
ARTICLE

Mitochondrial dynamics controls anti-tumour
innate immunity by regulating CHIP-IRF1 axis
stability
Zhengjun Gao1, Yiyuan Li1, Fei Wang1, Tao Huang1, Keqi Fan1, Yu Zhang2, Jiangyan Zhong1, Qian Cao2,

Tong Chao1, Junling Jia1, Shuo Yang3,4, Long Zhang 1, Yichuan Xiao5, Ji-Yong Zhou6, Xin-Hua Feng1 & Jin Jin1,6

Macrophages, dendritic cells and other innate immune cells are involved in inflammation and

host defense against infection. Metabolic shifts in mitochondrial dynamics may be involved in

Toll-like receptor agonist-mediated inflammatory responses and immune cell polarization.

However, whether the mitochondrial morphology in myeloid immune cells affects anti-tumor

immunity is unclear. Here we show that FAM73b, a mitochondrial outer membrane protein,

has a pivotal function in Toll-like receptor-regulated mitochondrial morphology switching

from fusion to fission. Switching to mitochondrial fission via ablation of Fam73b (also known

as Miga2) promotes IL-12 production. In tumor-associated macrophages, this switch results

in T-cell activation and enhances anti-tumor immunity. We also show that the mitochondrial

morphology affects Parkin expression and its recruitment to mitochondria. Parkin controls the

stability of the downstream CHIP–IRF1 axis through proteolysis. Our findings identify

mechanisms associated with mitochondrial dynamics that control anti-tumor immune

responses and that are potential targets for cancer immunotherapy.
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M itochondria generate cellular energy that can alter their
morphology through biogenesis and the opposing
processes of fission and fusion1, 2. Maintenance of

dynamic mitochondrial networks has crucial effects on signaling
transduction, ATP production, iron–sulfur cluster biogenesis, and
calcium buffering3, 4. Mitochondrial morphology switching is also
implicated in cell survival, apoptosis, and cellular metabolic
homeostasis5, 6. Both the outer membrane (OM) and inner
membrane (IM) are involved in mitochondrial fusion and fission.
Mitofusin 1 (MFN1) and MFN2 are essential for OM fusion and
maintenance of mitochondrial morphology7, 8. Optic atrophy 1
(OPA1) controls IM fusion and protects cells with mitochondrial
dysfunction due to Mfn1 deficiencies9–11. Two OM proteins,
named FAM73a (also known as mitoguardin 1) and FAM73b, are
required for mitochondrial fusion, and they function by reg-
ulating phospholipid metabolism via mitochondrial

phospholipase D (MitoPLD)12. Although the physiological
functions of mitochondria are linked to their morphology13,
mitochondrial dynamics in immune responses are not clear
owing to the embryonic lethality of MFN1/2 double knockout
(KO) or OPA1 mutant mice. However, FAM73a and FAM73b
KO mice are viable and exhibit only moderately decreased body
weight and body fat. Therefore, FAM73a and FAM73b KO mice
are suitable models to evaluate the role of mitochondrial
dynamics in immune homeostasis and host defense.

Mitochondria have essential functions in both innate and
adaptive immunity. Mitochondria are catabolic organelles and are
the major source of cellular ATP and ROS, which are important
in innate immune responses to cellular damage, stress, and
infection14–16. Mitochondria also host signaling modulators such
as mitochondrial antiviral signaling protein (MAVS) and evolu-
tionarily conserved signaling intermediate in Toll pathway,
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Fig. 1 FAM73b controls mitochondrial morphology. Primary BMDMs treated with LPS (500 ng/ml) at the indicated time points. Mitochondria were
visualized using MitoSpyTM Orange CMTMRos staining. Representative confocal images of the mitochondrial morphology are shown, and quantification
was analyzed with Image-Pro and presented as a bar graph (a). The data are shown as the mean± SEM of three independent experiments, with 100 cells
counted for each replicate; colors indicate the mitochondrial morphology (long or short). b The mitochondrial morphology of WT BMDMs was analyzed
with EM (scale bar, 1 μm). c Time-lapse images of WT BMDMs treated with LPS (500 ng/ml) and stained with MitoSpyTM Orange CMTMRos. d, e qRT-
PCR and IB analyses of the indicated genes using LPS-stimulated BMDMs from WT mice. f Representative confocal images and bar graph of WT BMDMs
stimulated with IFN-γ (10 ng/ml) for 12 h. (g, h) WT BMDMs stimulated with IL-4 (20 ng/ml) for 12 h. Representative confocal (g) and EM (h) images are
presented. i The indicated genes were measured with qRT-PCR. All qRT-PCR data are presented as fold-induction relative to the Actb mRNA level. All the
data are representative of three independent experiments. Scale bars in a, c, f and g are 5 μm; one in b is 1 μm; one in h is 2 μm. Error bars are the mean±
SEM values. Two-tailed unpaired t-tests were performed. *P< 0.05; **P< 0.01
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mitochondrial (ECSIT) to control pattern recognition receptor
(PRR)-mediated type I interferon induction and inflammatory
responses17–22. Additionally, mitochondria-mediated metabolic
changes are associated with immune cell polarization, particularly
lymphocyte homeostasis and memory T-cell generation23. T-cell
differentiation to T helper type 1 (Th1), Th2, and
Th17 subpopulations preferentially utilizes glycolysis rather than
mitochondrial OXPHOS24, 25, and T regulatory (Treg) cells have
distinct metabolic demands, which are dependent on both lipid
metabolism and OXPHOS24, 25. Polarization of macrophages also
involves different metabolic pathways, with aerobic glycolysis
important for M1 macrophages and fatty acid oxidation (FAO)-
driven mitochondrial oxidative phosphorylation important for
differentiation of M2 macrophages26, 27.

IL-12 family cytokines are mainly produced by myeloid cells,
and they control adaptive immune responses, especially T-cell
differentiation28. IL-12 p35, IL-12 p40, and IL-23 p19 are
proinflammatory cytokines produced by dendritic cells, macro-
phages and fibroblasts in response to microbial pathogens and
tumors29, 30. IL-12 and IL-23 expression is associated with epi-
genetic modifications31 and various transcription factors, such as
c-Rel, IRF5, and IRF130. Genetic evidence indicates that LPS-

induced IL-12 p35 expression is reduced in Irf1−/− macrophages.
In vitro data show that monoubiquitinated C terminus of HSC70-
interacting protein (CHIP; also known as STUB1) is required for
proteolytic degradation of IRF132. Furthermore, CHIP is asso-
ciated with Parkin, which mediates selective autophagy of depo-
larized mitochondria33, 34. Therefore, here, we investigate the
effect of mitochondrial membrane remodeling on IL-12 produc-
tion and the activity of the CHIP–IRF1 axis in anti-tumor
immune responses.

Here we characterize a proteolysis-dependent mechanism of
inflammatory cytokine production regulated by mitochondrial
fission. Genetic ablation of the fusion mediator Fam73b in
macrophages and dendritic cells promotes TLR-induced IL-12
expression and inhibits IL-10 and IL-23 expression. Macrophage-
derived IL-12 promotes anti-tumor T-cell responses in vivo in
mouse melanoma and MCA-induced fibrosarcoma models.
Myeloid cell but not T cell conditional knockout mice have
enhanced Th1 responses. Fam73b or Mfn1/Mfn2 depletion causes
severe mitochondrial fragmentation and degrades mono-
ubiquitinated CHIP. Furthermore, mitochondrial fission pro-
motes accumulation and recruitment of Parkin, which directly
induces monoubiquitinated CHIP degradation and stabilizes the
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Fig. 2 FAM73b-deficient mice are resistant to tumor growth. a Electron microscopy of the mitochondrial morphology from WT and FAM73b KO BMDMs.
b, c Representative confocal images and statistical analysis of the mitochondrial morphology from FAM73b KO BMDMs (b) or MFN1/2 KO MEFs (c). WT
or FAM73b KO (KO) mice (n= 14) were injected with 2 × 105 B16 melanoma cells. Tumor growth curve (d) and survival curve (e). ELISA assay to
determine the various cytokine levels from innate (f) and adaptive (g) immunity in serum on day 15. h ICS and flow cytometric analysis of IFNγ+ CD4+ and
CD8+ T cells as described above, presented as a representative plot (left panel) and a summary graph (right panel). The percentage is based on total CD4+

or CD8+ T cells. i, j WT or FAM73b KO mice (n= 10) were injected with 800 μg of MCA. Frequency of tumor-free mice (i). The indicated cytokines were
detected in the serum of WT or FAM73b KO mice via ELISA. The serum was collected from the mice on day 150 after injection of MCA (j). All the data are
representative of three independent experiments. Scale bar in a is 2 μm; those in b and c are 5 μm. Error bars are mean± SEM values. Two-tailed unpaired
t-tests were performed. *P< 0.05; **P< 0.01
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crucial downstream transcription factor IRF1. Our data highlight
an unappreciated role of mitochondrial morphology in macro-
phage polarization and identify an associated signal transduction
network.

Results
Mitochondrial dynamics involved in macrophage polarization.
To evaluate whether mitochondrial dynamics are involved in
macrophage polarization, we stimulated wild-type (WT) bone
marrow-derived macrophages (BMDMs) with the TLR4 ligand
lipopolysaccharide (LPS) and examined the mitochondrial mor-
phology. Confocal microscopy revealed that LPS-treated

macrophages rapidly and predominantly exhibited punctate
mitochondria (Fig. 1a). The intensity of mitochondrial frag-
mentation was dependent on LPS concentration (Supplementary
Fig. 1a). Additionally, the mitochondrial network maintained
fission status until 12 h after stimulation (Supplementary Fig. 1b).
Ultrastructural analysis using electron microscopy (EM) also
indicated that LPS treatment led to small, diverse mitochondria
dispersed throughout the cytoplasm (Fig. 1b). Morphometric
analysis revealed significantly more mitochondria that occupied a
comparable portion of the cellular area (Supplementary Fig. 1c,
d). Time-lapse microscopy also showed that mitochondria
quickly switched to the fission stage within 2 h (Fig. 1c). We
further examined the expression levels of several critical
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Fig. 3 FAM73b regulates anti-tumor responses in myeloid cells. a, b Tumor growth curve and survival curve of T-cell-specific KO mice (n= 8) injected with
2 × 105 B16 melanoma cells. c WT and T-cell-specific KO naive CD4+ T cells (CD44loCD62Lhi) were stimulated for 4 days with plate-bound anti-CD3 and
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representative plot (left panel) and a summary graph (right panel). j qRT-PCR analysis of the indicated genes in TAMs isolated from tumors in WT or
myeloid cell-specific KO mice. All qRT-PCR data are presented as fold-induction relative to the Actb mRNA level. The data are the mean± SEM value of
multiple animals (each circle or square represents a mouse) and representative of three independent experiments. Two-tailed unpaired t-tests were
performed. *P< 0.05; **P< 0.01
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regulators of mitochondrial dynamics12, 35. We found that the
canonical fusion mediators Mfn1/Mfn2 and Fam73b were sup-
pressed by LPS stimulation, with reduced phosphorylation of the
fission factor Drp1 (Fig. 1d, e). As reported, mitochondrial fission
reduces Ca2+ uptake and intramitochondrial Ca2+ diffusion36.
Cytosolic Ca2+ rise activates the cytosolic phosphatase calcineurin
that normally interacts with Drp1. Calcineurin-dependent
dephosphorylation of Drp1 regulates its translocation to mito-
chondria37. Similar results were obtained when the TLR3 ligand
poly(I:C) was used to stimulate cells (Supplementary Fig. 1b, e).
M1 macrophage differentiation is enhanced by interferon-γ (IFN-
γ) treatment38. In contrast to TLR agonists, IFN-γ alone did not
induce extensive fragmentation of mitochondria in BMDMs
(Fig. 1f).

IL-4 is known to promote M2 polarization, which is involved
in tissue repair and resistance to parasitic helminthes38. Recent
research has demonstrated that M2 macrophages enhance the
mitochondrial oxygen consumption rate (OCR) and spare
respiratory capacity (SRC)27, which suggests that IL-4 might
promote mitochondrial fusion. Thus, we treated BMDMs with IL-
4 for 12 h and assessed themitochondrial morphology. The data
revealed that the mitochondria in M2 macrophages formed
elongated tubules, which occupied more cytoplasmic area (Fig. 1g,
h, Supplementary Fig. 1c, d). Furthermore, only Fam73b levels
were increased compared to other genes, such as Mfn1 and Mfn2
(Fig. 1i, Supplementary Fig. 1f). These results suggest a potentially
essential role of Fam73b in mediating mitochondrial morphology
during macrophage polarization.

FAM73b negatively regulates anti-tumor innate immunity. To
study the in vivo function of FAM73b in the immune system, we
employed a gene targeting approach (KO first) to delete the
Fam73b gene in mice (Supplementary Fig. 2a). Immunoblot (IB)
analysis revealed loss of FAM73b expression in different types of
immune cells in germline FAM73b KO mice (Supplementary
Fig. 2b). FAM73b KO mice did not show significant abnormal-
ities in thymocyte development, although they had a moderate
increase in the frequency of peripheral CD8+ T cells and all
memory T-cell populations (Supplementary Fig. 3a, b). The
percentage of Treg cells was comparable both in the spleen and
inguinal lymph node (iLN) (Supplementary Fig. 3c). Additionally,
deletion of Fam73b had no significant effect on the frequency of
macrophages, neutrophils or dendritic cells in the bone marrow
(BM) and spleen (Spl) (Supplementary Fig. 3d).

Although macrophage development was normal, FAM73b
deficiency also triggered a high degree of mitochondrial
fragmentation as other cell types12. This fission stage could not
be rescued by IL-4 treatment as the WT control (Fig. 2a, b).
FAM73b KO BMDMs also contained more mitochondria with a
comparable occupied area (Supplementary Fig. 1c, d). Addition-
ally, FAM73b deficiency did not affect mitochondrial biogenesis,
and cells had a similar mtDNA level (Supplementary Fig. 1e).
Interestingly, IL-4 still promoted mitochondrial fusion in
Mfn1/2−/− mouse embryonic fibroblasts (MEFs) (Fig. 2c). This
result suggests that Mfns are dispensable for the mitochondrial
morphology switch under polarization stress. Collectively, these
data indicate that Fam73b functions as a crucial regulator of
mitochondrial dynamics during macrophage polarization.

To further investigate the function of FAM73b in regulating
the in vivo immune response, we employed a murine melanoma
model in which B16 melanoma cells were inoculated into mice.
Fam73b deletion profoundly suppressed tumor growth and
increased the survival rate of the tumor-bearing mice (Fig. 2d,
e). Consistently, FAM73b KO mice had enhanced IL-12 and
reduced IL-10 serum levels (Fig. 2f). Moreover, the T-cell-derived

cytokine IFN-γ was also upregulated (Fig. 2g). FACS analysis
revealed an increased frequency of IFN-γ-positive CD4+ and
CD8+ effector T cells both in the draining lymph node (dLN) and
the spleen of tumor-bearing FAM73b KO mice (Fig. 2h).

Because the development of primary tumors involves long term
interactions between the immune system and tumors, it still
remains unknown how the excessive and enhanced production of
IL-12 induced by FAM73b deficiency impacts the development of
primary tumors. Therefore, we employed a well-characterized
methylcholantrene (MCA)-induced fibrosarcoma model. We
treated the WT and FAM73b KO mice with 800 μg of MCA
and monitored tumor formation for up to 150 days. FAM73b KO
mice clearly developed fibrosarcoma at a significantly lower rate
of incidence (Fig. 2i). FAM73b KO mouse serum also displayed a
profound increase in IL-12 and IFN-γ serum levels (Fig. 2j).

FAM73b functions in myeloid cells to regulate tumor growth.
To delineate the roles of FAM73b in various immune cells, we
bred Fam73b-flox mice with mice expressing Cre recombinase
driven by the Cd4 promoter or lyz2 promoter to generate T-cell-
or myeloid cell-specific KO mice. Conditional KO mice exhibited
a significant FAM73b deficiency in T cells (Supplementary
Fig. 1g) or macrophages (Supplementary Fig. 1h). In the B16
melanoma model, T-cell-specific KO mice had similar tumor
growth and death ratio to those of WT mice (Fig. 3a, b). Con-
sistently, we found that T-cell-specific Fam73b ablation had no
effect on T-cell subtype differentiation in vitro (Fig. 3c). RNAseq
analysis also demonstrated that FAM73b-deficient naive CD4+

T cells exhibited gene profiles similar to those of WT cells
(Fig. 3d, Supplementary Data 1).

Macrophages are the dominant leukocyte population in the
inflammatory microenvironment of tumors39. IL-4 from the
tumor microenvironment induces cathepsin protease activity in
tumor-associated macrophages (TAMs)40. To clarify the role of
FAM73b in TAMs, we first evaluated the effect of the tumor
microenvironment on the mitochondrial morphology. As shown
in Supplementary Fig. 4a, b, FAM73b promoted mitochondria
switching to the fusion stage when co-cultured with B16
melanoma cells. This fusion was restored by IL-4 neutralizing
antibody. In contrast to T-cell-specific KO mice, myeloid cell-KO
mice suppressed tumor growth and maintained the survival rate
(Fig. 3e, f). Compared to WT hosts, deficiency of FAM73b in
myeloid cells led to an increased frequency of infiltrating CD8+

T cells in the tumors, together with a reduction in TAMs and
myeloid derived suppressor cells (MDSCs) (Fig. 3g). However,
enhanced CD8+ T-cell recruitment was not due to a reduction of
Treg cells (Fig. 3h). The tumors and draining lymph node (dLN)
of myeloid cell-KO mice contained an increased frequency of
IFN-γ-positive CD4+ and CD8+ effector T cells (Fig. 3i). qRT-
PCR assays revealed an increase in Il12a levels specifically in
tumor-infiltrating macrophages from myeloid cell-KO mice
(Fig. 3j). Similar to macrophages, FAM73b deficiency in dendritic
cells also led to tumor growth resistance, coupled with an
increased survival rate (Supplementary Fig. 3c, d). Collectively,
these results support an unexpected role for mitochondrial fission
in innate cell-mediated anti-tumor immunity.

Mitochondrial fission promotes TLR-mediated IL-12 induc-
tion. To elucidate the molecular mechanism by which Fam73b
regulates innate immunity, we analyzed the majority of the
transcriptome changes in mRNA abundance. As shown in Fig. 4a
and Supplementary Data 2, we identified 786 differentially
expressed genes between WT and FAM73b KO macrophages
with LPS stimulation (>2 fold). Without stimulation, different
genes were mainly enriched in regulating cell survival and
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development (Fig. 4b and Supplementary Fig. 5a). Furthermore,
FAM73b deficiency significantly enhanced Il12a induction and
severely suppressed Il10 and Arg1 when responding to TLR sti-
mulation (Fig. 4b and Supplementary Fig. 5b). Cytokine induc-
tion was also confirmed by qRT-PCR analysis (Fig. 4c).
Additionally, FAM73b appeared to be a common regulator of
Il12a, because FAM73b also suppressed Il12a induction by the
polyI:C (TLR3 ligand), R848 (TLR7 ligand), and CpG (TLR9
ligand) (Fig. 4d and Supplementary Fig. 6a, b). Similar results
were obtained with ELISAs that detected the secreted cytokines
(Fig. 4e). In contrast, FAM73b is required for production of
specific markers in M2 polarization (Supplementary Fig. 6c). As
seen in macrophages, FAM73b deficiency in bone marrow-
derived dendritic cells (BMDCs) also promoted Il12a induction
(Fig. 4f). A previous report claimed that FAM73a was also
required for mitochondrial fusion12. Just as with FAM73b,
FAM73a KO macrophages produced more IL-12 than macro-
phages from their WT littermates (Supplementary Fig. 6d, e),

suggesting that FAM73a and FAM73b heterotypic complexes
promote mitochondrial fusion and negatively regulate Il12a
induction.

To further test whether mitochondrial fission is involved in
Il12a enhancement, WT, and FAM73b KO macrophages were
cultured with the fission inhibitor Mdivi-1 before LPS treatment.
This drug significantly promoted mitochondrial fusion both in
WT and Fam73b macrophages (Supplementary Fig. 6f). Mdivi-1
also erased differences in Il12a and Il10 production (Fig. 4g). We
further evaluated the function of other fusion-related molecules,
such as Mfn1/Mfn2 and Opa1. Due to the embryonic death of
these global KO mice, we assessed the cytokine induction in
Mfn1/Mfn2- or Opa1-deleted MEFs. The results indicated that
loss of Mfn1/Mfn2 or Opa1 also accelerated Il12a transcription
when MEFs were transfected with Lipofectamine-packaged poly
(I:C) (Fig. 4h, i). These results demonstrate an unexpected and
pivotal role of mitochondrial dynamics in regulating IL-12
production.
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Fam73b deficiency promotes IRF1 accumulation. Previous
studies revealed that BMDCs from Stat1−/− and Ifnar−/− mice
exhibit strongly reduced IL-12 p70 but not IL-12 p40 secretion41.
Thus, Fam73b ablation may improve type I IFN induction to
promote Il12a expression. In contrast, Fam73b deficiency caused
a significant reduction in inducible Ifnb expression by various
stimulators (Supplementary Fig. 7a), without affecting TBK1 and
IRF3 phosphorylation (Supplementary Fig. 7b). The results
indicated that Ifnb may not be the reason for the enhanced Il12a
levels. Mitochondrial fission-related ROS production generally
acts as a signal to trigger pro-inflammatory cytokines42. To fur-
ther assess the role of ROS, we first measured ROS production
using FACS. The results revealed that Fam73b ablation impaired
ROS induction (Supplementary Fig. 7c). Furthermore, the
increase in Il12a was not restored when cells were incubated with
hydrogen peroxide (H2O2) (Supplementary Fig. 7d). Recently,
several groups found that mitochondria-mediated metabolic
change was involved in establishing immune cell phenotype26.
Therefore, we compared oxygen consumption by WT and
FAM73b KO BMDMs using extracellular flux analysis. FAM73b
KO cells exhibited severely decreased OXPHOS activity at the
basal level, but the difference was impaired when cells were
treated with LPS (Supplementary Fig. 7f), while the relative
extracellular acidification rate (ECAR) values were substantially
similar between WT and FAM73b KO cells (Supplementary
Fig. 7g). WT and FAM73b KO macrophages did not respond to
either the FAO inhibitor etomoxir (ETO) or the protonophore
uncoupler FCCP (Supplementary Fig. 7h). Our data support the
conclusion that the phenotypic differences between WT and

FAM73b KO macrophages were correlated with metabolic
reprogramming mediated by mitochondria.

Recent evidence has revealed that the balance between the
utilization of glycolysis and mitochondrial respiration is con-
trolled by NF-κB, which is also crucial for Il12a induction43. To
elucidate the role of NF-κB in FAM73b KO-mediated Il12a
augmentation, we examined MAP kinase (MAPK) and canonical
NF-κB activation. Immunoblot detection indicated that the
increase in Il12a is not due to hyperactivation of IKK, based on
the level of phosphorylated IKKs, or its substrates IκBα and p105
(Fig. 5a). Fam73b deficiency also did not appreciably affect
activation of the three major MAPK families (Fig. 5b). Further-
more, loss of FAM73b was dispensable for nuclear translocation
of NF-κB members (c-Rel, p50, and p65), as revealed by the
similar levels of these proteins in the nucleus (Fig. 5c). Our results
suggested that Il12a augmentation was not due to hyperactivation
of these conventional signaling pathways.

Previous studies revealed that the transcription factor IRF1 is
required for IL-12 p35 induction and for suppressing IL-10 and
IL-23 production, which is consistent with the phenotypes caused
by FAM73b deficiency44, 45. Interestingly, immunoblot analyses
revealed that both FAM73b (Fig. 5d) and FAM73a KO
(Supplementary Fig. 8a) macrophages displayed a higher IRF1
protein level. Comparable levels of Irf1 mRNA indicated that the
IRF1 increase was associated with posttranslational modification
(Fig. 5e). A proteasome inhibitor, MG132, largely rescued the
IRF1 level in WT macrophages, suggesting that mitochondrial
fission stabilized IRF1 by suppressing its proteolysis process
(Fig. 5f). Consistently, loss of IL-12 mRNA expression was
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observed in activated macrophages from IRF-1 KO mice (Fig. 5g).
Further, to test the role of IRF1 aggregation, we used two different
shRNAs to knockdown the Irf1 gene in both WT and FAM73b
KO BMDMs (Supplementary Fig. 8b). IRF1 silencing specifically
impaired Il12a induction and erased the difference between WT
and KO cells (Fig. 5h). Our results suggest that IRF1 plays an
essential role in mitochondrial dynamics-mediated inflammatory
responses. FAM73b KO BMDMs also had profoundly less
abundant IRF1 K48-linked ubiquitination (Fig. 5i), suggesting a
requirement of mitochondrial fission in suppressing IRF1
ubiquitination.

Mitochondrial fission impairs CHIP monoubiquitination. An
E3 STUB1, known as CHIP, has been reported to mediate IRF1
protein degradation via ubiquitination32. A recent study estab-
lished that a fraction of the CHIP population is

monoubiquitinated in vivo, which has functional consequences
for CHIP activity46. Therefore, we compared the CHIP mono-
ubiquitination levels between WT and FAM73b KO BMDMs.
Surprisingly, monoubiquitinated CHIP was severely abolished in
the cytoplasm of FAM73b KO BMDMs (Fig. 6a). CHIP knock-
down elevated IRF1 accumulation and Il12a production in
WT cells, but little or no effect was observed without Fam73b
(Fig. 6b and Supplementary Fig. 8c). A monoubiquitination site,
K2, of CHIP that resides in an N-terminal extension is conserved
in mammals (Supplementary Fig. 8d). To investigate the function
of this site, we knocked out endogenous CHIP in the murine
macrophage cell line RAW264.7 using a CRISPR/CAS9 system.
CHIP KO RAW264.7 cells were reconstituted with WT and
mutant CHIP K2A. Mutant CHIP lacked monoubiquitination,
which impaired its capacity to promote IRF1 K48-linked poly-
ubiquitination (Fig. 6c, d). Additionally, mutant CHIP did not
cripple Il12a induction as was seen in the WT control (Fig. 6e).
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MG132 treatment indicated that degradation of mono-
ubiquitinated CHIP mediated by mitochondrial fission mainly
occurred through the proteolysis pathway (Fig. 6f). Furthermore,
FAM73b KO BMDMs had profoundly more abundant CHIP
K48-linked polyubiquitination when proteasome activity was
blocked (Fig. 6g).

To examine the interaction between mitochondria and CHIP,
we performed immunofluorescence image analysis using confocal
microscopy. The results showed that CHIP did not locate at
mitochondria in KO cells. This dissociation was rescued by
MG132 treatment (Fig. 6h). Interestingly, subcellular fractiona-
tion studies also revealed that only monoubiquitinated CHIP was
associated with mitochondria (Fig. 6i). Furthermore, Mdivi-1
treatment restored the monoubiquitinated CHIP level (Fig. 6j).
CHIP recruitment to the mitochondria was also rescued by
Mdivi-1 (Fig. 6k) in FAM73b KO BMDMs. Together, these
results establish that fusion mitochondria-associated

monoubiquitinated CHIP is indispensable for IRF1 K48-linked
polyubiquitination and degradation via proteolysis.

Fission mitochondria degrade monoubiquitinated CHIP. CHIP
is known to be associated with Parkin, which is required for
clearing damaged mitochondria to maintain cellular home-
ostasis47. Surprisingly, Fam73b- and Mfn1/2-deleted cells had
high levels of Parkin (Fig. 7a and Supplementary Fig. 8e), sug-
gesting that mitochondrial fission triggered increased Parkin
expression. However, comparable p62 and light chain 3 (LC3α/β)
levels indicated that CHIP degradation was not due to mitophagy
activation (Fig. 7a). The increase in Park2 mRNA abundance
further indicated that mitochondrial fission enhanced the Parkin
transcriptional level (Fig. 7b). Upregulated Parkin is selectively
recruited to fission mitochondria in FAM73b-deficient cells
(Fig. 7c). Interestingly, Mdivi-1 not only restored CHIP mono-
ubiquitination but also suppressed Parkin expression (Fig. 7d). To
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evaluate the role of Parkin in IL-12 induction, we collected Parkin
KO BMDMs and measured various cytokine levels. Parkin defi-
ciency suppressed IL-12 expression but promoted IL-10 and IL-
23 induction (Fig. 7e). Loss of Parkin also upregulated CHIP
monoubiquitination and inhibited IRF1 expression (Fig. 7f).
Moreover, Parkin silencing significantly rescued the stability of
monoubiquitinated CHIP and erased the phenotype driven by
Fam73b depletion (Fig. 7g, h). Together, all of these data suggest
that Parkin accumulation contributes to FAM73b KO-mediated
phenotypes.

To clarify the relationship between Parkin and CHIP, we first
evaluated their interaction. The results indicated that over-
expressed Parkin mainly associated with monoubiquitinated
CHIP but not regular CHIP in HEK293T cells (Fig. 7i).
Furthermore, coexpression of CHIP with Parkin strongly induced
CHIP polyubiquitination in HEK 293T cells (Fig. 7j). Taken
together, these data suggest that mitochondrial fission upregu-
lated the expression and recruitment of the crucial E3 ubiquitin
ligase Parkin, which colocalizated with CHIP and induced
monoubiquitinated CHIP degradation.

Discussion
Mitochondria are dynamic organelles that frequently divide and
fuse2, 48. Previous evidence has revealed that mitochondria not
only sustain immune cell homeostasis but are also necessary for
launching immune responses. However, how mitochondrial
dynamics determine the subtypes of immune responses remains
poorly investigated. In this study, we clarified an essential role of
the mitochondrial morphology in promoting IL-12 induction in
innate immunity. The outer mitochondrial membrane protein
FAM73b promotes mitochondrial fusion and suppresses TLR-
stimulated IL-12 expression. Elevation of the FAM73b level is
significantly associated with various types of stimulation. How-
ever, the classical fusion regulators Mfn1, Mfn2, and Opa1 also
induce phenotypes similar to Fam73b in macrophages. These
results indicate that multiple mitochondrial dynamics-related
proteins may be involved in innate immunity regulation. Inter-
estingly, our data showed that Fam73b deficiency functioned as a
negative regulator of TLR-induced type I IFNs, which was dif-
ferent from MFN1/2 KO cells49. Therefore, type I IFN regulation
by Mfn1/Mfn2 depends on their individual functions but not the
morphology switch directly.

Current research suggests that mitochondrial dynamics control
the balance between metabolic pathway engagement and T-cell
fate23. However, as shown in Fig. 3a–d, Fam73b depletion did not
have an intrinsic role in T-cell activation. In contrast to the
Opa1−/− T cells, CD4+ or CD8+ T cells from T-cell-specific KO
mice did not exhibit any increases in memory T cells or differ-
ences in CD4+ T-cell differentiation. These data indicate that the
potential functions of mitochondrial dynamics in T cells remain
incompletely investigated. These differences indicated that the
phenotypes observed in Opa1−/− mice might be due to its indi-
vidual functions but not the mitochondrial morphology.

Mitochondrial dynamics influence cellular function through
multiple mechanisms, such as cell survival and metabolic output.
Mitochondrial fusion is known to be important for efficient FAO
via lipids, but fission promotes aerobic glycolysis50, 51. Further-
more, according to a previous finding, M2 macrophages exhibit
enhanced FAO, while M1 macrophages rely instead on aerobic
glycolysis27. However, few studies have elucidated the relation-
ship between mitochondrial dynamics, metabolic changes and
macrophage polarization. Our study found that Fam73b defi-
ciency promoted M1-like phenotypes without an increase in
ECAR. This result suggests a novel mechanism of mitochondrial
morphology regulating macrophage polarization. Additionally,

molecular evidence revealed that mitochondrial fission facilitated
IL-12 induction through regulation of the CHIP–IRF1 axis sta-
bility via Parkin. The Pink1–Parkin pathway has been demon-
strated to promote mitochondrial fission by downregulating
MFN1 and OPA152. However, MFN1/2 or FAM73b deficiency
also enhanced Parkin levels. These results suggest that mito-
chondrial fission is part of a feedback loop for promoting the
Parkin level and maintaining mitochondria quality. ER stress has
been shown to be important for activation of the unfolded protein
response (UPR) and thereby for upregulation of Parkin expres-
sion53. FAM73b deficiency may enhance Parkin transcription by
inducing ER stress. Based on our findings, we propose a model
explaining how mitochondrial fission regulates TLR-stimulated
Il12a expression (Supplementary Fig. 9).

In conclusion, our study presents a new concept of cancer
immunotherapy through modulation of the mitochondrial mor-
phology. Physically, TLRs and the suppressive cytokine IL-4
promotes mitochondrial fission and fusion, respectively, by reg-
ulating the Fam73b level. Mitochondrial fission is mediated by
various molecules and specifically enhances Il12a induction and
inhibits suppressive regulators such as Il10 and Arg1. Both
germline and myeloid cell-specific Fam73b ablation profoundly
enhances T-cell responses to tumor growth. Our data further
suggest a central function of mitochondrial fission in regulating
IRF1 stability and promoting monoubiquitinated CHIP degra-
dation. Moreover, upregulated Parkin recruits to fission mito-
chondria and inhibits CHIP–IRF1 axis signal transduction, which
is in turn important for enhancing IFN-γ induction for Th1
polarization in vivo. Our findings demonstrate a novel signaling
network that controls the innate immunity response and has
profound therapeutic implications for cancer treatment.

Methods
Mice. Mice were maintained under specific-pathogen-free conditions in a con-
trolled environment of 20 °C–22 °C, with a 12/12 h light/dark cycle and 50–70%
humidity; food and water were provided ad libitum. Fam73a-targeted mice were
produced by transcription activator-like effector nucleases (TALEN) from the FVB/
N strain. Parkin KO mice (Strain ID: 006582, C57BL/6 background) were provided
by Dr. Shuo Yang from the Jackson Laboratory. IRF1 KO mice (Strain ID: 002762,
B6.129S2 background) were purchased from the Jackson Laboratory. The hetero-
zygous FAM73b-knockout first mice (Strain ID: Fam73btm1a(KOMP)Wtsi) were
originally obtained from the UC DAVIS Knockout Mouse Project (KOMP)
Repository. Male and female heterozygous FAM73b-knockout first mice
(Fam73b+/−) were mated to each other to produce control WT and homozygous
KO mice (Fam73b−/−). In FAM73b KO first mice, exon 3 of the Fam73b gene was
targeted using a FRT-LoxP vector (Supplementary Fig. 2a). Fam73b-floxed mice
were generated by crossing the FAM73b KO first mice with FLP deleter mice
(Rosa26-FLPe; Jackson Laboratory). The Fam73b-floxed mice were further crossed
with Cd4-Cre and Lyz2-Cre mice (all from Jackson Laboratory, C57BL/6 back-
ground) to generate T cell conditional FAM73b KO (Fam73bf/fCd4-Cre), myeloid
cell conditional FAM73b KO (Fam73bf/fLyz2-Cre), and dendritic cell conditional
FAM73b KO (Fam73bf/fItgax-Cre) mice. Heterozygous mice were bred to generate
littermate controls and KO (or conditional KO) mice for experiments. In the
animal studies, the WT and multiple KO mice are randomly grouped. Outcomes of
animal experiments were collected blindly and recorded based on ear-tag numbers
of 6- to 8-week-old experimental mice. Genotyping was performed as indicated in
Supplementary Fig. 2b, f, g. All animal experiments were conducted in accordance
with protocols approved by the Institutional Animal Care and Use Committee of
Zhejiang University.

Antibodies and reagents. Antibodies targeting IKBα (C-21, 1:1000), Fam73b (S-
12, 1:1000), p65 (C-20, 1:1000), Lamin B (C-20, 1:1000), ERK (K-23, 1:2000),
phospho-ERK (E-4, 1:1000), JNK2 (C-17, 1:1000), p38 (H-147, 1:1000), IKKα (H-
744, 1:1000), ubiquitin (P4D1, 1:1000), p105/p50 (C-19, 1:1000), IRF1 (M-20,
1:1000), CHIP (H-231, 1:1000), HSP60 (H-1, 1:3000), TBK1 (108A429, 1:1000),
IRF3 (SC-9082, 1:1000), LC3α/β (SC-292354, 1:1000), and c-Rel (sc-71, 1:1000), as
well as a control rabbit IgG (sc-2027), were from Santa Cruz Biotechnology.
Antibodies targeting phospho-DRP1 (Ser637, #3455, 1:1000), DRP1 (D6C7,
1:1000), Mitofusin-2 (D1E9, 1:1000), phospho-IκBα (Ser32, 14D4, 1:1000),
phospho-JNK (Thr180/Tyr185, #9251, 1:1000), phospho-p38 (Thr180/Tyr182,
3D7, 1:1000), phospho-p105 (Ser933, 18E6, 1:1000), phospho-IKKα/β (Ser176/180,
16A6, 1:1000), phospho-TBK1 (Ser172, D52C2, 1:1000), phospho-IRF3 (Ser396,
4D4G, 1:1000), and K48-linkage-specific polyubiquitin (D9D5, 1:8000) were
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purchased from Cell Signaling Technology Inc. Anti-actin (C-4, 1:10,000) was from
Sigma. HRP-conjugated anti-HA (HA-7) and anti-FLAG (M2) were from Sigma-
Aldrich. Antibodies targeting p62 (ab56416, 1:1000) and Parkin (ab15954, 1:1000)
were from Abcam. Fluorescence-labeled antibodies are listed in the section
describing the flow cytometry and cell sorting procedures.

Mouse CHIP and Parkin cDNA were amplified from splenic mouse mRNA
using PCR and inserted into the pCLXSN(GFP) retroviral vector. HA-Ub, Myc-Ub,
and subtypes of Ub expression plasmids were provided by Dr. Shao-cong Sun.
pGIPZ lentiviral vectors encoding a non-silencing shRNA control and two different
Irf1, Stub1, and Park2 shRNAs were designed and produced by Invitrogen.

LPS (derived from Escherichia coli strain 0127:B8) and CpG (2216) were from
Sigma-Aldrich. R848 and Poly I:C was from Amersham, and recombinant murine
M-CSF was from Peprotech.

All the uncropped scans of the western blots are shown in Supplementary
Fig. 10.

Flow cytometry and ICS. Single-cell suspensions from B16 melanoma, spleens or
draining lymph nodes were subjected to flow cytometry using CytoFlex (Beckman
Coulter) and the following fluorescence-labeled antibodies from eBioscience: PB-
conjugated anti-CD4 and anti-CD11c; PE-conjugated anti-B220 and anti-F4/80;
PerCP5.5-conjugated anti-Gr-1 (Ly6G); APC-conjugated anti-CD62L; APC-CY7-
conjugated anti-CD11b and anti-CD8; and FITC-conjugated anti-IFNγ, anti-CD44
and anti-Foxp3. DAPI was from Life Technologies, and MitoSpyTM Orange
CMTMRos was from BioLegend.

For intracellular cytokine staining (ICS), the tumor-infiltrating T cells were
stimulated for 4 h with PMA plus ionomycin in the presence of monensin and then
subjected to intracellular IFN-γ and subsequent flow cytometry analysis. All FACS
data were analyzed by FlowJo 7.6.1. All FACS gating/sorting strategies are shown in
Supplementary Fig. 11.

Fluorescence microscopy. BMDMs (5 × 105) were collected and seeded on 12-well
plates containing 70% alcohol-pretreated slides for starvation overnight. Cells
treated with or without stimulation as indicated were stained with 250 nM
MitoSpyTM Orange CMTMRos for 20 min and fixed with 4% paraformaldehyde
(PFA) for 20 min. Then, the cells were washed with PBS three times and stained
with 10 µg/ml DAPI. All the samples were imaged on a LSM710 (Carl Zeiss)
confocal microscope outfitted with a Plan-Apochromat ×63 oil immersion objec-
tive lens (Carl Zeiss). The data were collected using Carl Zeiss software ZEN 2010.
To quantify the mitochondrial morphology of MitoSpyTM Orange CMTMRos-
stained macrophages, scoring was blindly analyzed with Image-Pro software. Short
was defined as cells with a majority of mitochondria less than 7 μm and long as
cells in which the majority of mitochondria were more than 7 μm.

Transmission electron microscopy. WT and Fam73b KO macrophages were
washed in PBS and fixed in 2.5% GA on ice for 15 min. Then, the cells were scraped
and put into a 1.5 ml EP tube. The GA solution was refreshed, and the cells were
suspended and incubated at 4 °C overnight. Then, the cells were embedded into
agarose gel. The gel was cut into small pieces, washed in PBS and post-fixed in 1%
osmic acid for 1–2 h. Then, the samples were washed in PBS and dehydrated in a
gradient ethanol series (50%, 75%, 85%, 95% and 100% ethanol), each for 15 min.
Then, the samples were embedded in Epon resin. Embedded samples were cut into
60-nm ultrathin sections, and sections were counterstained with uranyl acetate and
lead citrate. All the samples were observed using a Hitachi HT7700 electron
microscope.

Time-lapse microscopy. BMDMs (2 × 105) were plated in glass chamber slides
(LabTek) and starved overnight. Cells were stained for 20 min with 250 nM
MitoSpyTM Orange CMTMRos (BioLegend). Imaging was started immediately
after addition of 500 ng/ml LPS on a DeltaVision RT system with SoftWorx soft-
ware (Applied Precision) at 37 °C and 10% CO2. Images were acquired every 10
min for 2 h. The data were exported as uncompressed AVI files and processed with
Premiere Pro.

B16 model of melanoma. WT, FAM73b KO, Fam73b-lyz2cre/+, Fam73b-
Itgaxcre/+and Fam73b-cd4cre/+ mice administered a s.c. injection of 2 × 105 B16
melanoma cells. Tumor size is presented as a square caliper measurement calcu-
lated based on two perpendicular diameters (mm2). The injected mice were
monitored for tumor growth every other day, and based on protocols approved by
the IACUC of Zhejiang University. The maximum sizes of tumors are limited up to
225 mm2 by ethical permission. Thus, the mice were sacrificed and defined as
lethality when the tumor size reached to 225 mm2. For analysis of tumor growth
rate and tumor-infiltrating immune cells, a lower number (2 × 105) of B16 cells
were injected to prevent lethality during the course of the experiment. To minimize
individual variations, littermate WT and different Fam73b conditional KO mice
were used. Mice were randomly selected for tumor injection, and analysis of tumor
size was performed in a blinded fashion. To analyze tumor-infiltrating immune
cells, tumor tissues were treated with 0.25 mg/ml collagenase A (Sigma-Aldrich)
and 25 U/ml DNase (Roche Diagnostics, Indianapolis, IN) for 20 min at 37 °C, and
the cells were passed through a plastic mesh. The resulting dissociated cells were

collected by centrifugation, resuspended in Red Blood Cell Lysis Buffer for 3 min,
and washed twice in PBS. The cells were subjected to flow cytometry analysis, and
TAMs and MDSCs were gated based on CD11b+F4/80+ or CD11b+Gr-1high surface
markers, respectively.

MCA-induced fibrosarcoma. WT and Fam73b KO mice were given a s.c.
injection of a high dose of MCA (800 μg), as indicated in the figure legends, in the
right flank. The mice were monitored for fibrosarcoma development weekly
over the course of 150 days. Tumor size is presented as a square caliper
measurement calculated based on two perpendicular diameters (mm2). The mice
were monitored for tumor growth every week. Mice with tumors larger than 225
mm2 were sacrificed and recorded as having lethal tumors based on protocols
approved by the Institutional Animal Care and Use Committee of Zhejiang
University.

Generation of BMDCs and BMDMs. Bone marrow cells isolated from the WT or
dendritic cell-specific KO mice were cultured in RPMI 1640 medium containing
10% FBS supplemented with GM-CSF (10 ng/ml) for 7 days. The differentiated
DCs were stained with Pacific blue-conjugated anti-CD11c and isolated with a
FACS sorter. In some experiments, BMDMs were generated using MCSF-
supplemented medium.

ROS assay. WT and Fam73b KO macrophages were washed with PBS twice and
stained with DCFH-DA (10 μM; Beyotime) in DMEM without FBS for 20 min at
37 °C. After being washed with PBS twice, the cells were harvested and analyzed by
flow cytometry (Cytoplex, Beckman Coulter).

Metabolism assays. The OCR and ECAR were measured in XFp extracellular flux
analyzers (EFAs) (Seahorse Bioscience) using a XFp Cell Mito Stress Test Kit and a
XFp Glycolysis Stress Test kit, respectively. The following parameters were used in
the assays: seed cells 8 × 104 per well, Oligomycin 1.0 μM, FCCP 1.0 μM, Rotenone/
antimycin A 0.5 μM, glucose 10 mM, and 2-DG 50 mM as indicated.

shRNA knockdown. Lentiviral particles were produced by transfecting
HEK293T cells (using the calcium-phosphate method) with a pGIPZ lentiviral
vector encoding either a non-silencing shRNA or Irf1-, Stub1-, or Park2-specific
shRNA, along with the packaging vectors psPAX2 and pMD2. BMDMs, differ-
entiated using M-CSF-supplemented medium for 5 days, were infected with the
lentiviruses for 8 h. After 72 h, the infected cells were enriched via flow cytometric
cell sorting (based on GFP expression) and subsequently used for experiments.

ELISA and qRT-PCR. Supernatants of in vitro cell cultures were analyzed via
ELISA using a commercial assay system (eBioScience). For qRT-PCR, total RNA
was isolated using TRIzol reagent (Molecular Research Center, Inc.) and subjected
to cDNA synthesis using RNase H-reverse transcriptase (Invitrogen) and oligo
(dT) primers. qRT-PCR was performed in triplicate using an iCycler Sequence
Detection System (Bio-Rad) and iQTM SYBR Green Supermix (Bio-Rad). The
expression of individual genes was calculated with a standard curve and normalized
to the expression of Actb. The gene-specific PCR primers (all for mouse genes) are
shown in Supplementary Table 1.

Ubiquitination assays. Cells were pretreated with MG132 for 2 h and then lysed
with a Nonidet P-40 lysis buffer (50 mM Tris-HCl, pH 7.5, 120 mM NaCl, 1%
Nonidet P-40, 1 mM EDTA, and 1 mM DTT) containing 6 M urea and protease
inhibitors. IRF1 or CHIP was isolated by IP with antibodies targeting IRF1 (M-20)
and CHIP (H-231). The ubiquitinated proteins were detected by IB using an anti-
ubiquitin (Santa, P4D1) or anti-K48-linked ubiquitin (Millipore, 05–1307)
antibody.

Statistical analysis. Statistical analysis was performed using Prism software. No
data are excluded from the analyses. Two-tailed unpaired t-tests were performed. P
values <0.05 were considered significant, and the level of significance is indicated
as *P< 0.05 and **P< 0.01. In the animal studies, a minimum of four mice were
required for each group based on the calculated number necessary to achieve a 2.3-
fold change (effect size) in a two-tailed t-test with 90% power and a significance
level of 5%. All statistical tests are justified as appropriate, and the data meet the
assumptions of the tests. The variance is similar between the statistically compared
groups.

Data availability. Sequence data that support the findings of this study are
available from the authors and have been deposited in the National Center for
Biotechnology Information (NCBI) BioProject with the primary accession code
PRJNA359723. All other data are available from the authors upon reasonable
requests.
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