Mathematica to compute the |, é=¢/R Q(¢) sin(¢)d¢. We obtain for small
¢ that

/ Q(¢) sin(¢p)dp = (1 —cose). (67)
¢>e/R
Finally, we show in Fig. 8 that 8 <« 1, the ratio 2¢/(Q2(¢, €)) & 2 for small 8,
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