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1  | INTRODUC TION

Nowadays, many cured meat products are produced from different 
raw materials and under different processing conditions (Lorenzo 
et al., 2008; Toldra, 2006). During the processing of cured meat 
products, chemical and biochemical changes lead to produce a large 
number of volatile compounds which contribute to their charac-
teristic flavor (Shi et al., 2021). Smoked salted duck is one of the 
Chinese traditional cured meat products which are largely favored 
by consumers in China due to its unique flavor (Li et al., 2011). 
Traditionally, the smoked salted duck is produced by marination and 

slowly air- dried process and then is matured under natural condi-
tions at 4– 10℃ for approximately one month (Luo et al., 2008). 
Therefore, as to shorten the production cycle, high temperature 
(45– 60℃) is generally used instead of natural air drying in modern 
factories (Zhang et al., 2013). However, the efficiency of endoge-
nous enzymes in duck meat is easily inhibited at high temperature 
(Perez- Santaescolastica et al., 2018), which reduces the degree of 
protein hydrolysis, and thus induces flavor deficiency and tough tex-
ture (Feng et al., 2014). In addition, the lipid and protein oxidation in 
dried cured meat products would be accelerated at high tempera-
tures leading to the deteriorated flavor (Dominguez et al., 2019; 
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Abstract
This study was aimed to assess the effects of bromelain on the eating quality of 
smoked salted duck. Whole ducks were marinated with different doses of bromelain 
(300 U/g, 600 U/g, 900 U/g, 1,200 U/g and 1,500 U/g), while the group without 
bromelain was considered as control (CK). After the production of smoked salted 
duck was completed, the pH, color, texture, electronic tongue detection, thiobarbi-
turic acid reactive substances (TBARS), sodium dodecyl sulfate- polyacrylamide gel 
electrophoresis (SDS- PAGE), and mass spectrometry analysis were determined. The 
results showed that, compared to CK, the pH, TBARS and hardness values in 900, 
1,200 and 1,500 U/g groups were reduced. The cohesiveness and the springiness 
were increased while the values of b* were decreased in all bromelain treatments 
(p < .05). The SDS- PAGE and mass spectrometry analysis indicated that myosin and 
actin were further hydrolyzed into small- molecule proteins by bromelain. Electronic 
tongue detection showed that the umami, the saltiness and the richness of smoked 
salted duck were enhanced, while the bitterness was reduced at the dose of 900 U/g. 
Thus, bromelain improved the eating quality of smoked salted duck in particular at 
the level of 900 U/g.
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Rivas- Canedo et al., 2021). Thus, softening texture and enhancing 
flavor are used to improve the eating qualities of smoked salted duck 
for industry (Lorenzo et al., 2013).

Proteolysis is considered as an important biological and chemical 
change during the manufacture and ripening period of cured meat 
products resulting in improved texture and flavor (Chen et al., 2021; 
Zhang et al., 2017). Because the enzyme activity from microorgan-
isms is relatively low, the proteolysis is mainly catalyzed by endoge-
nous enzymes (Keska et al., 2017). Endogenous enzymes hydrolyze 
proteins in ducks to generate peptides and free fatty acids (FFAs), 
which are considered as the important flavor precursors (Huang 
et al., 2014). However, endogenous enzymes could be inhibited by 
high drying temperature (Zhang et al., 2017). Therefore, the treat-
ment of exogenous enzymes is particularly important in the modern 
process, which can promote protein hydrolysis and form flavor pre-
cursors. Setiadi et al. (2019) added the transglutaminase enzyme to 
duck meat showing that it significantly improved the texture profile 
parameters (hardness, springiness and cohesiveness) and organo-
leptic parameters (taste, aroma and color). Feng et al., (2018) used 
bromelain to tenderize golden pomfrets (Trachinotus blochii) and 
found the concentrations of FAAs were significantly increased, es-
pecially glycine, alanine, lysine, and methionine. Flavourzyme was 
used to produce Cantonese bacon, and the flavor compounds were 
increased (Zhang et al., 2017).

Bromelain can be extracted from fruits and stems of 
Bromeliaceae, mainly from Ananas comosus (Ramli et al., 2018). 
Bromelain is a plant protease in the sub- group of thiol (cysteine) pro-
teinases such as papain from papaya and ficin from figs. As a conve-
niently available material, bromelain has attracted more and more 
attention in the fields of medicine, biotechnology, and food due to 
its exploitable characteristics (Campos et al., 2020). Bromelain has 
been reported to have excellent activity in improving the tender-
ness and enhancing the flavor of fresh meat (Chaurasiya et al., 2015; 
Sonklin et al., 2018; Xu et al., 2020). Feng et al., (2017) have reported 
that bromelain could accelerate the proteolysis of golden pomfret 
protein, softening texture and enhancing flavor of fish balls. Zhao 
et al., (2020) found that bromelain- treated beef had higher level of 
free amino acids and ketones. However, few information is available 
regarding the effects of bromelain in smoked salted duck. Thus, 
the purpose of this study was to determine the quality changes of 
smoked salted duck with bromelain- assisted marination.

2  | MATERIAL S AND METHODS

2.1 | Preparation of smoked salted- duck meat

The frozen ducks (Cherry Valley ducks) were bought from Henan 
Huaying Agricultural Development Company Limited (Henan, 
China). For thawing, the 36 samples were kept at 4℃ for 24 hr and 
randomly allocated to six groups (six whole ducks per group) before 
use. The bromelain- treated groups were separately submerged in 24 
L different concentrations of bromelain solutions (300 U/g, 600 U/g, 

900 U/g, 1,200 U/g and 1,500 U/g; Jiangsu Xinrui Biological 
Technology Company) for marination (TW20, JULABO) at 50℃ for 
2.5 hr (Chen et al., 2016). After incubation with the salt solution 
(10%) at 4℃ for 24 hr, samples were baked in a constant tempera-
ture and humidity incubator box for 17.5 hr (40℃, relative humidity 
(RH) 80% for 2 hr; 70℃, RH 40% for 30 min; 40℃, RH 60% for 15 hr; 
KBF115pgm; Binder), smoked for 40 min (65℃, RH 55%; Ti3000; 
Fessmann), and air- dried for 72 hr (8℃, RH 50%; KBF115pgm; 
Binder) (Wang et al., 2009). Afterwards, the samples were stored at 
−80℃ in a freezer (DW- 86L626; Haier) until further analysis.

2.2 | Physiochemical indexes

The color of smoked salted- duck breasts was measured using a chro-
mameter (CR- 400; Minolta Camera) under illuminate C, 2° standard 
observer and 8 mm diameter of aperture (Zhao et al., 2018). A stand-
ardized white tile plate (L* (lightness) = 96.86, a* (redness) = − 0.15, 
b* (yellowness) = 1.87) was used to calibrate the chromameter be-
fore the measurement and then the model was adjusted to the L*, a* 
and b* system.

The pH values were determined with a pH meter (Hanna 
HI9025c, Hanna Instruments, Amorim, Portugal). Briefly, 2 g of duck 
samples (duck breast:duck leg = 1:1) were homogenized (5,000 rpm, 
3 × 20 s; PD500- TP; Prima) with 15 ml of distilled water (MUL- 
9000XILIE; Millipor) at 20℃ and then kept still for 15 min before 
measurement (Gokoglu et al., 2017).

Cooking loss was measured by weighing each duck breast 
(20 g ± 0.1 g) sample before and after cooking. Cooking loss 
(%) = ((weight of raw meat- weight of cooked meat)/weight of raw 
meat) × 100.

The measurement of moisture content was performed according 
to the method of Shi et al., (2020). Two grams of duck samples com-
posed of duck breast and leg (1:1) were put into a 25 ml beaker which 
was previously dried. The beakers with 2 g of duck meat were kept at 
105℃ for 12 hr. Moisture content (%) = ((original weight- weight after 
being dried)/original weight) × 100.

2.3 | SDS- PAGE

Myofibrils of duck samples were extracted at 4℃ following the 
method of Chou et al., (1996) with some modifications. The 0.5 g 
of duck samples were weighed and homogenized (8,000 rpm, 
3 × 30 s; PD500- TP; Prima) with 5 ml of the standard solution 
buffer (100 mM phosphate buffer, pH 7.0, 2% SDS). After centrifu-
gation at 4℃ (7,500 g, 10 min; Avanti J- 26S XP; Beckman Coulter), 
the concentration of the protein in the supernatant was detected 
with a BCA kit (Thermo, Pierce). Then, the protein concentra-
tion was adjusted to 10 μg/μl with the standard solution buffer. 
The same volume of diluted sample liquid with the loading buffer 
(10 mM Tris- HCl, 10% glycerol, 2.5% SDS, 1% β- mercaptoethanol, 
and 0.01% bromophenol blue) was mixed (30 s; VM- 03RU, Crystal) 
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at 25℃. Then, the mixed liquid was heated at 95℃ for 5 min 
(TW20, JULABO).

The 10% polyacrylamide gels (Bio- Rad Laboratories) were used, 
and the 50 μg protein samples were loaded in each lane. The samples 
were run with a SE 400 slab gel electrophoresis equipment (Bio- Rad 
Laboratories). Gels were operated at the voltage of 80 V for 30 min 
and then 120 V for 60 min. Molecular weight markers were used as 
protein standards ranging from 10 kDa to 250 kDa (ThermoFisher). 
The band intensities were determined by the Quantity One software 
(Bio- Rad Laboratories).

2.4 | NanoLC- ESI- MS/MS

Referring to the method of Yu et al., (2016), NanoLC- ESI- MS/MS 
equipment was used to separate and identify protein composition. 
The high- pressure liquid chromatography (HPLC) system (1,100, 
Agilent) with a 75 um and 8 cm in length was used with house- 
packed reverse- phase C18 capillary column (ThermoFisher). The 
particle size of the C18 was 3 μm, the pore size was 300 Ä, and the 
time of sample injection was 20 min. The HPLC solvent I was 97.5% 
ultrapure water (MUL- 9000XILIE, Millipor), 2% acetonitrile and 
0.5% formic acid. The HPLC solvent II was 90% acetonitrile, 9.5% 
ultrapure water, and 0.5% formic acid. The gradation time for solvent 
II was 60 min from 2% to 90%. The time of sample loading and the 
time of column washing were 20 min separately. The typical sample 
injection volume was 3 μl. After separation, the column flow rate 
was approximately 800 nl/min.

The HPLC system was connected in series with electrospray 
ionization (ESI), and the samples were eluted by HPLC directly 
into the mass spectrometer and then ionized by ESI method. The 
capillary temperature was 100℃, and the ionization voltage range 
was 1.5 kV– 1.8 kV. The data- correlation mode was set as the mass 
spectrometer mode. The MS/MS data were obtained through the 
dissociation induced by low energy collision. The mass range of 
microscan was 350 am to 1,650 am with 33% default collision en-
ergy. The dynamic exclusion function was set to a repeat count 
1, the exclusion width was 4 Da, and the exclusion duration was 
1 min. The ProtQuest software package from ProtTech was em-
ployed to search the UniProt protein database using mass spec-
trometry data.

2.5 | Texture profile analysis (TPA)

The TPA could obtain the texture characteristic parameters re-
lated to human sensory evaluation. Before performing the analy-
sis, ducks’ breasts were packaged in vacuum bags, heated at 80℃ 
for 40 min (TW20, JULABO, Germany), and then carved to hexa-
hedron (1 cm × 1 cm × 1 cm). The TPA was performed accord-
ing to the method of Feng et al., (2017) with slight modifications. 
Hardness, springiness, cohesiveness, and chewiness of samples 

were determined at 25℃ with a cylindrical probe (P/50) of the 
texture analyzer (TA- XT2i, Stable Micro System). The conditions 
were as follows: (1) 50% strain; (2) both pretest speed and test 
speed were adjusted to 2.0 mm/s; (3) post- test speed was adjusted 
to 5.0 mm/s. It is worthy of noticing that two presses against each 
sample could result in two peaks. The parameters that were meas-
ured for TPA were the following: hardness (Hd) = peak force (N) 
required for first compression; chewiness (Cw) = Hd × Ch × Sp 
(N × mm); cohesiveness (Ch) = ratio of active work done under the 
second compression curve to that done under the first compres-
sion curve (dimensionless); springiness (Sp) = distance (mm) the 
sample recovers after the first compression.

2.6 | Lipid oxidation

The analysis of TBARS was performed according to the method 
of Zhang et al., (2013). The 5 g samples were homogenized 
(10,000 rpm, 45 s; PD500- TP, Prima, UK) at 4℃ with 25 ml of 7.5 g/
kg trichloroacetic acid and 0.1 g/kg ethylene diamine tetraacetic 
acid. Then the mixture was centrifuged at 4℃ (12,000 g, 5 min; 
Avanti J- 26S XP, Beckman Coulter). This supernatant liquid (2 ml) 
was mixed (30 s; VM- 03RU, Crystal, China) with thiobarbituric acid 
(TBA, 20 mmol/L, 2 ml) at 25℃ and then heated in the water bath 
(TW20, JULABO) at 95℃ for 30 min. After the liquid was cooled 
by flowing water until reaching room temperature (25℃), the ab-
sorbance values were measured (Spectral Max M2e) at 532 nm. 
Based on the standard curve of 1, 1, 3, 3- tetraethoxypropane, the 
results were presented as mg of malondialdehyde (MDA) per kg of 
meat sample.

2.7 | Electronic tongue

To extract taste substances, approximately 25 g of minced (HM100, 
Grlnder, China) meat samples (duck breast: duck leg = 1:1) were 
mixed with 100 ml ultrapure water (VM- 03RU, Crystal). After 
being centrifuged (Avanti J- 26S XP, Beckman Coulter, USA), the 
mixture was filtered by filter paper (102, General Electric Biotech 
Hangzhou Company Limited) at 25℃. The aqueous phase was 
measured as electronic tongue samples (Zhang et al., 2019), and 
the Taste Sensing System (SA402B, Insent, Japan) was set. The sen-
sors indicated bitterness, umami, saltiness, richness, astringency, 
and aftertaste of bitterness (aftertaste- B). The taste substances 
in the aqueous phase could cause electric potential changes, and 
they were transmitted to the computer through the sensor. The 
transformation for test information in the taste analysis applica-
tion converted the output of the sensor into taste information. 
The conversion file was selected according to the sensor used in 
the experiment without calculation and unit. The file required for 
this conversion was “Foodstuff- Evaluation.ece”. Obtained values 
represented the intensity of taste properties.
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2.8 | Statistical analysis

Six samples were used in each treatment, and each sample was con-
sidered as a replication. Analysis on each duck was performed in 
triplicate (except for SDS- PAGE and NanoLC- ESI- MS/MS), and the av-
erage was obtained. One- way analysis (ANOVA) of SAS 9.2 was used 
to analyze the data with the bromelain concentration being consid-
ered as a fixed factor. The differences among the data were compared 
by Duncan's multiple range test. The significant level was considered 
at p < .05. The results were shown as mean values ± standard error.

3  | RESULTS AND DISCUSSION

3.1 | Physiochemical analysis

There were no significant differences in moisture content between 
CK and all bromelain- treatment groups (Table 1, p > .05). The color 
of meat products is dependent on many factors such as a dry/moist 
environment, oxygen access, and the endpoint temperature (Ortuno 
et al., 2021). The value of L* was reduced in the 1,500 U/g concentra-
tion group (Table 1, p < .05). Compared with control, all bromelain 
treatments significantly reduced the values of b*, and the values of 
a* were reduced in 900 and 1,200 U/g groups (Table 1, p < .05). Due 
to the changes in pH, the moisture distribution and the texture of 
the meat were changed, and the reflection or absorption of light was 
changed, resulting in a decrease in L* (Forrest & Briskey, 2006). The 
value of a* was affected by the dynamic balance of myoglobin oxi-
dation and oxymyoglobin reduction. The bromelain might degrade 
partial oxidase and reductase, resulting in changes in the value of 
a* (Faustman et al., 2010). Fat and the oxidative polymerization 
of carbohydrates could significantly affect the b* of meat (Wang 
et al., 2019). The reduced values of b* might be due to the antioxi-
dant properties of peptides and amino acids from the protein deg-
radation by bromelain thus decreasing the oxidation of fat, protein, 
and carbohydrates (Borrajo et al., 2020; Wang et al., 2019).

The pH is highly important in meat products because it influ-
ences physical, chemical, and eating quality capabilities such as 
tenderness, juiciness, and water holding capacity of meat products 
(Grajales- Lagunes et al., 2012). The pH values significantly decreased 
in 900, 1,200, and 1,500 U/g bromelain– treated samples compared 

to CK (p < .05). The protein hydrolysis by bromelain might result in 
releasing amino acids by removing amino groups. It was reported 
that removing amino groups would cause a reduction in pH (Gadekar 
et al., 2014). In addition, the deamination of proteins by enzymolysis 
releasing hydrogen atoms might decrease the pH values (Leygonie 
et al., 2011). The study of Buyukyavuz (2013) also found that the 
addition of bromelain decreased the pH of duck breast meat. Indeed, 
the author reported that the pH values were 5.97 in 1.5% bromelain– 
treated group as compared to 6.16 in the control group.

The cooking loss of 1,500 U/g bromelain– treated sample was 
significantly different from other treatments (Table 1, p < .05). The 
decreased cooking loss indicated that hydrophilic properties of 
protein in duck meat were improved by bromelain. These changes 
might result from the increased number of water binding sites 
being exposed increasing interaction between protein and water 
(Xiong, 2005; Zhang et al., 2017). Other study by Pietrasik and Shand 
(2010) found that the cooking loss of beef was decreased with the 
treatment by purified papain. Chaurasiya et al., (2015) also found 
that the 162.0 U/g purified bromelain reduced the cooking loss of 
beef from 49.7% (the control) to 47.2%.

3.2 | SDS- PAGE

The effects of bromelain on the protein changes of smoked salted 
duck could be seen from Figure 1 and Figure 2. The myosin heavy 
chain (MHC) and the actin were the major myofibrillar proteins in 
smoked salted duck. As the bromelain concentrations were in-
creased, the reduction in the intensities of both MHC and actin were 
found. The intensity of 250 kDa MHC became significantly weak 
when the bromelain concentration was increased from 300 U/g to 
1,500 U/g (Figure 2 A, p < .05). After NanoLC- ESI- M/MS analysis, 
the protein at band 1 was found to contain the type 2 myomesin and 
the type 6 myosin showed significant differences between CK and 
600, 900, 1,200, and 1,500 U/g groups (Figure 2 B, p < .05). Actin 
was degraded significantly when the concentrations of bromelain 
were 600 U/g and above (Figure 2 C, p < .05). The protein of band 2 
contained α- 1- actin and β- actin, which were significantly increased 
in 900, 1,200, and 1,500 U/g groups compared to CK (Figure 2 D, 
p < .05). The 10– 15 kDa products were increased significantly in 
1,200 and 1,500 U/g groups compared with CK (Figure 2 E, p < .05).

TA B L E  1   Changes in physiochemical indexes of smoked salted duck

Enzyme concentration 0 U/g 300 U/g 600 U/g 900 U/g 1,200 U/g 1,500 U/g

L* 39.85 ± 0.29ab 38.89 ± 0.09bc 41.07 ± 0.29a 39.83 ± 0.28ab 40.55 ± 0.34a 37.77 ± 0.97c

a* 4.43 ± 0.23bc 5.03 ± 0.31ab 3.93 ± 0.11cd 3.24 ± 0.13d 3.16 ± 0.11d 5.35 ± 0.57a

b* 5.41 ± 0.35a 4.24 ± 0.17b 4.21 ± 0.16b 4.14 ± 0.20b 3.81 ± 0.29b 3.74 ± 0.24b

pH 6.12 ± 0.03a 6.07 ± 0.02ab 6.06 ± 0.01ab 6.02 ± 0.01b 6.00 ± 0.00b 5.90 ± 0.01c

Cooking loss (%) 9.20 ± 0.22a 9.13 ± 0.07a 8.94 ± 0.48a 8.35 ± 0.32a 8.80 ± 0.06a 6.30 ± 0.24b

Moisture content (%) 58.74 ± 0.36a 58.91 ± 1.30a 59.10 ± 0.56a 59.06 ± 0.45a 59.16 ± 0.24a 59.54 ± 0.61a

Note: Different superscripts (a, b, c, d) within a line indicate significant differences (p < .05).
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Bromelain could degrade the myofibrillar proteins leading to the 
myofibril fragmentation which changed physicochemical and struc-
tural properties of duck meat (Feng et al., 2018). In addition, the 
protein denaturation could occur at the same time during the dry-
ing process (Lorenzo et al., 2013). This was reflected in the reduced 
content of myosin and actin and the increased content of small mo-
lecular proteins, peptides, and FAAs. Feng et al., (2014) performed 
SDS- PAGE on salt- soluble protein of Chinese sausage treated with 
Flavourzyme. They found that the protein bands of MHC disap-
peared as the amount of Flavourzyme increased to 8 LAPU, 12 LAPU, 

16 LAPU, and 20 LAPU, while the density of protein bands between 
60 and 100 kDa increased. Similar protein degradation was also 
found in other study for duck breast muscle which was treated with 
ginger extract from fresh ginger rhizome (Tsai et al., 2012). During 
ginger extract marination, the amounts of MHC in 7- day samples 
were reduced to approximate 84% of 0- day samples, while the MHC 
amounts of the control were changed less than 10%. Xu et al., (2020) 
treated jumbo squid meat with bromelain and papain and found that 
more small peptides and short fragments were produced.

3.3 | TPA

Compared to the CK, the duck samples treated with 900 U/g 
(40.81 ± 4.53 N), 1,200 U/g (33.52 ± 1.83 N), and 1,500 U/g 
(28.88 ± 2.23 N) dose of bromelain showed the significantly de-
creased hardness values (Figure 3, p < .05). The springiness and co-
hesiveness values were significantly increased in bromelain- treated 
groups compared to CK (p < .05). As for the chewiness, only the 
1,500 U/g treatment group (8.79 ± 0.82 N) was significantly de-
creased compared to CK (9.67 ± 0.77 N, p < .05).

The decreased hardness and increased springiness and cohe-
siveness values might be due to the effect of bromelain on the 
damage of myofibrillar structures to generate proteins with low 
molecular weight (Kemp & Parr, 2012). On the other hands, bro-
melain degraded duck protein leading to more water binding sites 
exposed and more interaction between protein and water in the 
protein– water matrix. It reduced the shear force and hardness 
and increased the springiness and cohesiveness (Xiong, 2005). 
The chewiness depended on the strength of the intermolecular 
bonding of side chains between proteins (Moon, 2018). Therefore, 

F I G U R E  1   Marker (M), CK (0), 300 U/g group (300), 600 U/g 
group (600), 900 U/g group (900), 1,200 U/g group (1,200), and 
1,500 U/g group (1,500)

F I G U R E  2   Changes in 250 kDa (a), band 1 (b), actinin (c), band 2 (d), and 10– 15 kDa (e) of myofibrils of smoked salted duck. Different 
superscripts (a, b, c, d) indicate significant differences (p < .05). Relative optical density of 1,500 U/g and 0 U/g is the standard
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decreasing chewiness in 1,500 U/g group might be due to the ex-
cessive hydrolysis of duck protein, which weakened the binding 
of protein side chains. The similar result was reported in papain- 
treated beef samples by Botinestean et al., (2018). As the concen-
tration of papain was 0.3 g/100g meat, the Warner- Bratzler Shear 
force was reduced by about 18% compared to the control. Cheng 
et al., (2020) also found that the treatment of 10 U/g bromelain 
decreased the shear force of horsemeat from 12.08 kg (the con-
trol) to 6.76 kg.

3.4 | TBARS

The effects of bromelain treatment on the TBARS values of smoked 
salted duck are shown in Table 2. The TBARS values in 900 U/g 
(0.40 ± 0.04 mg MDA/kg), 1,200 U/g (0.41 ± 0.06 mg MDA/kg), 
and 1,500 U/g (0.40 ± 0.02 mg MDA/kg) bromelain– treated samples 
were significantly lower than CK (0.52 ± 0.09 mg MDA/kg, p < .05). 
Moderate lipid oxidation could improve the flavor, but excessive oxi-
dation would lead to putrid products (Xia et al., 2021). In the current 
study, the concentration of 900, 1,200, and 1,500 U/g treatments 
by bromelain in smoked salted duck inhibited the lipid oxidation to 
a certain extent.

Bromelain is an endopeptidase that can extensively hydrolyze 
protein. Therefore, the decrease of TBARS values might be due 
to the antioxidant peptides and FAAs produced by the protein 
degradation from bromelain (Borrajo et al., 2020). It has been re-
ported that peptides and FAAs from bromelain- induced protein 

degradation possessed antioxidant activity through reacting with 
free radicals (Lopez- Pedrouso et al., 2020). Similar results were 
also found in sheep muscles when they were treated with ginger 
protease from ginger extract (Mendiratta et al., 2000). TBARS 
of sheep muscles treated with 3% ginger protease was reduced 
to 0.95 mg MDA/kg compared to 1.31 mg MDA/kg in con-
trol samples. Feng et al., (2014) also found that treatment with 
Flavourzyme significantly reduced the TBARS values of Chinese 
sausage compared to CK.

3.5 | Electronic tongue detection

The electronic tongue was further used to analyze the taste attri-
bution of different concentrations of bromelain- treated duck sam-
ples (Table 3). As bromelain concentrations increased from 300 to 
900 U/g, bitterness values decreased. However, the latter increased 
as bromelain concentration increased between 1,200 and 1,500 U/g. 
In addition, the astringency significantly increased in 600, 900, 
1,200 and 1,500 U/g groups. However, for saltiness and aftertaste-
 B of bromelain marinated ducks, an increase was observed for all 
treatments in comparison with CK. Likewise, the values of umami of 
smoked salted duck increased significantly (p < .05) by 4%, 6%, 8%, 
5%, and 6%, respectively, with increasing bromelain doses. The rich-
ness was determined by the effects of bitterness, umami, saltiness, 
and other parameters. As per the results of this study, it is note-
worthy to mention that the highest richness was observed in the 
900 U/g group among six treatments.

F I G U R E  3   Changes in texture 
of smoked salted duck. Different 
superscripts (a, b, c, d) indicate significant 
differences (p < .05)

TA B L E  2   Changes in TBARS of smoked salted duck

Enzyme concentration 0 U/g 300 U/g 600 U/g 900 U/g 1,200 U/g 1,500 U/g

TBARS(mg/kg) 0.51 ± 0.03a 0.46 ± 0.01ab 0.48 ± 0.02ab 0.40 ± 0.01b 0.42 ± 0.02b 0.40 ± 0.01b

Note: Different superscripts (a, b) within a line indicate significant differences (p < .05).
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In this study, the high acceptability in the 900 U/g group com-
pared to CK might be attributed to the sum of FAAs and peptides 
which could affect the taste. The actions of endopeptidases were 
found to be distant from carboxyl and amino termini of peptide 
bonds (Li et al., 2017). These degradation products are mainly 
water- soluble nitrogen- containing compounds that can act as 
direct or indirect flavor precursors (Zhao et al., 2019). Zhang 
et al., (2017) found that Flavourzyme promoted the proteolysis 
of Cantonese bacon as shown by the increasing concentrations 
of all FAAs detected. Zhao et al., (2020) used bromelain to treat 
beef muscle and found the types and contents of FAAs were sig-
nificantly improved, especially glutamicacid, valine, and alanine. 
Toldra et al., (2020) reported that the type of small peptides was 
closely related to the presence of flavor. According to other pre-
vious studies, it was assumed that the different aromas in meat 
might be due to differences in the composition of FAAs and pep-
tides (Petrova et al., 2016). For example, leucine and arginine can 
affect salty taste by interacting with other acids and inorganic salts 
(Zou et al., 2018). Aspartic acid and serine can increase the umami 
and sweetness, respectively (Delgado et al., 2020). Methionine 
can produce low threshold aroma of cooked beef, while isoleucine, 
phenylalanine, serine, and threonine could produce heterocyclic 
compounds and Strecker aldehydes, which have unique aroma in 
meat products (Zhang et al., 2020). Leucine and valine can be the 
precursors of fragrance and react to produce 2- methylpropanal 
and 2- methylbutanal with cheese flavor and grass flavor. The 
products of lysine are lactam compounds which have the aroma of 
barbecue and cooked meat (Keska & Stadnik, 2017). Meanwhile, 
FAAs and reducing sugars can form aromatic volatiles during 
cooking (Karpinski et al., 2020).

4  | CONCLUSIONS

In this study, the marination with bromelain could significantly de-
crease the values of pH and cooking loss and inhibit lipid oxidation 
of smoked salted duck. The myosin and the actin were extensively 
degraded due to bromelain which could damage the integrity of 
duck meat. Thereby, the hardness was reduced while the springiness 
and the cohesiveness were significantly increased. At the level of 
900 U/g, the richness and the umami of smoked salted duck were 

enhanced while the bitterness was reduced. In conclusion, the ap-
propriate level of bromelain could improve the eating quality of 
smoked salted duck, especially at the level of 900 U/g. The effects of 
bromelain on the composition changes of volatile flavor substances 
in particular specific FAAs warrant to be further studied.
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APPENDIX A

TA B L E  A 1   The composition of protein of band 1 by NanoLC- ESI- MS/MS

Hits
Protein 
mass

No. of 
peptide Sequence header Protein

Relative 
abundance Probability

1 218,369.23 456 >tr|U3J7T0|U3J7T0_ANAPL 
Uncharacterized protein OS = Anas 
platyrhynchos OX = 8,839 PE = 3 SV = 1

Uncharacterized protein 20.06% 99.0%

2 206,767.3 433 >tr|U3IWZ4|U3IWZ4_ANAPL 
Uncharacterized protein OS = Anas 
platyrhynchos OX = 8,839 PE = 3 SV = 1

Uncharacterized protein 20.01% 99.0%

3 144,246.53 331 >tr|U3ILZ5|U3ILZ5_ANAPL Uncharacterized 
protein OS = Anas platyrhynchos 
OX = 8,839 PE = 3 SV = 1

Uncharacterized protein 15.80% 99.0%

4 103,742.01 129 >tr|U3J875|U3J875_ANAPL 
Uncharacterized protein OS = Anas 
platyrhynchos OX = 8,839 PE = 3 SV = 1

NA 13.50% 99.0%

5 93,791.66 127 >tr|U3IVM5|U3IVM5_ANAPL 
Uncharacterized protein OS = Anas 
platyrhynchos OX = 8,839 PE = 3 SV = 1

NA 11.10% 99.0%

6 225,550.47 116 >tr|U3J280|U3J280_ANAPL 
Uncharacterized protein OS = Anas 
platyrhynchos OX = 8,839 PE = 3 SV = 1

Uncharacterized protein 5.40% 99.0%

7 224,490.17 114 >tr|U3IVT5|U3IVT5_ANAPL 
Uncharacterized protein OS = Anas 
platyrhynchos OX = 8,839 PE = 3 SV = 1

Uncharacterized protein 6.20% 99.0%

8 166,948.97 84 >tr|U3J2X2|U3J2X2_ANAPL Myomesin 
2 OS = Anas platyrhynchos OX = 8,839 
GN = MYOM2 PE = 4 SV = 1

Myomesin 2 1.03% 99.0%

9 187,319.22 70 >tr|R0J8F2|R0J8F2_ANAPL Myosin- 6 
(Fragment) OS = Anas platyrhynchos 
OX = 8,839 GN = Anapl_18423 PE = 3 
SV = 1

Myosin- 6 4.93% 99.0%

10 183,622.23 15 >tr|U3ITK0|U3ITK0_ANAPL Myomesin 
1 OS = Anas platyrhynchos OX = 8,839 
GN = MYOM1 PE = 4 SV = 1

Myomesin 1 0.20% 99.0%

11 151,324.13 11 >tr|U3J1L9|U3J1L9_ANAPL Amylo- alpha- 1, 
6- glucosidase, 4- alpha- glucanotransferase 
OS = Anas platyrhynchos OX = 8,839 
GN = AGL PE = 4 SV = 1

4- alpha- glucanotransferase 0.13% 99.0%

12 173,606.67 11 >tr|R0JWJ4|R0JWJ4_ANAPL Glycogen 
debranching enzyme (Fragment) 
OS = Anas platyrhynchos OX = 8,839 
GN = Anapl_05994 PE = 4 SV = 1

4- alpha- glucanotransferase 0.14% 99.0%

13 116,408.48 7 >tr|R0LTI7|R0LTI7_ANAPL Sarcoplasmic/
endoplasmic reticulum calcium ATPase 
2 (Fragment) OS = Anas platyrhynchos 
OX = 8,839 GN = Anapl_01816 PE = 3 
SV = 1

Endoplasmic reticulum 
class 1/2 Ca(2+) ATPase

0.10% 99.0%

14 129,165.49 5 >tr|U3IHS1|U3IHS1_ANAPL Myosin 
binding protein C, slow type OS = Anas 
platyrhynchos OX = 8,839 GN = MYBPC1 
PE = 4 SV = 1

Myosin binding protein C1 0.10% 99.0%

15 6,883.76 4 >tr|U3J8G6|U3J8G6_ANAPL 
Uncharacterized protein OS = Anas 
platyrhynchos OX = 8,839 PE = 4 SV = 1

Uncharacterized protein 0.30% 99.0%
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