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Ear related concerns and symptoms represent the leading indication for seeking pediatric

healthcare attention. Despite the high incidence of such encounters, the diagnostic

process of commonly encountered diseases of the middle and external presents a

significant challenge. Much of this challenge stems from the lack of cost effective

diagnostic testing, which necessitates the presence or absence of ear pathology to

be determined clinically. Research has, however, demonstrated considerable variation

among clinicians in their ability to accurately diagnose and consequently manage ear

pathology. With recent advances in computer vision and machine learning, there is an

increasing interest in helping clinicians to accurately diagnose middle and external ear

pathology with computer-aided systems. It has been shown that AI has the capacity

to analyze a single clinical image captured during the examination of the ear canal

and eardrum from which it can determine the likelihood of a pathognomonic pattern

for a specific diagnosis being present. The capture of such an image can, however,

be challenging especially to inexperienced clinicians. To help mitigate this technical

challenge, we have developed and tested a method using video sequences. The videos

were collected using a commercially available otoscope smartphone attachment in an

urban, tertiary-care pediatric emergency department. We present a two stage method

that first, identifies valid frames by detecting and extracting ear drum patches from the

video sequence, and second, performs the proposed shift contrastive anomaly detection

(SCAD) to flag the otoscopy video sequences as normal or abnormal. Our method

achieves an AUROC of 88.0% on the patient level and also outperforms the average

of a group of 25 clinicians in a comparative study, which is the largest of such published

to date. We conclude that the presented method achieves a promising first step toward

the automated analysis of otoscopy video.
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1. INTRODUCTION

Ear related concerns constitute the leading cause for seeking
pediatric healthcare attention in the USA. Given the current
lack of cost-effective confirmatory testing, accurate diagnosis
and subsequent management depend on visual detection of
characteristic findings during otoscope examination. Despite the
frequency of such encounters, the medical literature suggests
that the diagnostic accuracy for such pathology is only around
46–56%. In alignment with the bias toward over-diagnosis of
ear disease, it is currently estimated that between 25–50% of
all antibiotics prescribed for ear disease are not indicated (1–
3). Beyond risking unnecessary medical complications and the
downstream unintended consequence of potential antibiotic
resistance, over-diagnosis of ear disease adds an estimated $59
million in unnecessary healthcare spending in the US per
annum (4). Computer-aided diagnosis on otoscopy images (5)
has been suggested as a potential tool to improve the care of
ear disease. Previous studies have mainly focused on applying
machine learning to classify images of the eardrum. (6) compare
support vector machine (SVM), k-nearest neighbor (k-NN),
and decision trees on predicting ear conditions with feature
extracted by filter bank, discrete cosine transform (DCT), and
color coherence vector (CCV) (6). More recently, deep learning
has been applied to classify otoscopy images. Zafer studies the
combination of the fused fine-tuned deep features and SVM
model applied to 3 diagnostic class image classifications (7).

Furthermore, (8) compare the performance of a variety of
CNN architectures and find that DenseNet (9) produces the best
result in the classification of 3 diagnostic classes. The authors
also use Grad-CAM (10) to visualize the important regions in the
image for the model.

In the study by (11), the authors compare the performance of
applying 9 kinds of ImageNet (12) pre-trained CNN networks to
6 class otoscopy image classification and then further improve
the performance by ensembling the output of 2 networks. The
pre-mentioned deep learning based methods overall show great
performance in the respective settings, achieving high accuracy
ranging from 94 to 99%.

The accuracy reported by previous study, even in multi-
class settings, is remarkable, yet, all previous approaches process
high quality still images of the eardrum. Unfortunately, in a
clinical setting the capture of high quality still images can be
challenging in practice, especially given that pediatric patients
are often moving and uncooperative with the examination. The
use of a single image also increased the chance of failing to
capture a clinically accurate representation of the anatomy due
to an incomplete view. A method that analyzes otoscopy video
sequences rather than still images could help overcome the
aforementioned shortcomings.

The straightforward approach to have the whole video
sequence as input is to train a 3D (2D images plus temporal
dimension) CNN mapping from videos to labels. However, that
would require (1) heuristics to harmonize videos to a preset
length, and (2) large amounts of labeled data to avoid over-fitting,
especially considering that the class frequency in any otoscopy
video dataset is likely to be heavily skewed toward normal cases.
The present study addresses these challenges by framing otoscopy

interpretation as a video anomaly detection problem. Under our
setting, the model is trained with normal videos only and will flag
videos that diverge from the normal as an anomaly during testing.

The contribution of this study is 2-fold. First, we devise
a two stage model to apply on full video sequences collected
in clinics, which differentiates our approach from all previous
methods that only considered high quality still images. A region
detector first extracts eardrum patches from video frames that are
then used to perform anomaly detection in the following stage.
This architecture restricts anomaly detection to semantically
useful regions. Second, we develop the shift contrastive anomaly
detection (SCAD) method that leverages color-jitter-based
distributional shift-transformation to improve the separability
between normal and abnormal data. Tailored to our application,
our self-supervision task enforces the model to leverage subtle
color features to identify abnormalities during testing. Even when
the amount of training videos is relatively small, our approach
generates superior binary (normal/abnormal) otoscopy video
screening results compared to both a baseline method and the
average of a group of clinicians. We believe that this study
constitutes a promising first step toward achieving algorithmic
decision support for the diagnosis of pathology of the middle and
external ear and the development of a smart tool that might aid
clinicians in the accurate diagnosis and management of common
ear disease.

2. RELATED STUDY

The task of anomaly detection (13, 14), also referred to as out-
of-distribution or novelty detection depending on the context, is
to identify unfitted data samples. This is a crucial task in many
real world applications such as detecting system malfunction,
financial fraud, and health issues. Anomaly detection is a useful
but challenging task, because anomalies are hard to define. In
a supervised anomaly detection setting, abnormal samples are
provided to the model in the training stage to give guidance
on what qualifies as an “anomaly.” However, there could be
many reasons a data sample is abnormal such that collecting a
representative amount of abnormal samples is a hard problem
itself. This is especially challenging in medical applications,
where the dataset is very likely to the heavily skewed toward
the normal class. Unsupervised anomaly detection (UAD), on
the other hand, does not need normal/abnormal supervision
signals during training. Current approaches usually utilize only
the normal data during training, which makes it more appealing
to applications with a skewed dataset. Therefore, in the scope of
this study, we focus only on the UAD setting where the detector
can only access samples from the normal data distribution during
training. Moreover, in many real world applications, the task is
to perform UAD on high-dimensional imagery data (e.g., in our
case, detecting anomalies from endoscopic videos), which makes
the problem even more challenging.

A rich set of methods (13) has been proposed to study the
UAD problem on imagery data, approaching the problem with
four main paradigms: (i) Density-based methods first estimate
the normal data density using methods, including Gaussian
Mixture and Energy Based Models, and then detect data with
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a low estimated density as an anomaly. DAGMM (15) and
DSEBM (16) are methods that belong to this category. (ii)
One-class classifier-based methods fit a classifier, e.g., Deep
SVDD (17) and DROC (18), to separate normal and all other data
and then use it to detect anomalies. (iii) Reconstruction-based
techniques learn a reconstruction model, e.g., AnoGAN (19),
of normal images and detect anomalies as samples with
high reconstruction error. (iv) Self-supervised-based methods
learn a feature extractor using self-supervised tasks, such as
distinguishing whether or not a certain transformation has been
applied to the image (20). Then, during learning features of
augmented versions of the same image should be closer than
features of different images (21). Upon convergence, anomaly
detection is performed on the extracted features. Notable
methods along this line include SVD-RND (22), CutPaste (23),
CSI (24), SSD (25), PANDA (26), and MSC (27). UAD has also
been applied to medical imaging (28) across many domains,
including X-ray (29, 30), CT (31, 32), MRI (33–35), and
endoscopy (36) datasets.

Anomalies in medical imaging tend to be more subtle and
only reside in a small region of the whole image, which
makes it particularly challenging to apply UAD in this field.
To address this problem, (37) propose to connect Context-
encoding (CE) and Variational Autoencoders (VAE) to combine
both reconstruction and density based anomaly scores. Doing so
shows superior performances in three brain MRI image datasets.
To directly target subtle anomalies in small regions, there are
efforts to develop self-supervised tasks that are tailored to a
certain anomaly group. It is desirable to apply the artificial
transformation of data that is similar to real anomaly so that
the self-supervised task can force the model to learn features
that are discriminative enough to detect anomalies in testing.
As an example, CutPaste (23) creates discontinuous defects by
cutting a region of an image and pasting it to another location.
While this method works well for industrial visual inspection, the
introduced sharp discontinuity is uncommon inmedical imagery
making this method less useful for anomaly detection in medical
data. Alternatively, foreign patch interpolation (FPI) (38) creates
artificial defects by interpolating a small local patch with a foreign
patch of the image. A network is trained to estimate the pixel-wise
interpolating factor from the synthesized image. The estimated
interpolating factor is then used as an anomaly score during
testing. Success is demonstrated using Brain MRI and abdominal
CT image datasets. Poisson image interpolation (PII) (39)
extends this idea by using Poison image editing to blend in
the foreign patch instead of direct linear interpolation, targeting
more subtle and continuous irregularities. Improvement in
performance is shown using chest X-ray and fetal ultrasound
datasets. Meanwhile, both FPI and PII utilize self-supervised
tasks targeted at regional shape anomaly which is less applicable
to our problem where the subtle color anomaly is more crucial.

3. METHODOLOGY

The otoscope video database is skewed toward the non-disease
status given the practice of capturing bilateral ear examinations

and occurrence of non-ear disease presenting with symptoms
such as ear pain. Dataset imbalance such as this can present
a significant challenge for the development of robust design
boundaries, particularly when relying on small data sets. To
overcome such limitations, we propose to use UAD approach
to provide computer-aided screening for otoscopy video. The
formal definition of this problem is as follows.

We are given a large training dataset Dtrain comprising only
normal video sequences and a smaller testing dataset Dtest

comprising both normal and abnormal video sequences. Given
the training dataset, our objective is to learn an anomaly score
function A(v) with video v as input and detect the abnormal
videos as an anomaly during testing. Ideally, the function learns
to map normal videos to small anomaly scores and abnormal
videos to large anomaly scores. During testing, we threshold the
score, where A(s)> ψ indicates an anomaly.

In otoscopy video diagnosis, the temporal relation between
frames is not as influential as in action recognition tasks.Whether
or not a video is abnormal is directly determined by the existence
of abnormal frames therein. With this observation, we turn
the video anomaly detection problem into a frame anomaly
detection problem with an additional video level aggregation
function. Moreover, only some of the frames in the video are
vital to diagnosis, and in those frames, only the region that
visualizes the eardrum. Therefore, it would be desirable to only
conduct anomaly detection on such frames, and the eardrum
region in particular. As shown in Figure 1, our method has two
steps during training: Step 1) Supervised learning of a detection
module that extracts eardrum patches x from given video v using
provided labels. Step 2) Self-supervised representation learning
on the labeled region of interest to obtain an embedding function
that ideally projects normal and abnormal samples to distinct
regions of the embedding space. During testing, we compute
anomaly scores using the detected patches and the learned
embedding function.

3.1. Eardrum Detection
To detect the frames and regions showing the eardrum, we use a
convolutional neural network and train it in a supervised manner
using image-label pairs. Different from the standard detection
problem where each image may have multiple instances, we
can only have at most one eardrum in each frame. Therefore,
we do not use a standard object detection architecture and
rather choose to have a single convolutional neural network to
predict the binary label and corresponding bounding box. We
define Lcls as the cross entropy loss of the groundtruth label
and the classification score and define Llocal as the L1 loss of
the groundtruth bounding box and the predicted bounding box.
Then, the overall loss is simply combining the classification loss
and localization loss.

Ldetect = Lcls + Llocal (1)

Given our problem setup, we train the detection module on the
normal training videos only. Even though the model does not use
abnormal videos during training, we find it generalizes well to
abnormal frames during testing as shown in Section 4.2.
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FIGURE 1 | The screening architecture of our shift contrastive anomaly detection (SCAD) is composed of three sub-blocks: eardrum detection, representation

learning, and anomaly detection. During training, eardrum detection is learned by supervised training with provided labels. Representation learning is conducted with

self-supervision to obtain an embedding function φ. Both detection network and embedding function network are convolutional neural network that takes an individual

frame as input. During testing, we use the embedding function φ to produce a frame level anomaly score. The video level anomaly score is then obtained by

aggregating image level anomaly scores of all detected eardrum frames in a video.

3.2. Shift Contrastive Anomaly Detection
Contrastive Learning: Contrastive learning (21, 40) has become
the top performing self-supervised learning method in recent
years. In this paradigm, the first step of the training procedure
is to sample a minibatch of size N and perform augmentation
twice to each sample xi to obtain (xi′ , xi′′ ) termed as positive pair,
producing 2N samples in total. All images are passed through
a feature extractor and then features are typically scaled to the
unit sphere by l2 normalization to get a representation φ. The
contrastive loss to pair (xi′ , xi′′ ) is then defined as

Lcon(xi′ , xi′′ ) = − log
exp(φ(xi′ ) · φ(xi′′ )/τ )

∑2N
m=1 1[i

′ 6= m] · exp(φ(xi′ ) · φ(xm)/τ )
,

(2)
where τ is a temperature hyper-parameter.

The contrastive learning objective pulls xi′ close to xi′′ and
pushes all other samples away from xi′ . Intuitively, this will
make the learned embedding capture a latent structure that is
meaningful enough to separate samples from one another and
thus be beneficial for downstream tasks. This paradigm shows
great success in self-supervised training for image recognition but
has inherent problems for anomaly detection. To minimize the
loss function, the angles between positive and negative samples
need to be maximized even though both samples are from the
normal class. This results in a scenario where representations
of normal samples span across the whole unit sphere. During
testing, anomaly samples could, therefore, be projected onto a
location that is close to normal embeddings, which challenges the
paradigm of anomaly detection.

Mean-Shifted Contrastive Loss: To adapt contrastive
learning to anomaly detection, MSC (27) proposes the alternative
mean-shifted contrastive loss. Rather than directly minimizing
the contrastive loss in the representation space, MSC constructs
a mean-shifted counterpart, by subtracting the center c of the
whole training set and then normalizing to it the unit sphere. For

a given sample x, the mean-shifted embedding is defined as

θ(x) =
φ(x)− c

∥

∥φ(x)− c
∥

∥

. (3)

The mean-shifted loss is then constructed by applying typical
contrastive loss on this mean-shifted embedding space:

Lmsc(x
′, x′′) = Lcon(θ(x

′), θ(x′′)) . (4)

Because the mean-shifted representation is normalized around c,
the training no longer spans the normal samples across the whole
unit sphere of φ(x). This makes anomaly samples more separable
from normal samples in the φ(x) space.

Distributional Shift Angular Loss: To further improve
separability, MSC (27) uses additional angular center loss

Langular = −φ(x) · c , (5)

to shrink normal samples around the normalized center. The
assumption is that normal data lying in a small region around
the center will be more discriminative. The total loss that MSC
uses then becomes Langular + Langular.

This approach works well in datasets composed of regular
images (e.g., CIFAR dataset (41)), where images from different
classes are treated as an anomaly. Empirically, we find that
this strategy does not perform as well in our medical imaging
application. The main reason is that we are having much smaller
semantic variations between normal and abnormal images so that
their respective embeddings are still close to each other even after
training using mean-shifted contrastive and angular center loss.

To address this issue, we develop the distributional shift
angular center loss to further enhance separability between
normal and abnormal samples. As shown in Figure 2, our
method constructs additional shift-transformed samples z from

Frontiers in Digital Health | www.frontiersin.org 4 February 2022 | Volume 3 | Article 810427

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Wang et al. Pediatric Otoscopy Video Anomaly Detection

FIGURE 2 | Top: On the mean-shifted representation space, Lmsc maximizes the angle between negative pairs. Shift-transformed samples are treated as additional

instances in this step. Bottom: On the angular representation space Lshift_angular increases separability of anomaly by (i) increasing the angle between the

embedding of normalized center and the shift-transformed samples; (ii) decreasing the angle between embedding of normalized center and normalized samples.

x and then pushes φ(z) away from the normalized training
center c. Shift-transformed samples z are created by applying
distributional shift-transformations on x so that z is no
longer from the original data distribution. The intuition is
straightforward: not only should the normal samples occupy a
small region around the center but also the samples not drawn
from the original distribution cannot be too close to the center
either. Hinge loss is applied to the angle between center c and
shift-augmented samples z. The loss function takes the form:

Lshift_angular = −φ(x) · c+max(0, 1− φ(z) · c) . (6)

Ideally, these shift-transformed samples z are semantically
similar to real anomalies. In the context of otoscopy images, color
is an important feature in that infection may lead to the change of
color of the whole or part of the eardrum. Thus, we employ three
variants of color-jitter as the distributional shift-transformation.
They are color-jitter-random-cut (CJ-RC), color-jitter-random-
region (CJ-RR), and color-jitter-whole-frame (CJ-WF). CJ-RC
uses a random rectangle as a mask of transformation. CJ-RR
is constructed by interpolating the color-jittered image and the
original image using pixel-wise weights for each image. We first
initialize the pixel-wise weights to be all zero, and then pick
random points to be filled with one, and apply a Gaussian filter
to obtain smoothed weights. CJ-WF simply applies color-jitter
to the whole frame. Figure 3 presents illustrations of the three
augmentation strategies.

Final Loss: We combine (i) the mean-shifted contrastive
loss Lmsc and (ii) the angular loss with distributional shift

augmentations Lshift_angular :

Lfinal = Lmsc + Lshift_angular . (7)

This loss function is tailored to this specific medical imaging
application and enjoys the best of both objectives. The mean-
shifted loss makes the features to be representative of the images
and the angular loss encourages normal and abnormal instances
to be distant from each other in the feature space. Therefore, the
combination of these two losses achieves superior performances,
which is demonstrated through ablation in Section 4.3.

Frame Level Anomaly Score: In order to classify a sample as
normal or abnormal, we use a simple criterion based on kNN.
kNN predicts the label of a data point by ensembling the k
closest labeled samples according to some distance measure. In
this study, we use the cosine distance between the features of the
target image x and those of all training images. The anomaly score
is then given by:

a(x) = 6φ(y)∈Nk(x)(1− φ(x) · φ(y)) , (8)

where Nk(x) denotes the k nearest features to φ(x) in the training
feature set {φ(z)}z∈Xtrain .

Video Level Anomaly Score: We consider a relatively simple
method to aggregate the frame level anomaly score to construct
the video level anomaly score. The aggregation function is simply
taking the average of the frame level anomaly score across all
detected eardrum patches. The video level anomaly score is
defined as

A(s) = {a(x)} , (9)
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FIGURE 3 | (A) Normal eardrum region examples. (B) Shift-transformation variants applied to the second normal example of each row. From left to right:

color-jitter-random-cut (CJ-RC), color-jitter-random-region (CJ-RR), color-jitter-whole-frame (CJ-WF). (C) Abnormal eardrum region examples.

where {a(x)} represents the set of frame level anomaly scores for
all frames in the given video s.

In summary, during training, we learn a frame level
embedding function φ with all individual normal frames in the
training set. During testing, we compute the kNN-based anomaly
score using the embedding feature from φ for all detected frames.
We then aggregate the predicted anomaly score for each detected
frame in the testing video to produce a video level anomaly score
A through averaging. Such a score is expected to be small for
normal videos and large for abnormal videos. Any frame that
is substantially different from normal frames in the training set
(e.g., a red, bulging eardrum) would lead to a large distance
to training examples in embedding space and then produce a
large image and video level anomaly score. The threshold can be
selected to meet the desired clinical requirement (e.g., a certain
specificity value) and in practice is selected using the validation
dataset consisting of both normal and abnormal videos.

4. EXPERIMENTAL RESULTS

4.1. Data Preparation
We collected a total of 100 otoscopy videos from pediatric
patients that were seen for various conditions in an urban,
tertiary-care pediatric emergency department that treats over
34,000 patients, aged between 0 and 21 years of age per year.
Patients were recruited as a convenience sample based on their
willingness to participate in the study. At this site, patient
ages range from 0 to 22 years. Study protocols were approved
by the local institutional review board. The length for each
video ranges from 5 to 40 s. Twenty seven to thirty frames
per second are extracted from the video. Two otolaryngologists
(ears, nose, and throat specialists) annotated every video, and

TABLE 1 | Detection performance evaluated by accuracy% under different IoU

thresholds.

Accu (IoU>.50) Accu (IoU>.75) Accu (IoU>.90)

Normal 77.3 69.7 37.8

Abnormal 82.1 79.3 34.4

Overall 80.8 73.1 35.7

consensus agreement was used as ground truth. While the expert
annotations are more granular, due to the small size of the
dataset, we decided to restrict the analysis to two classes and each
video is assigned into either the normal or abnormal category.
Additional to the binary categorical label on video level, we also
annotate frame level binary labels and bounding boxes for each
appearance of the eardrum, where the eardrum occupies at least
20% of the image size in width and height. Of the 100 videos,
80 are labeled normal and 20 are labeled abnormal. We assign
60 normal videos to the training set, 10 to the validation set,
and 10 to the testing set. For anomaly videos, we assign 10 to
the validation set and 10 to the testing set. The testing set is
used for the evaluation of the algorithms and comparison with
human clinicians. We do not have overly apparent abnormal
examples (e.g., the whole eardrum is filled with blood) during
testing which makes it a challenging comparative study with
human clinicians.

Video capture of ear exam was performed using Cellscope
Oto attached to a first-generation iPhone SE.Maintaining relative
uniformity of video settings such as color is critical to the
accuracy of the AI algorithm. Clinical deployment of such
technology, therefore, presents a significant challenge given the
ad hoc selection of otoscopes used in the clinical setting and
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perhaps more importantly the overwhelming reliance on non-
digital otoscopes in clinical practice. As a result, we opted to use
Cellscope Oto as an affordable solution that can potentially be
deployed at scale. The Cellscope Oto device is designed to attach
to an ear speculum and provides an additional light source but
relies on the iPhone camera to capture the exam. We do note
that the image and video quality captured on this device is not
as high as reported in previous studies (6, 42), especially with
respect to sharpness and clarity. Unlike Cellscope Oto, however,
more advanced high quality otoscopes with digital video capacity
are often cost prohibitive to wider adoption.

4.2. Eardrum Detection
We first train a model for eardrum detection to extract eardrum
patches. We use Resnet-101 as the backbone network and choose
the stochastic gradient descent (SGD) optimizer with a 1e − 3
learning rate, 0.9 momentum, and 1e − 4 weight decay. The
model is trained using all frames from the normal training set
videos for 5,000 epochs with a batch size of 128. The input
images are resized to 256 by 256 and randomly cropped to 224
by 224, followed by a random selection of data augmentation of
color-jitter, cutout, rotation, and shearing.

Results: Since under our setup there is at most one instance of
a single class, we evaluate the performance of our model by the
accuracy of eardrum detection under different intersection over
union (IoU) (43) thresholds. A correct detection is defined as a
frame that produces a correct frame-level classification and, if the
given frame shows the eardrum, also produces a bounding box
with IoU score larger than a certain threshold in that given frame.
As shown in Table 1, our model produces high accuracy across
varied IoU thresholds. A visualization of eardrum detection in
video sequences can be found in Figure 4. Note that even though
the model is supervised only on instances from training normal
videos, it generalizes well to both normal and abnormal videos in
the testing set. This indicates that the network extracts features
that are more consistent with the image semantic and agnostics
to the details on the eardrum.

4.3. Anomaly Detection
Following the architecture suggested by (27), we construct the
feature extractor φ to be the ResNet-101 convolutional neural

network followed by an additional l2 normalization layer. We
augment the normal samples by sequentially applying 224 by
224-pixel crop from a randomly resized image and random
horizontal flips. The model is initialized with the ImageNet pre-
trained model and then the two last blocks of the ResNet-101 are
fine-tuned for 5,000 epochs with the loss function in Equation (7).
The temperature τ in Equation (2) is set to be 0.25. We use an
SGD optimizer with a learning right of 1e − 5 weight decay of
5e − 5 and no momentum. For each minibatch size of 60, we
sample one frame from each video to prevent similar frames
treated as negative pairs. During training, we use the groundtruth
bounding box to extract patches from videos. We use KNN
(k=2) in computing the frame-level anomaly score. We conduct
experiments with three random seeds for evaluations.

Results: We evaluate our methods on the anomaly detection
task in the previously introduced otoscopy video dataset. We
adopt the Area Under the Receiver Operating Characteristic
curve (AUROC) and the Area Under the Precision Recall Curve
(AUPRC) as anomaly detection performance score. We compare
our approaches against the recently proposed top performing
method MSC (27). The training and testing procedures are the
same as ours except that it does not utilize shift-transformations
and uses the angular loss (3) instead of shift angular loss (4)
in computing the final loss function. In Table 2, we present a
comparison among three variants of SCAD and three state of
the art methods SSD (25), PANDA (26), MSC (27) evaluated by
AUROC and AUPRC. We see that the SCAD-CJ-WF variation
performs the best, reaching an AUROC of 88.0% and AUPRC

TABLE 2 | Results evaluated by AUROC% and AUPRC%.

Method AUROC AUPRC

SSD (25) 54.3± 9.6 55.2± 6.4

PANDA (26) 60.7± 0.6 58.2± 0.3

MSC (27) 64.3± 4.0 60.7± 2.4

SCAD-CJ-RC (ours) 78.0± 1.0 69.1± 1.1

SCAD-CJ-RR (ours) 82.3± 1.2 74.4± 1.1

SCAD-CJ-WF (ours) 88.0± 1.0 87.9± 1.8

We report the means and SD over three trials. The bold values indicate best results.

FIGURE 4 | Our detection module successfully extracts eardrum regions in video sequences. Green bounding box represents groundtruth eardrum region; orange

bounding box represents detected eardrum region. Top Row: Normal video example. Bottom Row: Abnormal video example.
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of 87.9% on average. This suggests that (i) color is indeed a
very important feature in separating anomaly from normal in
otoscopy images, and that (ii) color jitter on the whole image can
produce semantically more similar samples to the real anomaly.
This could be due to that both random cut and random regions
introduce artificial patterns on the image that are utilized in the
self-supervised training but are not seen in the abnormal samples
during testing. To intuitively visualize the feature embedding
produced by different methods, we plot the latent embedding
for all testing frames and the corresponding kNN based frame-
level anomaly score in Figure 5. As we can see, SCAD-CJ-WF
generates the embedding that is most separable both qualitatively
and quantitatively as measured by the anomaly score.

Training Objective: The individual effect of each loss
component is presented in Table 3. We note that neither Lmsc

or Langular individually performs well in our dataset. Lshift_angular

outperforms all other individual objectives and combining it with
Lmsc results in further improvement.

4.4. Comparison With Human Clinicians
To further evaluate our performance in a real-world setting, we
performed a cross-sectional study comparing the performance of
clinicians vs. our model. The study was approved by the local
institutional review board.

Study Setting: Clinicians who routinely evaluate eardrums by
otoscopy in a primary care, urgent care, or emergency medicine
setting were invited to participate in this study. Qualifying
clinicians included physicians (MD/DO), nurse practitioners
(NP), and physician assistants (PAs). The is clinician group
reflects frontline healthcare providers who typically diagnose and

manage ear disease. Exclusion criteria were practicing outside of
the United states, employment by the Johns Hopkins University
or Johns Hopkins Hospital, visual impairment limiting video
analysis, or non-English speakers. Recruitment took place
through digital messaging via professional email mailing lists and
professional social media groups during November 2020.

Study Procedure: Ten normal and ten videos designated as
acute otitis media (AOM) by ground truth were selected as the
testing set of images, as described above. Clinicians completed
an online survey in which they were instructed to review the
20 eardrum videos without any further clinical information
provided. Following each video, participants were asked to
indicate whether the eardrums appeared normal or abnormal.
They were also asked to rate their level of confidence in the
accuracy of their diagnosis using a Likert scale (1= not at all
confident to 4 = very confident). Participants were also asked to
report the number of times they viewed each video. Participant
responses were collected and managed using REDCap electronic
data capture tools (44) hosted at Johns Hopkins University.

TABLE 3 | Training objective ablation study (AUROC% and AUPRC%).

Metric Lmsc Langular Lshift_angular Lmsc + Lshift_angular

AUROC 59.3± 0.6 57.7± 4.0 78.0± 1.0 88.0± 1.0

AUPRC 55.1± 1.6 54.5± 3.0 69.8± 0.8 87.9± 1.8

Lshift_angular is of the SCAD-CJ-WF variant. We report the means and SD over three

trials. Note that the MSC method uses Lmsc + Langular as loss function and the result

is presented in Table 2. The bold values indicate best results.

FIGURE 5 | Top Row: visualization of the embedding for all frames in the testing set of normal and abnormal videos using t-SNE. Bottom Row: Distribution of the

frame-level anomaly score for all frames in the testing set of normal and abnormal videos. (A) MSC. (B) AMSC-CJ-RC. (C) AMSC-CJ-RR. (D) AMSC-CJ-WF.
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Study Population: A total of 59 clinicians were recruited
and assessed for eligibility. After removing ineligible, declined,
or incomplete surveys, 25 surveys were included for analysis.
The process is shown in the consort flow diagram in Figure 6.
Participant demographics are summarized in Table 4. All
respondents are early-to-mid career physicians with the majority
being female and practicing pediatrics.

Results: Clinician confidence has a mean of 3 and a SD of
0.5 and the view count per video has a mean of 1.5 and an SD
of 0.5. We use linear regression to analyze the correlation of
both clinicians’ confidence and view count with their score. No
statistically significant correlation between clinician confidence
and the accuracy score (P=.07) or with view count and
score (P=.32) were found (a P-value of ≤.05 was considered
statistically significant).

In Table 5, we compare anomaly detection methods against
clinicians in accuracy, sensitivity, specificity, and precision. We
compute the metrics for all individual clinicians and then
compute the mean and SD of the group. We choose the decision
threshold ofmachine learning approaches of which the sensitivity
(TPR) on the validation set to be 90%, and then report the metric
values on the testing set. Compared to clinicians, our methods
perform better and achieve lower variances across all metrics. We
further notice that SCAD-CJ-WF outperforms both clinicians
and all other methods in most metrics.

In Figure 7, we provide further visualizations comparing our
best performing model SCAD-CJ-WF to clinicians. All seeds
of our model produced a ROC curve that exceeds the average
clinician response. Controlling the same False Positive Rate, our
model outperforms the clinician performance in True Positive
Rate (Sensitivity) by a large margin from 61.5 to 90%. Besides the
improvement in average performance, our model also generates

more consistent predictions. We can see from the figure that
different clinicians produce results that are not consistent with
each other. While the best clinician included in our study did
achieve a perfect True and False Positive Rate, the majority of
clinician evaluations are scattered with a large variation. The
wide variability and lower accuracy of clinician’s scores from
this sample are comparable to prior reports of pediatricians and
general practitioners at identifying AOM from otoscopy (45,
46). This variability between clinician scores reflects the clinical
challenge of accurately diagnosing AOM. Individual factors
such as a clinicians’ training and experience, combined with
patient factors such as cooperativeness and a non-obstructed
view contribute to a successful diagnosis. In contrast, our model
across different seeds generated more consistent and more
accurate results. Given the clinician variability to diagnose AOM

TABLE 4 | Clinician demographics and corresponding accuracy (mean% and

SD%) by groups.

Characteristic Sample size Accuracy

Sex

Female 15 (60%) 73.0± 15.1

Male 10 (40%) 60.0± 17.5

Current Practice

General Pediatrics 12 (48%) 73.0± 15.1

Pediatric Specialty 5 (20%) 70.0± 22.4

General Internal Medicine 3 (12%) 55.0± 8.7

Others 5 (20%) 67.0± 8.4

Other practices include emergency medicine, family medicine, and urgent care.

FIGURE 6 | Consort flow diagram of clinician enrollment. After removing ineligible samples, 25 surveys were included for comparative analysis.
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TABLE 5 | Comparison of machine learning models against a group of clinicians

(n = 25) in performances (mean and standard deviation of accuracy%,

sensitivity%, specificity%, and precision%) on the testing set.

Method Accuracy Sensitivity Specificity Precision

Clinicians 67.8± 17.0 63.2± 31.8 72.4± 17.4 64.5± 24.3

SCAD Variants

SCAD-CJ-RC (ours) 73.3± 2.9 70.0± 0.0 76.7± 5.8 75.2± 4.5

SCAD-CJ-RR (ours) 78.3± 7.6 90.0± 0.0 66.7± 15.3 73.7± 8.8

SCAD-CJ-WF (ours) 81.7± 2.9 83.3± 5.8 80.0± 0.0 80.6± 1.0

Machine learning models’ decision thresholds are chosen by setting the sensitivity (TPR)

on the validation set to be 90%.We report themeans and SD among the group of clinicians

as well as each model over three trials. The bold values indicate best results.

FIGURE 7 | Overlaying clinicians’ TPR/FPR samples (n = 25) and group

average on SCAD-CF-WF’s Receiver Operative Characteristic (ROC) curve.

Multiple clinicians’ responses may have the same TPR/FPR values.

illustrated in our comparative study and previous studies, there
is significant value to improve diagnosis in a clinical setting by
adopting deep learning based anomaly detection screening like
that of the present study.

Discussion: Our presented method shows promising
performance in anomaly detection on otoscopy video sequences.
The whole workflow runs at 15 ms per frame on a single NVIDIA
Quadro RTX 6000 GPU. This suggests the feasibility of adopting
computer-aided diagnostics to real time detect and report
anomalies may assist front-line clinicians in primary care and
eventually even patients at home.

The eventual successful deployment of such technology
necessitates more than the successful development of a diagnostic
AI algorithm with high accuracy. For such technology to
integrate within current healthcare models and work flow, there
is a need to create a whole new technological infrastructure.

The implementation of such technology beyond its obvious
need to be adopted by healthcare providers, perhaps the more
pressing questions where the required financial investment for
the creation of this infrastructure will come from.

Meanwhile, our study exhibits several limitations at the
current stage. (i) The dataset is relatively small, skewed toward
normal, and collected through convenience sampling. As such
our data serve to provide some additional support for the
proof of concept but does not negate the need for a larger
and more rigorously collected data-set before such technology
becomes clinically viable. The development of a large video
database would likely further improve the algorithm’s diagnostic
performance and enable training of specific diagnoses as opposed
to being limited to detecting normal vs. abnormal ear exams.
(ii) Cellscope Oto does not permit pneumotoscopy (blow air at
the eardrum to evaluate for movement) which can also serve
as a critical step for accurate diagnosis of ear disease. (iii) In
our comparative study, clinicians were not provided with patient
history which might increase their diagnostic accuracy in a
clinical setting.

5. CONCLUSION

In this study, we present a two-stage anomaly detection method
that is designed to perform normal/abnormal classification
for otoscopy videos and that can be developed based
on a small dataset and highly skewed class distribution.
We demonstrate that our method outperforms baseline
algorithms and the average of 25 clinicians, constituting
a promising step toward a computer-aided diagnosis
of the middle and external ear pathology. The further
development of computer-aided diagnosis methods, like
ours, could contribute to timely and high-quality management
of ear disease.
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