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Observing early metabolic changes in positron emission tomography (PET) is an essential 
tool to assess treatment efficiency in radiotherapy. However, for thoracic regions, the use of 
three-dimensional (3D) PET imaging is unfeasible because the radiotracer activity is smeared 
by the respiratory motion and averaged during the imaging acquisition process. This motion-
induced degradation is similar in magnitude with the treatment-induced changes, and the 
two occurrences become indiscernible. We present a customized temporal-spatial deform-
able registration method for quantifying respiratory motion in a four-dimensional (4D) PET 
dataset. Once the motion is quantified, a motion-corrected (MC) dataset is created by track-
ing voxels to eliminate breathing-induced changes in the 4D imaging scan. The 4D voxel-
tracking data is then summed to yield a 3D MC-PET scan containing only treatment-induced 
changes. This proof of concept is exemplified on both phantom and clinical data, where 
the proposed algorithm tracked the trajectories of individual points through the 4D datasets 
reducing motion to less than 4 mm in all phases. This correction approach using deform-
able registration can discern motion blurring from treatment-induced changes in treatment 
response assessment using PET imaging.
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Introduction

The use of images as biomarkers for treatment monitoring relies on observing 
treatment induced changes in repeated image datasets. Positron emission tomog-
raphy (PET) is one of the most sensitive and specific functional imaging modali-
ties that can be used for therapy response assessment. In this approach, patients 
are imaged at least twice, where the baseline PET scan is acquired up to a week 
before the start of treatment, and a follow-up scan acquired after the first half of 
therapy. Treatment efficiency is evaluated by comparing changes between the 
two datasets (1, 2). However, as changes in standard uptake values (SUV) from 
PET imaging are typically used to monitor the treatment process, it is essential 
to discern changes induced by the treatment itself from any other non-treatment 
related factors. 

To date, this promising method has been applied mainly to non-deforming 
anatomical sites that are not affected by respiratory motion such as head and 
neck tumors. For such sites, voxels in the pre and post treatment scan can be 
correlated though rigid image registration. However, for soft-tissue carcino-
mas, displacements and deformations occur and the classical 3D scans cannot 
be easily compared directly as tissues moves during imaging as well as between 

*Corresponding author:
Eduard Schreibmann, Ph.D.
Phone: 11 404 778 5667
Fax: 11 404 778 4139

Eduard Schreibmann, Ph.D.1*
Ian Crocker, M.D.1

David M. Schuster, M.D.2

Walter J. Curran, M.D.1

Tim Fox, Ph.D.1

1Department of Radiation Oncology, 

Emory University School of Medicine 

and Winship Cancer Institute of Emory 

University, Atlanta, GA, USA
2Department of Radiology, Emory  

University School of Medicine,  

Atlanta, GA, USA



Technology in Cancer Research & Treatment, Volume 13, Number 6, December 2014

572	 Schreibmann et al.

datasets acquired before and after treatment. For example, 
pixel intensity values (or SUVs) in standard thoracic PET 
scans are imperfect as the signal is averaged and blurred by 
respiratory motion. This is a well-documented result, with 
several groups having investigated this effect (3-5). Pevsner 
and collaborators (6), reported changes of up to 70% in the 
maximum SUV value when the respiratory motion is ignored 
with the largest degradation observed for small lesions that 
are the focus of clinical treatment evaluations. For compari-
son, treatment induced changes in standard PET-CT were on 
the order of 20% of the original SUV value after two weeks 
of treatment (7) which is comparable or less than motion- 
induced inaccuracies previously reported. Because the motion-
induced errors occur during scanning and are present in the 
reconstructed datasets, a simple post-acquisition correlation 
using either rigid or deformable registration cannot recover 
the SUV values that would have been recorded in the absence 
of anatomical motion. 

Recently, state-of-the-art medical PET scanners allow-
ing acquisition of dynamic or 4D images (in which a sec-
tion of the body is repeatedly imaged in order to capture 
physiological motion) are becoming increasingly utilized in 
medicine (5). The result of a 4D tomographic imaging ses-
sion is a set of typically 10 static 3D images sampling the 
patient’s anatomy at different phases of the breathing cycle. 
While 4D imaging was developed to allow visualization of 
motion during the breathing cycle, it is typically used by cli-
nicians to visually assess individual tumor excursion during 
the breathing cycle and design treatment margins tailored to 
the motion. Significant respiratory motion information in the 
4D dataset is ignored clinically mainly due to a lack of math-
ematical tools to analyze and extract this information from 
these large-scale datasets. 

Deformable image registration has been reported previously 
for various applications in radiation therapy and is avail-
able in a few commercial software packages. In the follow-
ing we present a novel application of a classical basis spline 
(Bspline) deformable registration algorithm that is employed 
here to describe the respiratory motion and track the trajec-
tories of individual points through the 4D dataset to obtain 
a highly accurate motion-free description of tracer uptake 
in the patient. In previous research, deformable registration 
was used clinically mainly to account for local changes such 
as displacement and deformation of soft-tissue anatomical 
structures after images have been acquired. The concept will 
be adapted here in a new application using a modified formal-
ism to track motion in 4D PET (8) and create images where 
the effect of respiratory motion on the SUV values is dimin-
ished. We are encouraged in our attempt by recent reports 
using sequences of 3D deformable registration to correct for 
respiratory motion during 4D PET acquisition. For example, 

Bai & Brady (9) use a regularized BSpline algorithm to match 
anatomy between different phases of a 4D PET dataset to 
reduce imaging noise. Lamare et al. (10) employs a deform-
able registration model to correct for breathing motion in the 
reconstruction algorithm directly, with the main advantage 
of the BSpline model being it’s ability to model breathing 
motions of variable amplitudes (11-14). The novelty of the 
proposed method comes from simultaneously registering 
the datasets in both space and time for a better and smoother 
simulation of the patient’s respiratory motion. If successful, 
voxel trajectories obtained from the 4D deformable registra-
tion present a smooth description of the respiratory motion 
of the 4D PET scan that can be incorporated in the form of a 
post-acquisition correction to annihilate the breathing motion 
(11) to produce a motion-free dataset containing only varia-
tions introduced by molecular changes. By extending the 
BSpline algorithm in four dimensions, on create a mathemat-
ical model that interpolates to create a smooth representation 
on the time axis that is consistent with the expected behavior 
of this anatomical motion in a specific deformable registra-
tion setup customized to the image quality of a 4D PET data-
set to analyze the acquired dataset and recover the unknown 
anatomical motion.

Generally speaking, there is a difference between acquiring 
and analyzing a dataset. The first concept is directly related to 
the observation of a measurable variable over a period of time. 
For meaningful results to be obtained, acquired data is usu-
ally fitted with a mathematical function to produce a smooth 
representation of the data, independent of acquisition errors 
or corrupted measurements. One of the most commonly used 
ways to analyze experimental data is to fit the coefficients of a 
polynomial model to match the measured data, fact achieved 
in our approach automatically by usage of the BSpline model 
that fits the data on the temporal axis. Especially important in 
PET imaging, measured data is subject to noise and motion 
artifacts. In contrast, fitting a model to represent the data 
produces results which appear smooth and better express the 
underlying anatomical movement. The question we asked 
was if a mathematical model can be devised and extended to 
fit the information in the 4D dataset both in space and time, 
with the aim of describing the anatomical motion produced 
by breathing with an analytical expression. The advantages 
of using an analytical expression to model breathing motion 
are (a) the analytical expression has a compact parametric 
representation, so calculations of displacements and track-
ing of any point can be done easily; (b) analytical expression 
smoothes the dataset, thus eliminating noise and artifacts; 
(c) calculated deformation values are continuous both in time 
and space, as would be natural for the breathing movements; 
(d) the model is differentiable, providing information on tem-
porary speed in any point; (e) the model does not make any 
a-priori assumption on the breathing movements; and (f) the 
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mathematical expression deduced from the dataset signifi-
cantly reduces memory requirements, enabling easy storage 
and handling of the final data.

We present in the following application of a time-resolved 
deformable registration algorithms to track respiratory 
motion in 4D PET datasets and report its accuracy on both 
phantom and patient imaging data.

Methods 

4D Deformable Registration to Analyze Motion

To deal with the high level of noise in 4D PET datasets, a 
deformable registration based on the BSpline concept was 
extended to consider an additional set of coefficients on 
the time axis. Classical approaches that typically estimate 
deformation sequentially from one frame to another are 
discontinuous in time when noise and artifacts are present 
(15). To overcome the poor quality of 4D PET images, we 
propose a spatial-temporal registration framework where all 
3D sequences taken at different time-points are simultane-
ously registered together. The 4D BSpline registration model 
(16, 17) ensures smoothness, globalization and continuity of 
the resulting respiratory transform (18-21) by the interpola-
tion between the temporal component of the BSpline nodes.

Static and Dynamic Datasets Construction

To allow the deformable model to quantify respiratory 
motion, the proposed approach registers the acquired 4D 
PET dynamic image sequence containing the SUV values 
corrupted by the moving anatomy (termed in the following 
dynamic series) to a new artificially constructed motion-free 
static image sequence which repeats the start-of-breathing 
image at different time-points (termed in the following static 
series).

The dynamic series is composed of the acquired 4D image 
bins and samples the patient respiration at different stages 
of the respiratory transform containing the information 
of the moving anatomy. This is mathematically described 
as an image sequence I(x, t), where I represents the image 
intensity at a voxel x, in the time sequence quantified by t, 
where t 5 0,...,N21, with N being the number of bins in the 
4D dataset. 

The static series is a 4D image that repeats the start-of-breathing 
image Ic(x, t0) as images at N different time-points.

Matching the dynamic to the static image through deform-
able registration deduces an expression of the displacement 
field D(x, t) that annihilates the motion in the dynamic image. 

Therefore, it produces an approximation of the patient’s 
organ motion during the whole breathing cycle. This motion 
is described as location-dependent displacements with vary-
ing intensities during different time points in the breathing 
cycle.

Registration Setup and Settings

The motion model, D(x, t), is described by the BSpline 
model due to its simplicity and efficiency in approximating 
the smooth thoracic motion. In the 4D BSpline model, the 
deformation is defined on a sparse grid of nodes spanning the 
extent of the static image in both spatial and temporal direc-
tions. For the registration we selected a 4D spatio-temporal 
BSpline model that superimposes over the 4D image in both 
spatial and temporal directions a grid of nodes, with a four-
dimensional displacement vectors {xi} characterizing tis-
sue deformation. The displacement at a location x on the 
image is deduced by fitting a polynomial expressed using 
the BSpline (33, 34) to the grid nodes xi. The polynomial 
fitting represents good trade-off between describing local 
anatomical motion and interpolating the noise inherent in 
the PET dataset. Optimal nodes are obtained by an optimi-
zation procedure that iteratively modifies the node values 
{xi} until the dynamic series, warped with the deformation, 
matches the static series as quantified by a multi-modality 
registration metric. 

The mutual information metric has increased versatility in 
judging the value of a particular match as it does not assume 
that a structure is represented by the same voxel intensity in 
the images to be registered. Classical mono-modality regis-
tration metrics assume voxels are imaged with the same or 
linearly changing intensity between the images to be aligned 
and thus can be described by a linear relationship between 
intensities. This is not always the case, as noise and changes in 
imaging conditions are present in the phases of a 4D datasets, 
with more general metric preferred to describe the relation 
between the datasets to be registered. The mutual information 
metric is a measure that does not assume any a-priory relation 
between voxel intensities, but as a statistical measure it rather 
evaluates a match through the number matches in intensity 
patterns as defined by the statistical measure of entropy. 
When the images are aligned, the number of matching inten-
sity patterns is minimal, while when the images are displaced, 
the number of matching intensities increases. This metric is 
usually coupled with a rigid or deformable transform to align 
the images under the guidance of an optimizer. In our par-
ticular implementation we used the Mattes formulation (16) 
of the mutual information metric that is minimized using the 
L-BFGS-B algorithm (22, 23) due to its superior convergence 
rates on large scale problems achieved through the usage of 
a low-rank approximation of the Hessian matrix during the 
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minimization. Termination condition for the L-BFGS algo-
rithm when the cost function decreases with less than 1026 
or when 100 iterations are achieved. Settings for the metric 
were 25 histogram bins and 10% samples.

Algorithm Accuracy 

For an improved and quantitative algorithm evaluation of the 
motion in the 4D dataset we use a surface comparison tool as 
shown in Figure 1. First, we select a surface that is both of 
clinical interest and visible in both datasets to be compared, 
such as the sphere inset in the phantom case, or the tumor 
in the clinical case. This surface is extracted independently 
from all phases of a dataset using a marching cube algorithm 
(24), a fully automated segmentation algorithm taking as only 
parameter the SUV value of the structure to be segmented. To 
mathematically quantify registration errors, we compute the 
distances between the surface extracted from the first phase 
and the same surface extracted from the subsequent datasets. 
For every point in the surface obtained from the first phase, 
the distance to the closest cell of the corresponding surface 
extracted from subsequent phases is calculated and stored. 
When the calculation for each point is completed, the sur-
face is color coded according to the calculation results, with 
blue assigned to the minimum distance and red assigned to  
the maximum distance.

Datasets

Phantom Case

We used a dynamic QUASAR™ Respiratory Motion QA 
phantom (Modus Medical, London ON, Canada) to mimic 
patient motion for our PET-based biomarker analysis 
approach. The phantom is designed to move existing insets 
with programmable respiratory and sinusoidal motion pro-
files. Phantom spheres were filled with target-to-background 
18F-FDG activity concentration ratio of approximately 8:1 
(1–0.12 µCi/cc). The 8:1 target-to-background ratio was 
chosen to simulate an average lesion-to-background activity 
observed in PET/CT images and suggested by NEMA to be 
used in PET scanners acceptance testing for simulation of 
lung tissue. A 4D PET series of motion with cycle amplitude 
and excursion chosen to be consistent with values observed in 
the real patients was acquired using the 4D protocol provided 
by the scanner vendor using a Discovery LS 4D PET scanner 
(GE Medical Systems, Milwaukee, WI) interfaced with the 
real-time position management (RPM) system (Varian medi-
cal Systems, Palo Alto, CA) that is a video-based system that 
allows measurement of the patient’s respiratory pattern. The 
PET dataset was reconstructed using the OSEM algorithm 
with the convolution subtraction scatter correction method to 
a volume of (128, 128, 47) voxels of (4.69, 4.69, 3.27) mm 

Figure 1:  Motion-correction algorithm applied on the QUASAR™ Respiratory Motion QA phantom (Modus Medical, London ON, Canada) with a spherical 
inset filled with radioactive tracer. The phantom’s inset moves up and down to simulate the respiratory motion. The black box encompasses the displacement 
observed in all phases. The lower row shows the same spherical inset after the motion correction algorithm has been applied. Color-coding represents motion 
amplitude, ranging from 0 (blue) to 13.9 mm (red).
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spacing. The amplitude of the simulated motion was 15 mm 
with a periodic motion of 5 seconds.

Clinical Case

Data from a patient with a primary lung tumor was selected 
as a clinical example. The patient received 15 mCi of 18F-
FDG one hour prior to the PET image scan. The RPM sys-
tem’s reflective block was affixed just below the xiphoid 
process and the patient was instructed to breathe regularly 
for the duration of the scan. The RPM camera recorded the 
anterior-posterior motion of the reflective block, while the 
PET scanner accumulated data in the gated PET mode for 
6 min, recording 30 sequential frames. The raw data from all 
frames were grouped to form a retrospectively gated scan at 
respiratory cycle end-points, as well as six midbreath points 
as measured by their respiratory trace amplitude. The PET 
dataset was reconstructed using to a volume of (128, 128, 35) 
voxels of (3.91, 3.91, 4.25) mm spacing, with the attenuated-
corrected images used as input to the registration algorithm.

Second Clinical Case

As a second clinical case we show data from a patient dis-
playing a larger lung tumor of 143 cm3. This patient received 
539 Bq (14.56 mCi) of 18F-FDG intravenously and imaged 
with an integrated PET/CT scanner (GEMINI TF TOF 64, 
Philips Medical Systems, Andover, MA, USA). The patient’s 
arms were elevated above their head. The 4D PET images 
were acquired using the RPM respiratory monitoring system 
to produce 4D-CT images with 3 mm slice thickness, of a 
512 3 512 3 144 matrix, as well as and 4D PET images with 
108 table positions, 7 min per position, were acquired creat-
ing a volume of 144 3 144 3 108 voxels size and uniform 
spacing of 4 mm. The respiration cycle was divided into four 
phases. All CT images were automatically sorted using 4D 
software (Advantage 4D, GE Healthcare). The images were 
transferred from the PET/CT workstation via DICOM to our 
customized software and all phases of CT images and PET 
images were analyzed for this study. 

Results

Phantom Case

Application of our motion correction algorithm on the 4D 
phantom dataset is presented in Figure 1 where the upper row 
shows the contour of a spherical phantom inset filled with 
radioactive tracer. In the acquired dataset, phantom inset 
moves up and down along the scanners longitudinal axis 
as programmed by the phantom’s controller. The black box 
shown in Figure 1 encompasses the motion observed in all 
phases and is present on the figure for reference. Phantom’s 
spherical inset was contoured using an automated algorithm 
and is presented in figure as a sphere. While in the upper 
row representing results obtained for the acquired dataset, the 
sphere changes position relative to the box, in the lower row, 
representing results obtained from the motion-corrected algo-
rithm, the sphere appears stationary. The motion measured 
as described in Methods section. 4 is shown color-coded on 
phases 1, 3 and 5 that exhibit the largest displacements. The 
deformable registration was able to decrease the measured 
displacement in all phases from 13.9 mm in the original to 
2.9 mm in the motion-corrected dataset.

The effect of motion correction on PET intensity/SUV val-
ues is illustrated in Figure 2 (left). When the motion is acti-
vated, the shape acquired with a 3D imaging system would 
appear elliptical (middle) because the motion smears the PET 
activity in the longitudinal direction. When using a 4D scan 
with the motion correction applied, the original inset shape 
is recovered (right). Additionally, respiratory motion changes 
voxel intensities, as a maximum of 20.4 SUV in the original 
4D phases, while in the 3D system this value is washed out by 
the motion to a value of 18.3 SUV. The maximum SUV value 
is better preserved in our approach, at a value of 20.1 SUV. 

Clinical Case 

A few phases of the 4D PET-CT dataset are represented 
in Figure 3, where the PET dataset is shown as a hot-iron 

Figure 2:  Coronal slices of a 4D PET (left), simulated 3D (middle) and motion corrected (right) scans of the phantom case at the circular marker location. 
The background is color-coded according to SUV values and shape represents an automated segmentation at 50% of the maximum SUV value.
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color-wash superimposed on CT coronal slices. Each panel 
represents a slice at the same location through the 3D images 
representing different breathing phases. The tumor, dia-
phragm and lung motion with respiration can be observed in 
the reconstructed slices. This is a typical dataset, with binning 
artifacts observed in the diaphragm region and marked with 
white arrows. Additionally, it can be observed that the PET 
activity appears displaced in the first phases as compared to 
the subsequent phases. This is likely due to differences in the 
respiratory cycle during the 4D CT acquisition as compared 
to the PET acquisition period. This mismatch of PET data 
with CT anatomy is shown by the yellow arrow, indicating 
where the PET activity is located spatially outside the tumor 
mass. This observed inconsistency was our main reason in 
selecting the 4D PET directly as input to our registration pro-
cedure. To interpolate the binning artifacts, the 4D registra-
tion algorithm was selected to recover the respiratory motion 
by both spatial and temporal interpolation.

Raw results of the 4D registration are presented in Figure 4. 
The left image shows the first phase of the 4D PET dataset 

at an axial slice located in the middle of the tumor. As the 
tumor moves along with the respiratory motion, it is moved 
above the slice visualized and thus the activity intensities are 
significantly different in the fourth phase. The 4D deform-
able registration was able to recover tumor displacement, as 
observed in the right image where the tumor is replaced at the 
location observed in the first phase. Although not shown here 
for all phases, registration was applied on all phases of the 
4D PET-CT simultaneously to consistently correct respira-
tory motion. 

To illustrate the algorithm’s accuracy, Figure 5 follows the 
contour of a lung tumor at different points in the breathing 
cycle before (upper row) and after (lower row) applying the 
motion-correction algorithm to a PET-CT imaging study. The 
coloring represents motion amplitude with the tumor (shown 
as a white surface and extracted from first phase) used as 
the baseline to measure motion. The tumor contour does not 
change position significantly in time in the motion-corrected 
series (lower row), as the maximum motion was reduced 
from 11.9 to 3.9 mm in all phases. Clinical importance of 

Figure 3:  Sample 4D 18F-FDG PET-CT dataset illustrating typical anatomical motion at 0%, 20%, 40% and 80% of the respiratory cycle. Regions with 
significant motion during the breathing cycle are marked with yellow arrows. Binning artifacts, inherent to the 4D acquisition method are marked with white 
arrows. The registration method is designed specifically to ignore artifacts by interpolating between phase images, producing a continuous and smooth 
representation with improved tumor localization accuracy. 

Figure 4:  Sample result of deformable registration. The image shows the result (right) of deforming the 4th phase (middle) to the 1st phase (left) at the same 
axial slice. The deformable registration compensated for tumor excursion during the respiratory motion.
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the motion correction algorithm is demonstrated in Figure 
6. Respiratory motion not only changes the pixel intensity/
SUV values by upto 23.9% but it also changes its spatial 
distribution. 

Second Clinical Case

A display illustrating the deformable registration’s algo-
rithm effect on the second clinical case is shown in Figure 7, 

where the SUV intensity in an axial slice at the tumor loca-
tion is shown in a black to yellow color scheme. The left 
panel displays the axial slice in the first phase of the 4D PET 
dataset, corresponding to full inspiration, while the middle 
panel shows the same slice when the patient is in full expira-
tion. Due to anatomical motion with normal respiration, the 
tumor moves up of this axial plane, creating a different SUV 
distribution as seen in the middle panel. When applying the 
deformable registration algorithm (right panel) the voxels in 

Figure 5:  Motion correction as applied on a clinical case. The upper row shows the tumor in the 4D PET dataset following breathing color-coded with the 
motion amplitude. The lower row shows the same tumor after the deformable registration was used to eliminate the motion. The motion-corrected dataset 
appears stationary. The gray surface is the marker in the 1st phase and is shown for here as reference.

Figure 6:  Comparison of SUV values in a 3D (left) with a 4D motion-corrected dataset (right) for the clinical case. The maximum SUV values are 16.9 and 
22.2 for the 3D and 4D datasets, respectively, an error of 23.8% on the same order of magnitude with changes induced by the treatment itself one week into 
therapy.
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the end expiration phase are moved to match the inspiration 
phase, eliminating the effect of respiration by moving the 
tumor to its corresponding location in the initial phase of the 
4D PET dataset.

Similar to the display presented in the Figure 5 for the first 
clinical case, Figure 8 follows the tumor motion with and 
without the motion correction algorithm for the second case. 
The color scheme ranges from 0 to 9.8 mm displacement, 
a maximum value present without any motion correction. 
With the correction, this maximum displacement decreases 
to 5.1 mm in the second phase. As visible in the display, the 
motion on all points on the tumor decreased after applying 
the correction algorithm.

As noted also in the previous case, the motion correction 
algorithm also influences the SUV distribution within 
one slice. As shown in in Figure 9, without the motion 
correction algorithm metabolic activity is smeared by 
the respiratory motion (left) during acquisition, decreas-
ing the maximum value in this slice to 6.03 as compared 
to their motion-corrected value of 8.9 (middle). When 
visually comparing the noise in 1st phase of the 4D data-
set (right), to the motion-corrected dataset (middle) on 
observe improvement as the motion-corrected dataset 
sums all frames together enhancing consistent metabolic 
signal and eliminating random noise. For consistency, 
same visualization settings are used in all displays of the  
figure.

Figure 7:  Deformable registration compensating for tumor excursion during the respiratory motion in the second clinical case. The display shows at the same 
axial slice the 1st phase (left), 3rd phase before (middle) and after (right) registration. Initial changes before registration due to thoracic motion and evident when 
comparing tumor’s shape are compensated by the algorithm.

Figure 8:  Motion correction as applied on the second clinical case. The upper row shows the following breathing and color-coded with the motion amplitude, 
while the lower row the same tumor after the deformable registration was used to reduce the respiratory motion.
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Discussions

A fundamental assumption when comparing two PET image 
studies for response assessment is that corresponding voxels 
in the two datasets represent the same patient anatomy. The 
assumption of a rigid correspondence between the two data-
sets is not valid for extra-cranial sites, as thoracic anatomical 
structures are affected by respiratory motion during the image 
acquisition process. A procedure to track individual voxels 
through the respiratory cycle or through deforming anatomy 
is of high value for a precise and reliable evaluation. 

In this report we have presented a method to discern biologi-
cal changes induced by the treatment itself from changes pro-
duced by voxel displacements during respiration. The main 
component of our motion correction algorithm for using 
PET as biomarker is a 4D deformable registration process. 
We selected a setup based on the Mattes metric that has a 
smooth search space and allows the use of fast gradient-based 
optimization algorithms to optimize the nodes of the model. 
Node value optimization is achieved using the L-BFGS-B 
algorithm (22, 23) that presents superior convergence rates. 
Additionally, this optimizer permits specification of limits on 
the input variables that can be used to prevent convergence of 
L-BFGS to regions outside the fixed image. Appropriate con-
figuration of the deformable registration setup was checked 
using the convergence analysis tool, confirming an accuracy 
of 2.9 mm on phantom case with the motion settings detailed 
in the Datasets section and 5.1 mm on the breathing motion 
pattern of the patient case analyzed in the Results section. 

The BSpline model in its 4D extension was used in this work, 
but other deformable algorithms may be employed here as 
well. The demons algorithms are another class of deform-
able algorithms that have been previously employed to track 
changes in 3D volumes acquired in the same modality and 
can be used to extract the analytical description of the respi-
ratory motion from the CT datasets. By contrast, the BSpline 

algorithm and the metric proposed here was developed for 
multi-modality registrations and is better suited to deal with 
the noise inherent in the PET images. In this model, the regu-
larization provided by the interpolation between the spline 
nodes can be configured to deal with the noise in the PET 
images. Usage of a 4D model to describe the deformation also 
ensured a smooth and regular field that eliminates artifacts 
common in the 4D CT dataset such as a broken diaphragm. 
Alternatives to this approach are the use of a mean squares 
or normal cross correlation as a metric at the expense of lon-
ger computation times and higher computer memory require-
ments as all voxels in the input image are used to evaluate the 
metric. However, these approaches have the advantage that a 
smoother search space is obtained. Concurrent methods such 
as fluid flow can be employed as well to obtain the respiratory 
motion description. as reported recently by Dawood et  al. 
(25) where a smoothness constraint is added to the partial 
differential equation governing the flow to overcome artifacts 
in the displacement field produced by the mono-modality 
assumption present in the classical implementation. 

In this study, 18F-FDG PET was used to exemplify the 
method, but the method is quite general and should be appli-
cable as well to other PET tracers such as FMISO to image 
hypoxia with minimal changes in the registration parameters. 
Further studies will also verify if there is a dependence of 
the achievable correction on the specific biomarker used and 
it’s dependence to the signal-to-noise ratio, and evaluate on 
specific markers the accuracy of this as well as alternative 
deformable registration methods. 

One alternative technique to judge response assessment is to 
compare directly phases of a 4D scan acquired at the same 
respiratory time point before and after therapy. As the frames 
of a 4D dataset are reconstructed based on a decreased num-
ber of decay events, these images have an increased level of 
noise as compared to a standard 3D scan. Noise is decreased 
in our approach by summing the 4D phases after a correcting 

Figure 9:  Comparison of SUV values in a 3D (left) with a 4D motion-corrected dataset (middle) as well as 1st phase of the 4D dataset (right) in the second 
clinical case. For consistency, same visualization settings are used in all displays. The maximum SUV as well as its appearance change when turning on the 
motion-correction algorithm. At a visual comparison, the motion-corrected dataset contains also less noise in the regions marked with arrows.
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for anatomical changes produced by respiratory motion. As 
illustrated visually in Figure 10, better images can be obtained 
as the noise, occurring at random locations, is reduced by the 
summation while metabolic signal arising at the same loca-
tion is enhanced. Arrows in Figure 10 mark regions degraded 
by noise in an axial slice through the end-respiratory frame at 
tumor level, that are reduced when all frames in the respira-
tory cycle are stacked together to the end-respiratory phase 
using the deformable image registration-based correction, 
resulting in a dataset that has the same quality as the 3D 
acquisition but without the motion artifacts. 

For the registration, one can use the CT component of the 
4D PET scan containing more anatomical information to aid 
the registration process but relying on an exact correlation of 
the PET and CT datasets with the patient’s breathing cycle or 
can use the PET dataset directly, to eliminate potential errors 
caused by inexactitudes in the binning process, at the expense 

of fewer anatomical details available to guide the registration 
process. Results presented in this manuscript are obtained 
with a registration using the PET dataset directly, but the 
method is quite general and can be applied using either regis-
tration setup as long as the motion derived from registration 
process should properly models the underlying anatomical 
motion. To compare motion derived from the two registration 
setups on the clinical case, in Figure 11 tumor activity was 
automatically contoured at half of the maximum SUV value 
and the contour was further propagated to all other phases 
in the 4D dataset when the PET (red contour) or CT (white 
contour) were used as input to the deformable registration 
procedure. Envelope of the tumor trajectory obtained by the 
two methods is highly similar.

One common question is if a deformable registration is able 
to find the “ideal” solution. The corollary to this question 
asks if the results of a deformable registration can be trusted 

Figure 10:  Comparison of noise in an axial of the 4D dataset (left), versus the motion-corrected dataset (right). In the 4D dataset, reduced statistics creates 
noise, visible as red speckle around the tumor. The motion-corrected dataset sums all frames together after a deformable registration to correct for breathing 
motion, enhancing consistent metabolic signal and eliminating random noise. For consistency, same visualization settings are used in both displays.

Figure 11:  Deformable registration compensating for tumor excursion for the second clinical case. The image shows the result (right) of deforming the 3rd 
phase (middle) to the 1st phase (left) at the same axial slice. Results and 1st phase images are alike after registration.
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to any degree. For clinical cases, a “true” or “ideal” solution 
is unknown. The accuracy of any image registration – rigid 
or deformable – is not guaranteed and may depend on the 
quality of the images to be aligned. But, while deformable 
registration is a mathematic approximation that cannot guar-
antee a “true” or “ideal” solution will be found, it is guaran-
teed to find a solution that improves the match as judged by 
the metric used. As applied to treatment assessment, a failed 
registration will not detect the whole amplitude of motion 
in the 4D dataset, just a part of it. When applied to the task 
of response assessment, a sub-optimal solution found by an 
imperfect registration will eliminate some but not all of the 
motion, but producing in the end, improved results over no 
registration. 

Discerning changes from noise is another fundamental issue 
in treatment response assessment using functional imaging. 
The phases of the 4D PET have increased levels of noise 
because the number of counts in the dynamic 4D dataset is 
significantly less than in a static 3D dataset. For example, in 
the lower row of Figure 5, the tumor changes shape between 
breathing phases due to the poor counting statistics of the 
4D PET dataset. By summing the motion corrected phases, 
the statistics will significantly improve because the signal is 
enhanced and the noise is diminished (26). The volume created 
with the motion-correction algorithm has the same statistics 
and similar quality to a 3D scan of non-moving anatomy. 

With computational time of minutes for the whole 4D dataset, 
the method is ideally suited for clinical application. Signifi-
cant computation time reduction is achieved by the use of the 
Mattes metric that estimates the joint histogram from only a 
percent of the number of voxels in the input dataset. Addi-
tionally, the implementation takes advantage of the multi-
processor technology, further reducing computational times 
on modern computer configurations. The algorithm appears 
parameter-less to the casual user as settings do not depend on 
the input images, permitting a quick algorithm acceptance in 
clinical practice. 

While this study establishes the technical aspects of the 
deformable registration algorithm applied to 4D PET-CT 
datasets, an extended study focusing on statistical analysis 
and interpretation of the effects of the motion correction on 
response assessment would show the clinical impact of this 
motion correction method.

Conclusion

In this work we have presented usage of a deformable regis-
tration algorithm to detect and describe the motion occurring 
between phases of a 4D dataset. The method uses a 4D exten-
sion of a classical BSpline algorithm to produce a smooth 
description of the underlying respiratory motion, with the 

concept exemplified on clinical cases to discern respiratory 
motion from treatment-induced changes when using PET as 
a biomarker. The main application was improved monitor-
ing of a patient’s response to drug and radiation therapy in 
thoracic carcinomas using functional PET imaging. 
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