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Introduction
Stem cells have the unique capacity to self-renew and generate 

committed, transit amplifying (TA) progenitors that differenti-

ate into the cell lineages of the tissue of origin (Niemann and 

Watt, 2002; Fuchs et al., 2004; Cotsarelis, 2006; Blanpain et al., 

2007). The most important function of TA cells is to increase 

the number of differentiated progeny produced by each stem 

cell division, thus enabling stem cells to divide infrequently, at 

least under normal tissue homeostasis. The cornea provides an 

ideal experimental system for studying stem cells of human 

stratifi ed epithelia (Lavker and Sun, 2003). Human corneal stem 

cells are segregated in the basal layer of the limbus, which is the 

vascularized zone encircling the cornea and separating it from 

the bulbar conjunctiva. The corneal epithelium lies on the avas-

cular Bowman’s membrane and is formed by TA keratinocytes 

that migrate millimeters away from their parental limbal stem 

cells (Schermer et al., 1986; Cotsarelis et al., 1989; Lehrer et al., 

1998; Pellegrini et al., 1999a).

Clonal analysis of squamous human epithelia, including 

the cornea, has identifi ed three types of clonogenic keratinocytes, 

giving rise to holoclones, meroclones, and paraclones in culture 

(Barrandon and Green, 1987; Pellegrini et al., 1999a). Holoclone-

forming cells have all the hallmarks of stem cells, including 

self-renewing capacity (Rochat et al., 1994; Claudinot et al., 

2005), telomerase activity (Dellambra et al., 2000), and an 

 impressive proliferative potential—a single holoclone can 

generate the entire epidermis of a human being (Rochat et al., 

1994). Holoclone-forming cells generate all the epithelial 

lineages of the tissue of origin (Pellegrini et al., 1999a; Oshima 

et al., 2001; Blanpain et al., 2004; Claudinot et al., 2005), 

permanently restore massive epithelial defects (Gallico et al., 

1984; Romagnoli et al., 1990; Pellegrini et al., 1997, 1999b; 

Ronfard et al., 2000), and can be retrieved from human epidermis 

regenerated from cultured keratinocytes years after grafting 

(De Luca et al., 2006). We have recently shown that a defi ned 

number of genetically corrected stem cells regenerate a normal 

epidermis in patients with genetic skin adhesion disorders 

(Mavilio et al., 2006). The paraclone is generated by a TA cell, 

whereas the meroclone has an intermediate clonal capacity and 

is a reservoir of TA cells (Barrandon and Green, 1987; Pellegrini 

et al., 1999a).

The p63 gene produces full-length (TAp63) and N-

 terminally truncated (∆Np63) transcripts initiated by different 

promoters. Each transcript is alternatively spliced to encode three 

different p63 isoforms, designated α, β, and γ (Yang et al., 1998). 

The p63 gene products are essential for the morphogenesis and 
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the regenerative proliferation of stratifi ed epithelia (Mills et al., 

1999; Yang et al., 1999). In particular, ∆Np63α sustains the 

proliferative potential of basal epidermal keratinocytes (Parsa 

et al., 1999; Koster et al., 2004; McKeon, 2004; Nguyen et al., 

2006). In the human corneal epithelium, high levels of ∆Np63α 

identify limbal stem cells both in vivo and in vitro, whereas 

∆Np63β and ∆Np63γ correlate with corneal regeneration and 

differentiation (Pellegrini et al., 2001; Di Iorio et al., 2005).

In mammary gland epithelial cells, the CCAAT enhancer 

binding protein δ (C/EBPδ) transcription factor regulates cell 

cycle by inducing a G0/G1arrest. This effect is specifi c for epi-

thelial cells and for the G0/G1 phase, as C/EBPδ expression does 

not increase in other types of G0/G1-arrested cells or in mam-

mary cells arrested at other stages of the cell cycle (O’Rourke 

et al., 1999; Hutt et al., 2000). C/EBPδ is a member of a highly 

conserved family of leucine zipper transcription factors ex-

pressed in a variety of tissues and cell types and involved in the 

control of cellular proliferation and differentiation, metabolism, 

and infl ammation (Ramji and Foka, 2002; Johnson, 2005). At 

least six members of the family have been isolated and charac-

terized (C/EBPα–C/EBPζ), with further diversity produced by 

the generation of different polypeptides by differential use of 

translational initiation sites, and extensive protein–protein inter-

actions within the family and with other types of transcription 

factors (Ramji and Foka, 2002; Johnson, 2005).

In this paper, we show that C/EBPδ and ∆Np63α are co-

expressed by human limbal stem cells in vivo and in vitro and 

that the expression of C/EBPδ is restricted to a subset of mitoti-

cally quiescent ∆Np63α+/Bmi1+ cells. Forced expression of 

a constitutive C/EBPδ or of a tamoxifen-inducible estrogen 

receptor (ER)–C/EBPδ fusion protein in human primary limbal 

keratinocytes shows that C/EBPδ is instrumental in regulating 

self-renewal and cell cycle length of limbal stem cells.

Results
Coexpression of C/EBP𝛅 and 𝚫Np63𝛂 
in quiescent human limbal cells
Experiments were performed on four uninjured and fi ve 

wounded corneas, referred to as resting and activated cornea, 

respectively (Di Iorio et al., 2005). We have previously shown 

that ∆Np63α is expressed by 10% of resting limbal basal cells 

endowed with stem cell properties and that activated ∆Np63α+ 

limbal cells contain ∆Np63β and ∆Np63γ, proliferate, and 

migrate to the central cornea to restore a wounded epithelium 

(Di Iorio et al., 2005).

Immunofl uorescence analysis on resting limbal sections 

revealed that C/EBPδ and ∆Np63α were coexpressed in the 

same patches of basal cells (Fig. 1 A, left). Both transcription 

factors were undetectable in suprabasal cell layers (Fig. 1 A) 

and in the entire corneal epithelium (not depicted). Limbal cell 

nuclei were stained with DAPI to estimate the proportion of 

C/EBPδ+/∆Np63α+ cells in the basal layer. 1 mm of resting 

limbal epithelium contained a mean of 15 C/EBPδ+/∆Np63α+ 

cells, equivalent to �10% of the basal layer. Upon corneal 

wounding and limbal activation, ∆Np63α appeared in many 

basal and some suprabasal limbal cells, whereas C/EBPδ re-

mained confi ned to �10% of the basal layer (Fig. 1 A, middle). 

Of note, C/EBPδ+ limbal cells invariably coexpressed ∆Np63α 

(Fig. 1 A). In activated limbus, patches of C/EBPδ+/∆Np63α+ 

Figure 1. Expression of 𝚫Np63𝛂, C/EBP𝛅, p27Kip1, and 
p57Kip2 in the human limbus. (A) Double immunofl uorescence 
of sections of resting (left) and activated (middle and right) 
limbus stained with C/EBPδ-specifi c (green) and p63α-specifi c 
(red) purifi ed IgG. Yellow in the merge frames indicates 
cells stained with both antibodies. ∆Np63α and C/EBPδ 
were coexpressed by a discrete number of basal cells of a 
resting limbus (left). In the activated limbus, many basal and 
some suprabasal cells expressed ∆Np63α, whereas C/EBPδ 
was contained only in �10% of ∆Np63α+ basal cells (middle). 
Patches of C/EBPδ+/∆Np63α+ basal cells (right; arrow-
heads) were fl anked by cells expressing ∆Np63α but not 
C/EBPδ (right; brackets). (B) Sections of activated limbus were 
also stained with mAbs against the proliferation-associated 
nuclear antigen Ki-67 (blue). Proliferating Ki-67+ limbal 
cells (blue arrows) expressed ∆Np63α (red arrows) but not 
C/EBPδ, whereas C/EBPδ+ cells (green arrows) contained 
∆Np63α (yellow arrows) but not Ki-67. (C) Serial limbal sec-
tions stained with C/EBPδ-, p63α-, p27Kip1-, and p57Kip2-specifi c 
IgG (as indicated in frames) showed that C/EBPδ-positive 
cells (green arrows) contained ∆Np63α (red arrows) and 
nuclear p27Kip1 (yellow arrows) and p57Kip2 (orange arrows), 
whereas the two Cdk inhibitors were expressed only in the 
cytoplasm of C/EBPδ−/∆Np63α+ cells (brackets). Bars, 10 μm.
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basal cells fl anked by C/EBPδ−/∆Np63α+ cells were commonly 

observed (Fig. 1 A, right), whereas neither resting nor activated 

central corneal epithelium expressed C/EBPδ (not depicted). 

C/EBPδ+/∆Np63α+ resting limbal cells did not express Ki-67, 

a proliferation-associated nuclear antigen present throughout 

the cell cycle but absent in G0/G1-arrested cells (not depicted). 

In activated limbus, proliferating Ki-67+ limbal cells expressed 

∆Np63α, but not C/EBPδ, whereas C/EBPδ+ cells contained 

∆Np63α but not Ki-67 (Fig. 1 B). Thus, C/EBPδ and ∆Np63α 

are coexpressed by quiescent limbal basal cells, whereas 

∆Np63α, but not C/EBPδ, is expressed in proliferating lim-

bal cells.

The cyclin/Cdk inhibitors p27Kip1 and p57Kip2 negatively 

regulate G1 progression. Nuclear levels of p27Kip1 are high in 

quiescent cells (Sherr and Roberts, 1999). Mitogenic and/or on-

cogenic signals activate different kinases that phosphorylate 

p27Kip1 on serine and tyrosine residues, promoting its export 

from the nucleus and cytoplasmic proteolysis, thereby leading to 

cell proliferation (Rodier et al., 2001; Chu et al., 2007; Grimmler 

et al., 2007; Kaldis, 2007). Of note, p57Kip2, which inhibits 

cyclin D–Cdk4/6 complexes (Yamazaki et al., 2006), is highly 

expressed in mouse epidermal stem, but not TA, cells (Dunnwald 

et al., 2003). Immunofl uorescence analysis on limbal sections 

revealed that C/EBPδ, p27Kip1, and p57Kip2 were co expressed in 

the nucleus of the same patches of basal cells (Fig. 1 C, arrow-

heads). Such cells also expressed ∆Np63α (Fig. 1 C, arrow-

heads). C/EBPδ+ cells were fl anked by C/EBPδ−/∆Np63α+ cells 

containing cytoplasmic, but not nuclear, p27Kip1 and p57Kip2 

(Fig. 1 C, brackets). Finally, p27Kip1 and p57Kip2 were never de-

tected in a fully activated limbus or in the corneal epithelium 

(not depicted). These data are consistent with the notion that 

p27Kip1 and p57Kip2 are localized in the nucleus of quiescent 

cells, appear in the cytoplasm at the G1–S transition, and are not 

expressed by actively proliferating cells (Rodier et al., 2001), 

and confi rm that C/EBPδ is expressed only by quiescent limbal 

basal cells.

Expression of C/EBP𝛅, 𝚫Np63𝛂, and Bmi1 
in limbal stem cells
Immunofl uorescence analysis showed that ∆Np63α is abun-

dantly and uniformly expressed in holoclones (Fig. 2 A), is ex-

pressed in a subset of meroclone cells, and is not expressed in 

paraclones (Di Iorio et al., 2005). Western analysis showed that 

clonal evolution, i.e., the transition from holoclones to para-

clones, is accompained by a progressive disappearance of 

∆Np63α and a relative enrichment in ∆Np63β and ∆Np63γ 

(Fig. 2 B). Strikingly, C/EBPδ expression was detected exclu-

sively in holoclones (Fig. 2 B) and confi ned to a subpopulation 

of ∆Np63α+ cells (Fig. 2 A). C/EBPδ+/∆Np63α+ cells were 

not proliferating, as shown by the mutually exclusive expres-

sion of C/EBPδ and Ki-67 (Fig. 2 C). Of note, although Ki-67 

and C/EBPδ were never expressed in the same cell (Fig. 2 C), 

large areas of the colony were formed by nonproliferating yet 

C/EBPδ-negative cells (Fig. 2 C, dots), suggesting that the ex-

pression of C/EBPδ was not merely related to the proliferative 

status of the limbal cell.

C/EBPα and -β are the most commonly expressed and 

thoroughly studied isoforms of the C/EBP family (Ramji and 

Foka, 2002). In particular, C/EBPα and -β are known to posi-

tively regulate the program of squamous differentiation in the 

epidermis (Oh and Smart, 1998; Zhu et al., 1999). Accordingly, 

we found that C/EBPα and -β were contained in the suprabasal 

layers of both human limbal and corneal epithelium (unpub-

lished data). Of note, however, although C/EBPβ was expressed 

in all limbal clonal types (Fig. 2 B), we could not detect 

C/EBPα in cultured limbal colonies.

Figure 2. Expression of 𝚫Np63𝛂, C/EBP𝛅, 
and Bmi1 in limbal clones and resting limbus. 
(A) Holoclone type colonies were isolated as 
described in Materials and methods. Double 
immunofl uorescence was performed on PFA-
fi xed holoclones with p63α-specifi c (red) and 
C/EBPδ-specifi c (green) purifi ed IgG. Yellow in 
the merge frames indicates cells stained with 
both antibodies. C/EBPδ was contained in a 
subpopulation of ∆Np63α+ cells. Bars, 50 μm. 
(B) Clonal analysis of subconfl uent primary 
limbal cultures (Pellegrini et al., 2001). Cell 
extracts were prepared from cultures gener-
ated by holoclones, meroclones, and para-
clones, run on SDS-polyacrylamide gels, and 
immunostained with 4A4 (pan-p63) and anti-
Bmi1 mAbs and with anti-C/EBPδ, anti-C/EBPβ, 
and anti-GAPDH purifi ed IgG. C/EBPδ and 
Bmi1 were detected exclusively in holoclones. 
Clonal evolution was characterized by a pro-
gressive disappearance of ∆Np63α and an 
enrichment in ∆Np63β and ∆Np63γ. C/EBPβ 
was uniformly expressed in all clonal types. 
(C) Selected holoclones were double stained 
with an anti–Ki-67 mAb (blue) and an anti-C/
EBPδ IgG (green). The expression of C/EBPδ 

and Ki-67 was mutually exclusive. The dotted areas outline nonproliferating cells that do not express C/EBPδ. Bar, 50 μm. (D) Double immunofl uor escence 
of sections of resting limbus stained with anti-C/EBPδ IgG (green) and anti-Bmi1 mAb (violet). The two transcription factors were coexpressed by a defi ned 
number of basal limbal cells. Palisades of Vogt are indicated (left) and shown at higher magnifi cation (right). Bars: (left) 100 μm; (right) 10 μm.
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Gene profi ling experiments have led to the identifi cation 

of genes that are commonly expressed in adult stem cells. 

Among these genes, Bmi1, a member of the polycomb group of 

transcription factors, plays a crucial role in the renewal of he-

matopoietic and neural stem cells (Lessard and Sauvageau, 2003; 

Molofsky et al., 2003, 2005; Park et al., 2003) and is expressed 

in clonogenic, multipotent, and self-renewing murine hair 

follicle stem cells (Claudinot et al., 2005). Immunofl uorescence 

performed on resting limbal sections revealed that C/EBPδ 

and Bmi1 were coexpressed by the same limbal basal cells 

(Fig. 2 D). In particular, the basal layer of palisades of Vogt, 

where limbal stem cells are thought to be concentrated, was formed 

by C/EBPδ+/Bmi1+ cells (Fig. 2 D). Accordingly, Western blot 

analysis showed that Bmi1 was expressed in holoclones but not 

in meroclones and paraclones (Fig. 2 B).

Collectively, these data indicate that C/EBPδ, ∆Np63α, and 

Bmi1 colocalize in limbal stem cells of the resting corneal epithe-

lium in vivo and in limbal holoclone-forming cells in vitro and 

that expression of C/EBPδ is restricted to a subset of ∆Np63α+ 

cells that are mitotically quiescent both in vivo and in vitro.

C/EBP𝛅 regulates the cell cycle of human 
limbal stem cells
Primary limbal cultures were infected with a lentiviral vector 

expressing either an epitope-tagged human C/EBPδ or a control 

protein (a truncated form of the p75 low-affi nity NGF receptor 

[∆NGFr]) under the control of a constitutive phosphoglycero-

kinase (PGK) promoter. Both vectors expressed GFP under the 

control of an internal ribosomal entry site (IRES) element (Fig. 

3 A, RRL-δ-G and RRL-N-G). Transduction effi ciency on clono-

genic cells was �90%, as calculated by GFP expression. After 

2 d of cultivation, the size of untransduced colonies increased 

nearly threefold (Fig. 3 B, red circles), whereas the size of 

C/EBPδ+/GFP+ colonies increased only slightly (Fig. 3 B, yel-

low circles). Control cells reached confl uency 5 d after plating 

(Fig. 3 B). In contrast, a 5-d culture of C/EBPδ+/GFP+ cells 

showed well-defi ned colonies composed of small, tightly packed 

cells (Fig. 3 B).

Replicative senescence and differentiation of keratino-

cytes are associated with increased levels of p16INK4A and invo-

lucrin, which indicate irreversible exit from the cell cycle and 

onset of terminal differentiation, respectively (Dellambra et al., 

2000). C/EBPδ-transduced cells contained threefold less 

p16INK4A and involucrin than ∆NGFr-transduced cells (Fig. 3 D). 

C/EBPδ-transduced cells contained four- and threefold more 

p27Kip1 and p57Kip2 than control cells, respectively (Fig. 3 D). 

A cell cycle profi le revealed that �55, 35, and 10% of the con-

trol cells were in the G1, S, and G2–M phases, respectively 

(Fig. 3 C). In sharp contrast, most of the C/EBPδ-transduced 

cells were in the G1 phase of the cell cycle (Fig. 3 C). The 

amount of apoptotic cells was negligible in both C/EBPδ-

transduced and control cells (Fig. 3 C). Finally, C/EBPδ-

 dependent growth inhibition was associated with neither increase 

of p21Waf1/Cip1 or pRb expression (Fig. 3 D) nor activation of 

the p53 checkpoint pathway (not depicted). These data indicate 

that the growth inhibitory effect of C/EBPδ was not due to 

replicative senescence, terminal differentiation, or apoptosis.

To investigate whether the growth inhibitory effect of C/EBPδ 

was reversible, we transduced primary limbal cells with a lenti-

viral vector expressing an N-terminal fusion between C/EBPδ 

and a modifi ed, 4-hydroxytamoxifen (4OHT)–inducible ligand 

binding domain of the human ER (Littlewood et al., 1995; Fig. 4 A, 

RRL-ERδ-G). In mock-transduced (RRL-ER-G) cells, C/EBPδ 

was found predominantly in the nucleus (Fig. 4 B, ER, middle). 

Figure 3. Forced expression of C/EBP𝛅 in 
 human limbal keratinocytes. (A) Schematic map 
of the RRL-δ-G and RRL-N-G lentiviral vectors 
(proviral form), expressing C/EBPδ or ∆NGFr 
under the control of a constitutive, human PGK 
promoter. The vectors carry an inactivating de-
letion in the U3 region of the LTR. Splice donor 
(SD) and acceptor (SA) sites, Rev-responsive 
element (RRE), central poly-purine tract (cPPT), 
and the woodchuck hepatitis posttranscrip-
tional regulatory element (WPRE) are indicated. 
In both vectors, EGFP is expressed under the 
control of an IRES. The Flag epitope fused to 
C/EBPδ is indicated. (B) C/EBPδ-transduced 
colonies are indicated by GFP expression 
(green). (top) The size of an untrans duced col-
ony (red circle) increased nearly threefold 
after 2 d of culture, whereas the size of a 
C/EBPδ-transduced colony contained in the same 
dish (yellow circle) did not increase consider-
ably. (bottom) After 5 d of culture, untrans duced 
cells reached confl uency (left), whereas C/EBPδ-
transduced colonies were well separated and 
composed of small tightly packed cells (right). 
Yellow asterisks indicate 3T3 feeder cells, which 
are not visible in untransduced cultures. Bars, 50 μm. (C) Cell cycle analysis of ∆NGFr-transduced (control; gray bars) and C/EBPδ-transduced (green bars) 
limbal cells after 5 d of cultivation. Approximately 55, 35, and 10% of control cells were in the G1, S, and G2–M phases of the cell cycle, respectively, 
whereas most of the C/EBPδ-transduced cells were in the G1 phase. Apoptotic cells were virtually undetectable in both cases. Error bars indicate SD. 
(D) Western blot analysis of the expression of C/EBPδ, p16, involucrin, p27Kip1, p57Kip2, p21Waf1/Cip1, and Rb in cell extracts from C/EBPδ- and ∆NGFr-
transduced limbal keratinocytes.
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In the absence of 4OHT, the ER-C/EBPδ chimeric protein was 

found in the cytoplasm of transduced limbal cells, and nuclear 

translocation was observed within 12 h from the addition of 

1 μM 4OHT to the culture medium (Fig. 4, B [top], C, and D). 

In contrast, C/EBPβ was present only in the nucleus, irrespective of 

the presence of 4OHT (Fig. 4 B [bottom] and Fig. D). Members of 

the C/EBP family are known to form homo- and heterodimers. 

In the absence of 4OHT, ER-C/EBPδ sequestered also the 

 endogeneous C/EBPδ in the cytoplasm, as indicated by the ab-

sence of nuclear immunofl uorescent staining (Fig. 4 D, −4OHT), 

the absence of endogeneous C/EBPδ in nuclear extracts, and the 

presence of C/EBPδ in the corresponding cytoplasmic extracts 

(Fig. 4 B, middle, −4OHT) of RRL-ERδ-G–transduced cells. 

Colonies of cells transduced with the control vector showed a 

progressive and linear increase in their size, irrespective of the 

presence of 4OHT (Fig. 4, E and F). In sharp contrast, the growth 

of ER-C/EBPδ+/GFP+ colonies was strictly dependent on the 

localization of the ER-C/EBPδ chimera (Fig. 4, E and F): 

(1) addition of 4OHT at day 1 considerably slowed the growth 

of transduced colonies; (2) removal of 4OHT at day 4 was pro-

mptly followed by a linear increase of the size of GFP+ colonies; 

and (3) readdition of 4OHT at day 6 again induced a growth arrest. 

Of note, untransduced, ∆NGFr- and ER-transduced primary limbal 

cells duplicated every 17–19 h, whereas C/EBPδ-transduced 

cells showed a doubling time of 41 h (Fig. 5 E, green). These 

data show that C/EBPδ lengthened the limbal cell cycle by 

forcing cells into the G1 phase without altering their capacity 

for multiplication.

C/EBP𝛅-dependent mitotic quiescence 
is mediated by p27Kip1 and p57Kip2

Semiquantitative RT-PCR was performed on control and 

C/EBPδ-transduced cells using p27Kip1- and p57Kip2-specifi c 

primers. As shown in Fig. 5 (A and B), we observed a 5–10-fold 

Figure 4. Expression of 4OHT-inducible C/EBP𝛅 in limbal keratinocytes. (A) Schematic map of the RRL-ERδ-G and RRL-ER-G lentiviral vectors (proviral form), 
expressing an N-terminal fusion of C/EBPδ to a modifi ed ER ligand binding domain, or the ER domain only, under the control of a PGK promoter. In both 
vectors, EGFP is expressed under the control of an IRES. SD, splice donor site; SA, splice acceptor site; RRE, Rev-responsive element; cPPT, central poly-
 purine tract; WPRE, woodchuck hepatitis posttranscriptional regulatory element. (B) Nuclear (N) and cytoplasmic (C) extracts were prepared from RRL-ER-G–
transduced (ER) and RRL-ERδ-G–transduced cells, either treated (+4OHT) or untreated (−4OHT) with 1 μm 4OHT, run on SDS-polyacrylamide gels, and 
immunostained with anti-C/EBPδ and anti-C/EBPβ purifi ed IgG. In mock-transduced cells, C/EBPδ was found exclusively in the nucleus (ER; middle). In the 
absence of 4OHT, the ER-C/EBPδ chimeric protein (top) was found predominantly in the cytoplasm (−4OHT). Nuclear translocation was observed within 
12 h from the addition of 1 μM 4OHT to the culture medium (+4OHT; top). Strikingly, in the absence of 4OHT, ER-C/EBPδ sequestered also the endoge-
neous C/EBPδ in the cytoplasm, as indicated by the absence of any C/EBPδ species in nuclear extracts of −4OHT cells and the presence of C/EBPδ in the 
corresponding cytoplasmic extracts (middle). The exposure times of fi lters in top (ER-C/EBPδ) and middle (C/EBPδ) panels were 10 and 75 s, respectively. 
C/EBPβ was present only in nuclear extracts, irrespective of the presence of 4OHT (bottom). (C and D) Cytoplasmic–nuclear translocation of the ER-C/EBPδ 
fusion protein in response to 4OHT treatment of RRL-ERδ-G-transduced limbal keratinocytes, stained with an anti-C/EBPδ antibody (green). Staining of 
C/EBPβ is shown for comparison (pink). Note the absence of C/EBPδ in nuclei of untreated cells. Bars, 20 μm. (E and F) Reversible growth inhibitory effect 
of C/EBPδ. In the presence of 4OHT (1–4 d of culture), the size of ER-C/EBPδ–transduced colonies did not increase considerably; removal of 4OHT at day 4 
was followed by a linear increase of the size of GFP+ colonies, whereas readdition of 4OHT at day 6 again induced a growth arrest (E [bottom] and F 
[green circles]). In contrast, RRL-ER-G–transduced colonies showed a progressive and linear increase of their size, irrespective of the presence of 4OHT 
(E [top] and F [black circles]). Values of the size of colonies are in arbitrary units.
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increase of both p27Kip1 and p57Kip2 transcripts in RRL-δ-G 

(C/EBPδ)–transduced limbal cells and RRL-ERδ-G–transduced 

cells treated with 4OHT (+4OHT), as compared with RRL-N-G 

(∆NGFr)–, RRL-ER-G (ER)–, and RRL-ERδ- G–transduced 

cells not treated with 4OHT (−4OHT). To prove the role of 

p27Kip1 and p57Kip2 in mediating the effect of C/EBPδ on keratino-

cyte cell cycle, C/EBPδ-transduced limbal cells were trans-

fected with siRNAs specifi cally targeted to the p27Kip1 and 

p57Kip2 mRNAs. Transfection effi ciency was 84 ± 2 and 77 ± 

3%, respectively (Fig. 5 C). Western blot analysis showed that 

siRNA-p27Kip1 and siRNA-p57Kip2 caused a strong decrease of 

the expression of p27Kip1 and p57Kip2, but not of C/EBPδ and a 

control protein (Fig. 5 D).

Untransduced and C/EBPδ-transduced cells showed a 

doubling time of 18 and 41 h, respectively (Fig. 5 E). C/EBPδ-

transduced cells transfected with either siRNA-p27Kip1 or 

siRNA-p57Kip2 showed a doubling time of 23.5 and 23 h, re-

spectively. Of note, C/EBPδ-transduced cells transfected with 

both siRNAs simultaneously, showed a doubling time of 18.5 h, 

a value undistinguishable from that of untransduced control 

cells (Fig. 5 E). These data show that p27Kip1 and p57Kip2 mediate 

C/EBPδ-induced mitotic quiescence.

C/EBP𝛅 binds to the p63, involucrin, 
p27Kip1, p57Kip2, and p16INK4A loci in vivo
To provide evidence for a direct contribution of C/EBPδ in reg-

ulating the expression of ∆Np63α, involucrin, p27Kip1, p57Kip2, 

and p16INK4A, we analyzed recruitment of C/EBPδ to these loci 

by a chromatin immunoprecipitation (ChIP) assay on cultured 

limbal keratinocytes three and fi ve passages after transduction 

with either RRL-δ-G or the control, RRL-N-G vector. Protein–

DNA complexes were immunoprecipitated with antibodies spe-

cifi c for C/EBPδ or the Flag epitope and with control IgGs. 

Immunoprecipitated chromatin DNA was analyzed by PCR 

with primers specifi c for different regions of the p63, involucrin, 

p27Kip1, p57Kip2, and p16INK4A loci (Fig. 6 A, red arrowheads), 

containing evolutionarily conserved and/or putative C/EBP 

binding elements.

In C/EBPδ-transduced cells, vector-derived (Flag-tagged) 

C/EBPδ was found associated to the p63 locus in intron 3 (at 

position +147873 to +148041) and in an evolutionarily con-

served, keratinocyte-specifi c enhancer in intron 5 (+202579 to 

+202761; Antonini et al., 2006). Primers designed to amplify 

other sequences from the p63 locus detected the correct frag-

ment only in the input samples (Fig. 6, A and B). Binding of 

Flag-tagged C/EBPδ was also observed to a region upstream of 

the involucrin promoter (−421 to −119) containing a C/EBP 

responsive element previously characterized in keratinocytes 

(Agarwal et al., 1999; Balasubramanian and Eckert, 2004) and 

upstream of the p27Kip1 (−227 to +14), p57Kip2 (−622 to −398), 

and p16INK4A (−1020 to −871) loci (Fig. 6 B). Binding to all 

these sites was observed specifi cally in C/EBPδ-transduced 

cells and was more pronounced at the fi fth than at the third 

passage (Fig. 6 B). The signals obtained with the anti-Flag 

Figure 5. Role of p27Kip1 and p57Kip2 in C/EBP𝛅-induced mitotic quiescence. (A and B) Semiquantitative RT-PCR analysis was performed on limbal cells 
transduced with either control ER (ER), constitutive ∆NGFr (∆NGFr), constitutive C/EBPδ (C/EBPδ), or inducible C/EBPδ in the absence (−4OHT) or in the 
presence (+4OHT) of tamoxifen, using p27Kip1- and p57Kip2-specifi c primers. A 5–10-fold increase of both p27Kip1 (yellow bars) and p57Kip2 (orange bars) 
transcripts was observed only in the presence of exogeneous nuclear C/EBPδ. Error bars indicate SD. (C) C/EBPδ-transduced cells were then transfected 
with siRNA-p27Kip1 (left) and siRNA-p57Kip2 (right), with an effi ciency of 84 ± 2 and 77 ± 3%, respectively. Bars, 20 μm. (D) Cell extracts were prepared 
from C/EBPδ-transduced cells transfected with siRNA-p27Kip1 (left) or siRNA-p57Kip2 (right), run on SDS-polyacrylamide gels, and immunostained with the 
indicated purifi ed IgG. Note that siRNA-p27Kip1 and siRNA-p57Kip2 determined a strong decrease of the expression of p27Kip1 and p57Kip2, respectively, 
but not of C/EBPδ and GAPDH. (E) Cell doubling time was calculated. Untransduced (black) and C/EBPδ-transduced cells, untransfected (green) or trans-
fected with siRNA-p27Kip1 (yellow), siRNA-p57Kip2 (orange), or the combination of the two siRNA molecules (yellow + orange) showed a doubling time of 
18, 41, 23.5, 23, and 18.5 h, respectively.
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antibody were always weaker than those obtained with the anti-

C/EBPδ antibody, probably refl ecting a lower immunoprecipi-

tation effi ciency. In control, ∆NFGr-transduced cells, a weak 

but specifi c signal was observed at the p63, involucrin, and 

p27Kip1 loci in chromatin immunoprecipitated with the anti-

C/EBPδ but not the anti-Flag antibody. Binding was observed at 

the third but not at the fi fth passage (Fig. 6 B), most likely as a 

result of the presence of endogenous C/EBPδ activity in a sub-

set of early passage cells, which is lost in later passages.

Chromatin from the same cells was also immunoprecipi-

tated with antibodies specifi c for all isoforms or only the α iso-

forms of p63. Binding of ∆Np63α was observed in the intron 5 

enhancer of the p63 locus (Antonini et al., 2006) in both 

C/EBPδ-transduced and control cells. Binding was more pro-

nounced in C/EBPδ+ than in control cells, refl ecting either an 

increased recruitment of ∆Np63α to the enhancer or simply the 

increased proportion of cells expressing ∆Np63α in these cul-

tures. Interestingly, ∆Np63α and C/EBPδ appear to bind the 

same regions in the p63 and p27Kip1 loci (Fig. 6 B). These results 

suggest that the p63, involucrin, p27Kip1, p57Kip2, and p16INK4A 

loci might be direct targets of C/EBPδ activity, in some cases in 

combination with ∆Np63α.

C/EBP𝛅 promotes self-renewal 
of holoclone-forming cells
Clonogenic ability and proliferative potential are distinct prop-

erties of epithelial cells. Keratinocyte stem cells are endowed with 

high clonogenic and high proliferative capacity, and self-renewal 

occurs when both properties are maintained. Conversely, TA cells 

are clonogenic but have a limited capacity for multiplication.

Serially cultivated, untransduced, or ∆NFGr-transduced 

limbal cells showed a progressive decrease of their clonogenic 

capacity (Fig. 7, A and C) and ceased to proliferate after 60–75 d 

(or 9–11 passages) in culture (Fig. 7 B). Replicative senes-

cence occurs because of clonal evolution, as indicated by the 

progressive increase of aborted, paraclone-type colonies (Fig. 

7 D) and by the replacement of ∆Np63α with ∆Np63β and 

∆Np63γ expression (Fig. 2 B and Fig. 7, E and F). In sharp 

contrast, both clonogenic ability (Fig. 7, A and C) and prolifera-

tive capacity (Fig. 7 B) of C/EBPδ-transduced cells were 

maintained indefi nitely. This effect was due to the capacity of 

enforced C/EBPδ expression to promote self-renewal and halt 

clonal evolution in holoclones, as indicated by the following 

evidence: (1) serially cultivated C/EBPδ-transduced cells 

showed no increase in the number of paraclones (Fig. 7 D) or 

replacement of ∆Np63α with ∆Np63β and ∆Np63γ (Fig. 7, E 

and F); (2) statistical analysis of cell size (Di Iorio et al., 2006), 

a major marker of clonogenic stem cells (Barrandon and 

Green, 1985), showed that C/EBPδ-transduced cells were nearly 

10-fold smaller than control cells (325.93 vs. 3,035.25 μm3); 

(3) clonal analysis revealed that the percentage of holoclone-

forming cells decreased and eventually set to zero in  serially 

cultivated control cells but remained constant in C/EBPδ-

transduced cells (10–15% of inoculated cells); and (4) ER-

C/EBPδ was able to fully sequester also endogeneous C/EBPδ 

in the cytoplasm of limbal cells in the absence of 4OHT 

(Fig. 4 B). Such cells ceased to express ∆Np63α (not depicted) 

and underwent replicative senescence in only two passages 

as compared with 9–11 passages of control untransduced 

cells (Fig. 7 B).

Figure 6. Recruitment of C/EBP𝛅 and p63 on selected gene targets in primary limbal keratinocytes in vivo. (A) Schematic representation of the genomic 
target loci. Positions of amplifi ed regions (red arrowheads) are indicated with respect to transcription start sites (arrows). INV, involucrin. (B) Chromatin 
from C/EBPδ- or ∆NGFr-transduced (control) limbal keratinocytes was cross-linked at the third and fi fth passage in culture and immunoprecipitated without 
antibody (−) or with anti-CEBPδ, anti-Flag, anti-p63 (4A4), and anti-p63α antibodies, and control IgGs, and analyzed by PCR using primers specifi c for the 
genomic regions indicated in A. Amplifi ed fragments were run on an agarose gel and stained with ethidium bromide. The last lane on each gel corresponds 
to the input sample.
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To investigate whether C/EBPδ was able to rescue TA cells 

from their terminal fate, we transduced different single cell–

 derived clones. As expected, holoclone, meroclone, and paraclone 

type clones displayed a progressive decrease in clonogenicity and 

∆Np63α content (Fig. 8). Forced expression of C/EBPδ was able 

to sustain the self-renewal of holoclones and meroclones and, 

hence, of clones still containing ∆Np63α+ cells, but not that of 

∆Np63α− paraclones (Fig. 8). All cells in transduced holoclones 

and meroclones expressed ∆Np63α (not depicted), further sug-

gesting that C/EBPδ is able to foster self-renewal only of ∆Np63α+ 

cells and to maintain expression of ∆Np63α in such cells.

These data prompted us to investigate whether forced ex-

pression of ∆Np63α was suffi cient to sustain limbal cell self-

 renewal. Primary limbal cultures and single cell–derived clones 

were infected with a lentiviral vector expressing the ∆Np63α iso-

form (Fig. 8, RRL-∆Nα-G). ∆Np63α-transduced holoclones un-

derwent regular clonal evolution and ceased to proliferate after 11 

passages, a value identical to control untransduced cells (Figs. 7 

and 8). ∆Np63α was therefore unable to sustain limbal stem cell 

self-renewal both in primary cultures (unpublished data) and in 

clones. Finally, simultaneous infection with lentiviral vectors ex-

pressing C/EBPδ and ∆Np63α was unable to rescue clonogenic 

ability and self-renewal in paraclones, suggesting that loss of self-

renewal is an irreversible process, at least in limbal keratinocytes.

Discussion
Exceptional progress has been made in understanding the mo-

lecular mechanisms regulating keratinocyte stem cells. The role 

of transcription factors, such as p63, tcf3, CCAAT displacement 

protein, and GATA-3, and of adhesion and signaling molecules, 

such as integrins, Wnt/β-catenin, c-Myc, Notch, hedgehog, 

Sgk3, and bone morphogenic proteins, in controlling hair follicle 

and epidermal development and stem cell fate has been high-

lighted (Niemann and Watt, 2002; Fuchs et al., 2004; Cotsarelis, 

2006; Blanpain et al., 2007). Molecular phenotyping of some of 

the keratinocyte stem cell niches helped explain how stem cells 

interact with the microenvironment to maintain their properties 

(Morris et al., 2004; Tumbar et al., 2004). Little is known, how-

ever, on the regulation of perhaps the most important property 

of epithelial stem cells, that is, their capacity to self-renew. It 

has been shown that the Rho guanosine triphosphatase Rac1 

sustains murine epidermal stem cell renewal and human epidermal 

stem cell clonogenicity by negatively regulating MYC (Benitah 

et al., 2005). However, differences exist between different 

lining epithelia and among animal species. For instance, Rac1 

stimulates differentiation and not self-renewal in the intestinal 

epithelium (Stappenbeck and Gordon, 2000), whereas the CD34 

antigen identifi es murine but not human hair follicle stem cells 

(Cotsarelis, 2006).

We took advantage of the availability of human corneas to 

carry out genetic manipulation experiments on primary, clono-

genic limbal stem cells and show that C/EBPδ plays a key role 

in regulating their cell cycle and self-renewal properties. Our 

fi ndings are graphically summarized in Fig. 9. According to this 

model, a defi ned number of mitotically quiescent limbal stem cells 

coexpress Bmi1, ∆Np63α, and C/EBPδ under normal homeo-

stasis. Coexpression of Bmi1, ∆Np63α, and C/EBPδ therefore 

Figure 7. C/EBP𝛅 halts clonal evolution and 
promotes self-renewal of human limbal keratino-
cytes. (A) Clonogenic capacity of untrans-
duced and ∆NGFr- and C/EBPδ-transduced 
limbal cells was evaluated at the cell passages 
indicated by numbers. NA (not available) indi-
cates cultures that reached replicative senes-
cence. (B–D) Number of cumulative population 
doublings (B), CFE values (number of colonies/
inoculated cells ratio; C), and aborted colonies 
values (aborted colonies/total colonies ratio; D) 
are indicated. Untransduced and ∆NGFr- and 
C/EBPδ-transduced cells are indicated by red, 
black, and green circles, respectively. Note that 
(1) control cells underwent senescence, whereas 
C/EBPδ-transduced cells proliferated indefi-
nitely, and (2) control cells showed a progres-
sive decrease of their CFE and a progressive 
increase of the percentage of aborted col-
onies, whereas both the number of clonogenic 
cells and aborted colonies remained constant 
during serial cultivation of C/EBPδ-transduced 
cells. (E) Semiquantitative RT-PCR analysis was 
performed using primers specifi c for each of 
the p63 ∆N isoforms (Di Iorio et al., 2005) on 
C/EBPδ- and ∆NGFr-transduced cells at different 
passages (indicated by numbers). β-Actin (βact) 
has been used as a control. (F) Western blot 
analysis of cell extracts prepared from the same 
cultures used for RT-PCR. Upon serial cultivation, 
control cells showed a progressive disappear-
ance of ∆Np63α and enrichment of ∆Np63β 
and ∆Np63γ, whereas C/EBPδ-trans duced 
cultures expressed high levels of ∆Np63α and 
low amounts of ∆Np63β and ∆Np63γ.
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identifi es limbal holoclones and is part of the genetic program 

maintaining stem cell identity. Bmi1 fosters self-renewal of 

haematopoetic and neural stem cells through regulation of the 

p16INK4A and p19ARF pathways (Lessard and Sauvageau, 2003; 

Molofsky et al., 2003, 2005; Park et al., 2003; Walkley et al., 

2005) and might play a similar role also in limbal stem cells. 

∆Np63α sustains the proliferative potential of stem cells in 

several stratifi ed epithelia, including the cornea (Parsa et al., 

1999; Pellegrini et al., 2001; Koster et al., 2004; McKeon, 2004; 

Di Iorio et al., 2005; Nguyen et al., 2006). We show here that 

C/EBPδ regulates mitotic quiescence of limbal keratinocytes 

by forcing cells in the G0/G1 phase of the cell cycle. Even under 

culture conditions specifi cally designed to promote keratinocyte 

proliferation, forced C/EBPδ expression greatly increases the 

cell cycle length through activation of the cell cycle inhibitors 

p27Kip1 and p57Kip2. The growth inhibitory effect of C/EBPδ is 

not due to replicative senescence or terminal differentiation, as 

confi rmed by the down-regulation of p16INK4A and involucrin. 

Perhaps more important, C/EBPδ promotes the self-renewal 

of ∆Np63α+ limbal stem cells, as suggested by the block of 

clonal evolution and the indefi nite maintenance of the number 

of holoclones during serial cultivation of C/EBPδ-transduced 

limbal keratinocytes.

Stem cells are capable of shifting from a homeostatic state 

of relative quiescence to rapid proliferation under specifi c con-

ditions (activation). In the ocular surface, this shift occurs upon 

central corneal wounding (Lehrer et al., 1998; Di Iorio et al., 

2005). This explains the apparently opposing actions of C/EBPδ 

and ∆Np63α. On one hand, C/EBPδ induces mitotic quiescence 

(through a positive regulation of p27Kip1 and p57Kip2) and self-

renewal of limbal stem cells; on the other, it preserves their 

proliferative potential (essential for stem cell–dependent tis-

sue regeneration) through a positive regulation of ∆Np63α. 

In this way, when some limbal stem cells are released from 

Figure 8. C/EBP𝛅 promotes self-renewal of holoclones but not paraclones. Immunofl uorescence analysis was performed on clone-derived cytospins using 
anti-∆Np63α and anti-C/EBPδ purifi ed IgG. Representative clonal types are shown, and their ∆Np63α and C/EBPδ content is expressed in arbitrary values. 
Immediately after their isolation (p0), daughter cells from each clone were transduced with lentiviral vectors expressing C/EBPδ (RRL-δ-G), ∆NGFr (RRL-N-G), 
or ∆Np63α (RRL-∆Nα-G). CFEs performed at selected passages (p) are shown. Enforced C/EBPδ expression sustained self-renewal of holoclones and 
meroclones indefi nitely (CFEs at p10 are shown), but not that of paraclones, which ceased proliferation after p2. Enforced ∆Np63α and ∆NGFr expression 
were unable to foster self-renewal, irrespective of the clonal type. SD, splice donor site; SA, splice acceptor site; RRE, Rev-responsive element; cPPT, central 
poly-purine tract; WPRE, woodchuck hepatitis posttranscriptional regulatory element.

Figure 9. Schematic description of a model for human corneal regeneration. 
Under normal homeostasis, quiescent stem cells localized in the basal 
layer of the limbus (Fig. 1 and Fig. 2 D) coexpress C/EBPδ and Bmi1 
(blue), which are responsible for mitotic quiescence and self-renewal prop-
erties, and ∆Np63α (red), which sustains the stem cell proliferative poten-
tial (Parsa et al., 1999; Yang et al., 1999; Pellegrini et al., 2001; Koster 
et al., 2004; McKeon, 2004; Di Iorio et al., 2005; Nguyen et al., 2006). 
These cells give rise to holoclones in culture (Fig. 2, A and C). Under stress 
conditions, such as those induced by a corneal damage, a fraction of such 
stem cells switches off C/EBPδ (and Bmi1) but maintains ∆Np63α (red). 
Activated ∆Np63α+ stem cells actively proliferate and migrate to the cen-
tral cornea to restore and regenerate the corneal epithelium (Fig. 2 A; 
Di Iorio et al., 2005). Activated stem cells, however, lose their self-renewal 
properties, enter into the TA compartment, and progressively lose ∆Np63α 
expression. TA cells switch on ∆Np63β and ∆Np63γ, which might regu-
late terminal differentiation and stratifi cation during the regeneration of the 
damaged corneal epithelium (Di Iorio et al., 2005).



JCB • VOLUME 177 • NUMBER 6 • 2007 1046

C/EBPδ-dependent mitotic constraints, as in a corneal damage, 

they can unchain their remarkable p63-dependent proliferative 

capacity, multiply, and migrate to repair a corneal wound. This 

process is, however, irreversible and leads to limbal stem cell 

terminal differentiation (Fig. 9). Our data therefore strengthen 

the notion that proliferation and self-renewal capabilities are 

two related, albeit distinct, processes. At least in human limbal 

stem cells, proliferation potential relies on the expression of 

∆Np63α, whereas self-renewal requires also C/EBPδ. Simi-

larly, Bmi1 is essential for the self-renewal of neural stem cells 

but does not infl uence the proliferative capacity of their com-

mitted progeny (Molofsky et al., 2003). The notion that ∆Np63α 

induces the expression of growth factor receptors and adhesion 

molecules regulating survival and motility of epithelial cells 

(Carroll et al., 2006) is consistent with our proposed model.

Our data establish an interesting parallel with the hemato-

poietic system, where quiescence and self-renewal of stem cells 

have been recently shown to be linked and regulated by p27Kip1, 

p57Kip2, and Mad1 (Scandura et al., 2004; Walkley et al., 2005; 

Yamazaki et al., 2006). Indeed, loss of p27Kip1 allows rela-

tively quiescent hematopoietic stem cells to rapidly enter the 

cell cycle to restore haematopoiesis (Walkley et al., 2005). 

 Finally, we show that C/EBPδ is directly associated in vivo, 

alone or in combination with ∆Np63α, to chromatin-surrounding 

promoters or regulatory elements of the p63, p27Kip1, p57Kip2, 

and p16INK4A loci, suggesting a direct role of this transcription 

factor in determining the genetic program of self-renewing 

stem cells.

The role of C/EBPδ described here is intriguing. Indeed, 

C/EBPs have been mainly related to cellular differentiation. 

C/EBPα, -β, and -δ are instrumental in regulating adipogenesis, 

whereas C/EBPα, -ε, and -β orchestrate myeloid differentiation 

into mature neutrophils, atypical neutrophils, and macrophages 

(Rosen et al., 2000; Ramji and Foka, 2002), and C/EBPδ reg-

ulates learning and long-term memory in the central nervous 

system (Sterneck et al., 1998; Taubenfeld et al., 2001). The 

importance of the C/EBP family in cellular differentiation also 

extends to other cell types, including hepatocytes, ovarian luteal 

cells, intestinal epithelial cells, and epidermal keratinocytes. 

For instance, it has been shown that C/EBPα and -β induces cell 

cycle exit in normal keratinocytes and positively regulates the 

program of squamous differentiation in the epidermis (Oh and 

Smart, 1998; Zhu et al., 1999). However, C/EBPβ promotes 

keratinocyte proliferation and skin tumor formation in the pres-

ence of oncogenic Ras or in response to carcinogens (Zhu et al., 

2002; Sterneck et al., 2006) and fosters hepatocyte proliferation 

during liver regeneration after partial hepatectomy (Greenbaum 

et al., 1998). Mammary epithelial cells from C/EBPβ-defi cient 

mice have a proliferation defect that leads to impaired ductal 

morphogenesis and a failure to lactate (Robinson et al., 1998; 

Seagroves et al., 1998), and ectopic C/EBPβ expression in hu-

man mammary epithelial cells induces hyperproliferation and 

a partially transformed phenotype (Bundy and Sealy, 2003). 

Finally, C/EBPδ induces late differentiation events in epidermal 

keratinocytes (Smith et al., 2004) and is indeed detected in the 

subrabasal layers of the human epidermis (unpublished data). 

Therefore, the biological effects of C/EBPs appear to be highly 

species and cell context specifi c, suggesting that role that 

C/EBPδ exerts in the human corneal epithelium might not nec-

essarily be observed in other squamous epthelia.

The mechanisms controlling C/EBPδ expression and func-

tion in the limbus, as well as the downstream mediators of C/EBPδ 

activity in controlling stem cell quiescence and self-renewal, 

remain to be determined. The expression of the C/EBPs has 

been found to change markedly during several physiological 

and pathophysiological conditions through the action of extra-

cellular signals. C/EBPs are subject to extensive species- and 

tissue-specifi c posttranscriptional regulation and phosphorylation-

mediated changes in DNA binding activity and nuclear local-

ization (Ramji and Foka, 2002). Furthermore, the different 

C/EBP proteins are able to form heterodimers in all intrafamil-

ial combinations and to associate with other factors (Ramji and 

Foka, 2002). A combination of biochemical, cellular, and ge-

netic experiments is necessary to acquire a more comprehen-

sive description of upstream regulators and downstream targets 

of C/EBPδ and to elucidate the networks of protein interactions 

and regulatory pathways that control its activity in human lim-

bal stem cells.

Materials and methods
Human specimens, cell culture, and cell cycle analysis
Corneas taken from organ donors and considered unsuitable for transplan-
tation (solely because of hepatitis seropositivity of the donor) were exam-
ined with a slit lamp immediately before retrieval and classifi ed as resting 
corneas, which did not show epithelial defect, dehydration, edema, or 
 infl ammation, or activated corneas, which had central corneal epithelial 
defects and/or abrasions, usually as a result of incomplete closure of the 
eyelids after death. Resting and activated corneas were taken 3.93 ± 
0.69 and 6.79 ± 2.9 h from death, respectively. Corneas were provided 
by D. Ponzin and A. Ruzza (The Veneto Eye Bank Foundation, Venice, Italy).

Swiss mouse 3T3-J2 cells (a gift from H. Green, Harvard Medical 
School, Boston, MA) were grown in DME supplemented with 10% calf 
 serum. Keratinocytes were cultivated on a feeder layer of lethally irradiated 
3T3-J2 cells, and colony forming effi ciency (CFE) assays and calculation of 
the number of cell generations and population doublings were performed 
as described previously (Pellegrini et al., 1999a; Dellambra et al., 2000). 
Clonal analysis was performed from subconfl uent primary cultures as de-
scribed previously (Pellegrini et al., 1999a, 2001). In brief, single cells 
were inoculated onto multiwell plates containing a feeder layer of 3T3 
cells. Clones were identifi ed after 7 d of culture under an inverted micro-
scope and transferred to replicate dishes. One dish (1/4 of the clone) was 
fi xed 9–12 d later and stained with rhodamine B for clonal type classifi ca-
tion (Barrandon and Green, 1987; Pellegrini et al., 1999a). The second 
dish was used for further experiments and analyses. In selected experi-
ments, 100 limbal cells were plated in 100-cm dishes and cultured for 
1 wk. Colonies were then examined under a microscope (Axiovert 200 M; 
Carl Zeiss MicroImaging, Inc.): large round colonies with smooth and 
regular borders and formed entirely by small cells with scarce cytoplasm 
were classifi ed as holoclones (Di Iorio et al., 2005) and were subjected 
to immunofl uorescence.

For cell cycle analysis, subconfl uent keratinocyte cultures were tryp-
sinized and fi xed in 70% ethanol at 4°C. Samples (106 cells) were rehy-
drated in PBS/1% FCS at room temperature for 10 min and stained with 
20 μg/ml propidium iodine for 30 min at 4°C. Flow cytometry was per-
formed using a LSR II FACScan (Becton Dickinson).

Immunofl uorescence and Western analysis
The following antibodies were used: rabbit anti-C/EBPδ, anti-RasGAP, anti-
Rb, and p57Kip2 purifi ed IgG (Santa Cruz Biotechnology, Inc.); 4A4 pan-
p63 mAb (BD Biosciences); p16INK4A, p21Waf1/Cip1, and p27Kip1 mAbs 
(Exalpha Biologicals, Inc.); involucrin and Ki67 mAbs (Novocastra); Bmi1 
mAb (Upstate Biotechnology); rabbit anti-p63α unconjugated and FITC-
conjugated purifi ed IgG raised against a synthetic peptide (NH2-D F N F D M-
D A R R N K Q Q R I K E E G E -COOH) comprising the C terminus post-SAM domain 
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of p63α (Primm; Di Iorio et al., 2005). Secondary rhodamine- or FITC-
labeled antibodies were obtained from Santa Cruz Biotechnology, Inc. 
For immunofl uorescence analysis, keratinocyte colonies were fi xed (3% 
paraformaldehyde/2% sucrose in PBS, pH 7.6), permeabilized (0.5% 
Triton X-100 in PBS), and coated with 0.5% BSA/PBS for 1 h at RT. 
Paraformaldehyde-fi xed corneal samples were embedded in OCT, frozen, 
and sectioned. Immunofl uorescence was performed on fi xed colonies and 
5–7-μm corneal sections as described previously (Di Iorio et al., 2005). 
Confocal analyses were done with a confocal analyzer (LSM510-META; 
Carl Zeiss MicroImaging, Inc.). Multitrack analysis was used for image 
acquisition. For immunoblots, mass or clonal cultures were extracted on ice 
with RIPA buffer (0.15 mM NaCl/0.05 mM Tris/HCl, pH 7.5/1% Triton 
X-100/1% sodium deoxycholate/0.1% SDS). Nuclear and cytoplasmic 
protein extraction was performed using the NE-PER Nuclear and Cytoplas-
mic Extraction kit (Pierce Chemical Co.) following conditions supplied by 
the manufacturer. Equal amounts of samples were electrophoresed on 
7.5% SDS-polyacrylamide gels and transferred to polyvinylidene difl uoride 
fi lters (Immobilon-P; Millipore). Immunoreactions were performed as de-
scribed previously (Pellegrini et al., 2001) using antibodies at a 1:500 
 dilution. Immobilon bound antibodies were detected by chemiluminescence 
with ECL (GE Healthcare).

Semiquantitative RT-PCR
Total RNA was extracted from keratinocyte cultures, purifi ed with RNase 
Micro kit (QIAGEN), and quantifi ed by spectrophotometry. RT-PCR was 
performed using the One Step RT-PCR kit (QIAGEN). cDNAs were synthe-
sized from 0.5–2 μg of total RNA, and PCR reactions were performed using 
20, 24, 28, 32, 36, and 40 cycles. β-Actin was used for normalization. 
Ethidium bromide–stained agarose gels were visualized with an Image 
Station 440 CF (Kodak). Quantifi cation was performed using 1D 3.5 soft-
ware (Kodak). Primer sequences for p63 isoforms and annealing tempera-
tures were as described previously (Di Iorio et al., 2005). The following 
primers and annealing temperatures were used for p27, p57, and β-actin 
RT-PCR: p27Kip1, 5′-A G T G T C T A A C G G G A G C C C T A -3′ and 3′-G T C C A T T C-
C A T G A A G T C A G C -5′ (annealing temperature 60°C, 829 bp); p57Kip2, 
5′-C A C G A T G G A G C G T C T T G T C -3′ and 3′-C T T C T C A G G C G C T G A T C  T C T -5′ 
(annealing temperature 60°C, 699 bp); and β-actin, 5′-G A G C G C A A G T-
A C T C C G T G T -3′ and 3′-A C G A A G G C T C A T C A T T C A A A -5′ (annealing tem-
perature 58°C, 548 bp).

Lentiviral vectors
The human C/EBPδ cDNA was cloned by RT-PCR from total RNA extracted 
from the THP1 cell line using specifi cally designed primers containing 
EcoR1 recognition sequences. To generate a N-terminal Flag epitope–
tagged C/EBPδ sequence, the EcoR1 C/EBPδ cDNA fragment was subcloned 
into the pFlagCMV-2 plasmid (Sigma-Aldrich), after inserting an EcoRV 
restriction site at position 913 by PCR (for all primers, see Table S1, avail-
able at http://www.jcb.org/cgi/content/full/jcb.200703003/DC1). 
To generate a Flag-tagged ER-C/EBPδ fusion sequence, a MfeI–EcoRI PCR–
amplifi ed fragment containing the modifi ed ligand binding domain of the 
human ER (Littlewood et al., 1995) was fused to the C terminus of the Flag 
epitope before inserting the C/EBPδ cDNA. The Flag-C/EBPδ, Flag-ER-
C/EBPδ, and Flag-ER cassettes were extracted as EcoRV fragments and cloned 
downstream the human PGK promoter and upstream an IRES-EGFP cassette 
into the blunted SmaI–BamHI sites of the pRRL.ppt.PGK.IRES.GFP.WPRE 
lentiviral vector (Urbinati et al., 2005), to obtain the RRL-δ-G, RRL-ERδ-G, 
and RRL-ER-G vectors. The control RRL-N-G vector was generated by cloning 
an NcoI–EcoRV fragment encoding a truncated form of the low-affi nity, p75 
NGFr (∆NGFr; Bonini et al., 1997) into the same vector backbone. The 
RRL-∆Nα-G vector was obtained by inserting the cDNA of ∆Np63α isoform 
(Yang et al., 1998) into the same vector backbone.

Lentiviral stocks pseudotyped with the vesicular stomatitis G protein 
(VSV-G) were prepared by transient cotransfection of 293T cells using 
a three-plasmid system (the transfer vector and the helper plasmids 
pCMV∆R8.74, encoding Gag, Pol, Tat, and Rev, and pMD.G, encoding 
VSV-G), as previously described (Dull et al., 1998). Viral titers were deter-
mined by transduction of HeLa cells with serial dilution of the vector stocks 
and ranged from 107 to 108 TU/ml. Transduction effi ciency was evaluated 
by scoring GFP and/or ∆NGFr transgene expression by fl ow cytometry.

Transduction of limbal keratinocytes
Subconfl uent primary or clonal limbal cultures were trypsinized. 2 × 104 
cells were resuspended in 1 ml of culture medium containing 8 mg/ml 
polybrene and transduced with lentiviral vector stocks at a MOI of 25, over-
night at 37°C. Gene transfer effi ciency was assessed 4 d after transduction 

by scoring GFP+ cells by confocal fl uorescence microscopy (LSM510-META; 
Carl Zeiss MicroImaging, Inc.). In selected experiments (Fig. 4), 1 μM 
4OHT was added every 12 h for 3 d to RRL-ERδ-G–transduced cultures. 
4OHT was then removed from the culture medium for 2 d and readded until 
control cultures reached confl uency.

Transfection of siRNA-p27 and siRNA-p57
These experiments were performed using the siRNA-p27 and siRNA-p57 
RNAi Human/Mouse Starter kit (QIAGEN). The siRNA duplexes were de-
signed using the HiPerformance Design Algorithm licensed from Novartis 
AG, integrated with a stringent in-house homology analysis tool. Double-
stranded RNAs were synthesized by QIAGEN. Primary cultured human 
limbal epithelial cells previously transduced with a lentiviral vector carrying 
the C/EBPδ cDNA (RRL-δ-G) were plated into 24-well plates at 4 × 104 
cells/cm2. 48 h later, cells were transfected using fl uorescently labeled 
p27Kip1 (Alexa Fluor) and p57Kip2 (Cy3) siRNAs at a fi nal concentration of 
67 nM (siRNA to Hiperfect reagent ratio 1:6) and incubated under normal 
growth conditions (37°C and 5% CO2). Transfection effi ciency was deter-
mined 24 h after siRNA addition through laser-scanning confocal micro-
scope (LSM510-META) analysis. Nonsilencing siRNAs (Alexa Fluor) were 
used as negative controls at the same conditions of transfection (67 nM; 
1:6 ratio) and cell density.

ChIP assay
ChIP assays were performed essentially as described previously (Testa 
et al., 2005). Chromatin was prepared from 107 limbal keratinocytes at the 
third and the fi fth passage after transduction with either the RRL-δ-G or the 
RRL-N-G vector. Nuclear extracts were sonicated to obtain DNA fragments 
ranging from 400 to 800 bp in length. The equivalent of �5 × 105 cells 
was immunoprecipitated with rabbit anti-CEBPδ (Santa Cruz Biotechnology, 
Inc.), mouse anti-Flag (Sigma-Aldrich), mouse anti-p63 (4A4 pan63; BD 
Biosciences), and rabbit anti-p63α antibodies. Immunoprecipitations with 
mouse and rabbit IgGs (BD Biosciences) were included as controls. Immuno-
precipitated DNA was analyzed by PCR with primers spanning regions 
containing known or putative CEBPδ and p53/p63 binding motifs within 
the genomic loci of p63 (from position +70720 to +70951, +147873 
to +148041, +151191 to +151408, +202579 to +202761, and 
+234830 to +235057 from the transcription start site), involucrin (−421 
to −119), p27Kip1 (−227 to +14), p57Kip2 (−622 to −398), and p16INK4A 
(−1020 to −871). Specifi c primers are listed in Table S1.

Online supplemental material
Table S1 gives the primers used in this study. Online supplemental material 
is available at http://www.jcb.org/cgi/content/full/jcb.200703003/DC1.
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