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Abstract

A prognostic imaging biomarker can be defined as an imaging characteristic that is objectively measurable and
provides information on the likely outcome of the cancer disease in an untreated individual and should be distin-
guished from predictive imaging biomarkers and imaging markers of response. A range of tumour characteristics of
potential prognostic value can be measured using a variety imaging modalities. However, none has currently been
adopted into routine clinical practice. This article considers key examples of emerging prognostic imaging biomarkers
and proposes an evaluation framework that aims to demonstrate clinical efficacy and so support their introduction
into the clinical arena. With appropriate validation within an established evaluation framework, prognostic imaging
biomarkers have the potential to contribute to individualized cancer care, in some cases reducing the financial burden
of expensive cancer treatments by facilitating their more rational use.
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Introduction

A prognostic imaging biomarker can be defined as an
imaging characteristic that is objectively measurable and
provides information on the likely outcome of the cancer
disease in an untreated individual. It is important to note
the quantitative nature of imaging biomarkers, which
places demands on imaging technologies that differ
from those associated with the more familiar qualitative
approaches that encompass much of clinical radiology.
Prognostic biomarkers should be distinguished from pre-
dictive imaging biomarkers and imaging markers of
response. Predictive imaging biomarkers are imaging
characteristics that provide information on the likely ben-
efit from treatment and are discussed in detail elsewhere
in this journal[1]. Imaging biomarkers of response repre-
sent surrogate measures for the beneficial outcomes that
are intended from treatment. These surrogates are useful
either because they can be obtained at an earlier time
point than the intended outcome or because they provide
an alternative to assessment of pathologic response.
Potential confusion and overlap between these terms
can arise when the intended benefit from treatment
being predicted or assessed is an improvement in survival.

Clinical tumour staging can be considered as a prog-
nostic biomarker. However, it is increasingly recognized
that patients with identical tumour stage can follow diver-
gent clinical courses. Prognostic imaging biomarkers aim
to further stratify risk beyond clinical stage. As indicated
above, prognostic imaging biomarkers should provide
information of likely disease outcome without treatment,
for example the probability of tumour recurrence.
However, where the biomarker has been shown to be
of prognostic value independent of treatment modality
and/or tumour stage (stage often being the main deter-
minant of treatment), a relationship between the biomar-
ker and disease progression without treatment can be
inferred.

A range of tumour characteristics of potential
prognostic value measured using different imaging
modalities have been identified (Table 1). However,
none has currently been adopted into routine clinical
practice. This article considers key examples of
emerging prognostic imaging biomarkers and proposes
an evaluation framework that aims to demonstrate clini-
cal efficacy and so support their introduction into the
clinical arena.

This article was presented at the ICIS Society Meeting and 13th Annual Teaching Course, York, UK, 30 September to 2 October 2013.
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Prognostic imaging biomarkers in
specific cancers

Positron emission tomography

The glucose analogue [18F]fluorodeoxyglucose (FDG) is
by far the most common and important radiotracer in
imaging by positron emission tomography (PET). For
many malignancies, staging, assessing response to treat-
ment, and monitoring of disease by FDG-PET has
become the standard of care. However, to date, there
are only limited prospective data for the correlation
between tumour metabolism as measured by FDG-PET
and improved overall survival.

Head and neck cancer

In several studies of head and neck squamous cell carci-
noma (SCC), metabolic tumour volume (MTV) mea-
sured by FDG-PET has been shown on multivariate
analysis to be an independent prognostic factor for
survival[2�5]. Tumour volume expressed as a metabolic
index combining MTV and standardized uptake value
(SUV) on FDG-PET has also been shown to be valuable
for predicting long-term survival in nasopharyngeal
carcinoma[6].

Non-small cell lung cancer

MTV has also been studied in patients with non-small cell
lung cancer (NSCLC) who subsequently underwent

surgical resection of the primary tumour[7].
Preoperative MTV parameters were found to have limited
prognostic value for predicting disease-free survival.
However, in the same study and several others, multivari-
ate analysis showed that SUVmax was an independent
predictor of overall survival[7�9]. The European Lung
Cancer Working Party also concluded that primary
tumour SUVmax was of prognostic value for predicting
survival in NSCLC[10] in its systematic review and meta-
analysis of 1474 patients in 13 studies comparing the
hazard ratio for NSCLC patients with a low SUV and
those with a high SUV on FDG-PET. A related parame-
ter, the total lesion glycolysis (TLG), which represents
the product of MTV and mean SUV, has been shown to
predict progression-free survival in NSCLC and has
promise as a tool for stratifying patients for risk-adapted
therapies[11].

Oesophageal cancer

In a study of oesophageal SCCs by Wieder et al.[12], an
association was found between tumour metabolic
response and overall survival, whereas Malik et al.[13]

concluded that FDG-PET performed during neoadjuvant
chemoradiation therapy in oesophageal adenocarcinomas
failed to predict survival benefit. A systematic review and
meta-analysis conducted by Pan et al.[14] determined that
higher SUVs indicated both worse survival prognosis and
higher risk of recurrence in patients with oesophageal
cancer. Guo et al.[15] also found that SUV and disease

Table 1 Examples of imaging biomarkers with prognostic potential in specific human malignancies

Imaging technique Example studies in specific tumours (hazard ratios in parentheses)

[18F]FDG-PET Head and neck cancer (1.8�2.7)[2�4]

NSCLC (1.3�10.7)[7�11]]
Oesophageal cancer (1.0�1.9)[12,14,15,17]

Colorectal metastases (1.17)[19]

Lymphoma (1.4�3.1)[23,24]

Lymphoma, FDG avidity after treatment (7.0�29.7)[20�22]

Prostate cancer (1.2)[40]

[18F]FLT-PET Recurrent high-grade glioma (10.1)[30�32]

[11C]Methionine-PET Brain glioma[33�37]

[64Cu]ATSM-PET Colorectal primary[18]

H2
15O-PET Breast cancer, with dynamic FDG-PET (1.7)[29]

Diffusion-weighted MRI Glioma[41]

Prostate cancer (20.8)[42]

Bladder cancer (6.3)[43]

Dynamic contrast-enhanced MRI Glioma (7.3)[50]

Breast cancer (1.0)[51]

Dynamic contrast-enhanced CT Head and neck cancer[48]

Colorectal cancer[48]

CTTA NSCLC (56.0)[44]

Oesophageal cancer (4.5)[45]

Liver metastases in colorectal cancer[46]

Colorectal primary[47]

Doppler ultrasonography Occult liver metastases[54]

Melanoma[52]

Dynamic contrast-enhanced ultrasonography Breast cancer (2.8)[53,55]
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status on PET/CT were significant independent predic-
tors for overall survival in oesophageal SCC, whereas
Gillies et al.[16] more recently observed that the very
presence of FDG-avid lymph nodes, rather than
SUVmax or FDG-avid tumour length, correlated nega-
tively with disease-free survival. MTV has been shown
to be a better predictor of survival than primary tumour
SUVmax in patients with oesophageal carcinoma[17].

Colorectal cancer

Dietz et al.[18] reported a pilot study using [64Cu]methyl-
thiosemicarbazone (ATSM) in patients with rectal
cancer undergoing neoadjuvant chemoradiotherapy,
where higher primary tumour tissue uptake correlated
with worse overall and progression-free survival. SUV
in colorectal cancer metastases has also been shown to
be a significant predictor for overall survival, indepen-
dent of the subsequent treatment[19].

Lymphoma

In Hodgkin disease and diffuse large B-cell lymphoma, a
positive FDG-PET after treatment completion has been
shown to be a poor prognostic factor[20�22]. More
recently, FDG-PET has also been shown to be an inde-
pendent outcome predictor in primary central nervous
system lymphoma[23]. TLG in FDG-PET was recently
found to be a better predictor of survival outcome than
the International Prognostic Index for patients with dif-
fuse large B-cell lymphoma[24].

There is early interest in the potential of new PET
tracers such as radiolabelled monoclonal antibodies for
the management of indolent lymphomas, especially folli-
cular lymphoma, in which the use of FDG-PET/CT is
currently not standard practice[25]. However, a positive
FDG-PET after induction treatment has been shown to
predict a shorter progression-free survival in several stu-
dies of patients with follicular lymphoma[26,27].

Melanoma

Melanoma typically demonstrates avid uptake of FDG,
making FDG-PET an excellent tool for the detection of
primary and metastatic melanoma and quantification of
FDG uptake by SUV. In a multivariate analysis of 80
patients with melanoma, mean tumour SUV, along with
the number of positive nodes, extranodal growth and
gender, were each shown to be independently associated
with disease-free survival[28].

Breast cancer

PET tumour blood flow assessment using H2
15O com-

bined with dynamic [18F]FDG-PET evaluation (where
FDG metabolic and transport rates were quantified)
allowed prediction of survival outcome in patients with
locally advanced breast cancer in a study published by
Dunnwald et al.[29].

Brain glioma

FDG-PET has limited value in the assessment of
brain malignancies due to the high intrinsic background
uptake and utilization of glucose by the brain.
[18F]Fluorothymidine (FLT) has been shown to predict
survival in patients with recurrent high-grade
glioma[30�32]. [11C]Methionine uptake has been corre-
lated with histologic grade in gliomas, and several studies
have also found it to be a useful prognostic imaging
biomarker for predicting survival in patients with
glioma[33�37], whereas its prognostic value has not been
demonstrated in other studies[38,39].

Skeletal scintigraphy

Recently, the Bone Scan Index, which has been devel-
oped as a quantitative tool for expressing the tumour
burden in the bone as a percentage of total skeletal
mass, has been shown to be associated with survival in
patients with prostate cancer[40]. The authors of this
study demonstrated that quantifying the extent of skeletal
metastatic disease on 99mTc bone scan at the time of
diagnosis can be of value in patient management when
deciding on treatment.

MR diffusion imaging

Diffusion-weighted MRI produces information about
tissue cellularity and the integrity of cellular membranes
by probing the movement of water molecules in biologi-
cal tissues. Tissue characterization is made possible by
comparing differences in the apparent diffusion between
tissues (e.g. free water movement within a neoplasm
would be more restricted than in a simple cyst).

A recent meta-analysis of survival data in malignant
astrocytomas has also demonstrated that survival rates
in high-grade (3 and 4) tumours had a significant corre-
lation with apparent diffusion coefficient (ADC) values,
independent of tumour grade[41], suggesting an impor-
tant prognostic role in the imaging of gliomas. In prostate
cancer, multivariate analysis showed that tumour ADC
predicted the likelihood of biochemical recurrence in
prostate cancer better than all other variables (including
Gleason score, serum prostate-specific antigen and
tumour volume)[42]. Similarly, in patients with superficial
bladder cancer, pretreatment ADC values at MRI have
been shown to be a significant independent predictor of
tumour recurrence after transurethral resection[43].

CT texture analysis

Texture analysis involves postprocessing of CT data using
software that quantifies disuniformity of tumours at a
range of spatial scales. CT texture analysis (CTTA) has
shown promise as an independent predictor of survival in
patients with advanced NSCLC and oesophageal cancer
and could contribute to disease risk stratification for
these patients[44,45]. In colorectal cancer, Miles et al.[46]
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reported that CTTA of the liver was a better predictor of
survival postoperatively than CT perfusion. Recent data
from a study conducted by Ng et al.[47] found that con-
trast-enhanced CTTA of whole primary tumour can pre-
dict 5-year overall survival in patients with colorectal
cancer.

Perfusion imaging

CT and MR perfusion using iodinated contrast and gado-
linium, respectively, provide the ability to non-invasively
quantify microvascular blood flow of tissue. Perfusion
imaging has given rise to several important quantitative
parameters chief among which are blood flow (BF),
blood volume (BV), time to peak flow, capillary perme-
ability and the related concept of permeability surface
area product (PS), which may have prognostic usefulness
in assessing neoplasms.

Bisdas et al.[48] found that high BF and PS on CT
perfusion were not only predictive of longer tumour con-
trol than patients with hypoperfused upper aerodigestive
tract SCC, but that BF-BV mismatch also predicted
longer overall survival after chemoradiation. Koh
et al.[49] also recently published promising results for
the use of kinetic modelling of dynamic contrast-
enhanced CT data to predict 5-year overall survival in
patients with primary colorectal cancer.

Tumour microvascular permeability and contrast
enhancement on MR perfusion imaging have been
shown to predict worse short-term (2 years) progres-
sion-free survival in low-grade gliomas[50]. In patients
with breast cancer, dynamic contrast-enhanced MR para-
meters, such as maximal tumour enhancement within the
first minute of contrast injection and maximal rate of
enhancement, have been observed to be superior to tra-
ditional prognostic parameters (such as tumour size and
nodal metastasis) in the prediction of disease-free and
overall survival[51].

Doppler ultrasonography

Tumour angiogenesis evaluated with Doppler sonogra-
phy has been used to identify early breast cancers and
melanomas with higher metastatic potential[52,53].
Neoangiogenesis was additionally found to be an inde-
pendent predictor of overall survival in early breast
cancer[52].

Leen et al.[54] successfully used the Doppler perfusion
index (DPI), defined as the ratio of hepatic arterial to
total liver BF, to detect subtle changes in hepatic haemo-
dynamics indicating the possibility of occult liver metas-
tases from colorectal cancer in patients who have had
apparently curative surgery. The authors found that
DPI was a better prognostic factor for predicting early
death (within 2 years of diagnosis) than the recognized
gold standard of Dukes pathologic classification.

Contrast-enhanced ultrasonography

Microbubble contrast agents administered intravenously
into the systemic circulation allow the bloodstream�s
echo to be enhanced on ultrasonographic imaging, thus
allowing blood to be distinguished from surrounding tis-
sues and the evaluation of tumour vascularity and angio-
genic activity. Intratumoural BF measured by vessel
positive total area on contrast-enhanced ultrasonography
has been shown to inversely correlate with overall and
tumour-free survival in patients with node-negative breast
cancer[55].

Evaluative framework for prognostic
imaging biomarkers

The clinical adoption of diagnostic applications of ima-
ging is supported by an established framework that com-
prises a hierarchical evaluation of evidence that
sequentially assesses technical performance, diagnostic
performance, diagnostic impact, therapeutic impact and
health impact[56]. Although a system for the qualification
of imaging biomarkers in oncologic drug development
has been proposed[57], there is currently no equivalent
framework for the evaluation of imaging biomarkers for
clinical use. However, the approach used by MacKenzie
and Dixon[56] for diagnostic applications of MRI can be
adapted for prognostic imaging biomarkers, correspond-
ingly considering biological/technical performance, prog-
nostic performance, prognostic impact, therapeutic
impact and health impact (Fig. 1).

Biological/technical performance

Without a clear biological correlate, interpretation of ima-
ging biomarkers can be problematic. Biological correlates
for imaging biomarkers are frequently identified as a
result of correlative studies against a range of pathologic
features. When the pathologic feature is known to be of
prognostic significance, this correlative approach can
accelerate imaging biomarker development[58]. Many
pathologically based biomarkers reflect expression of par-
ticular genes or molecules, whereas imaging biomarkers
typically reflect phenotypic characteristics. Therefore,
direct one-to-one correlation between pathologic and ima-
ging biomarkers is unlikely and imaging biomarkers may
have several pathologic correlates, each of which has
some relationship to the phenotypic feature measured
by imaging. Table 2 summarizes likely biological corre-
lates for the imaging biomarkers described above.

The technical performance refers to how well an ima-
ging biomarker measurement made in one patient com-
pares with measurements made on another occasion or
on a different device in another institution. These sources
of variability can be quantified as intra- and interobserver
variation. Measurement consistency is increased by the
adoption of standardized image acquisition and
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processing procedures. Recommended procedures
have been published for a range of imaging
biomarkers[61,65,66].

Prognostic performance

The imaging community is familiar with parameters for
evaluation of diagnostic performance such as sensitivity

and specificity. The equivalent parameters that encapsu-
late prognostic performance are hazard ratio and biomar-
ker prevalence. Hazard ratio reflects the risk of mortality
or recurrence in patients identified by the biomarker to
have a poor prognosis relative to patients classified as
having a good prognosis. The biomarker prevalence indi-
cates the proportions of patients defined by the
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Figure 1 Methods for obtaining unbiased estimates of prognostic imaging biomarker thresholds. (A) Separate cohorts;
(B) two-sample cross-validation; (C) leave-one-out cross-validation.

Table 2 Biological correlates for a range of prognostic imaging biomarkers

Imaging biomarker Pathologic correlate

FDG-PET GLUT-1 and hexokinase expression
Skeletal scintigraphy Osteoblastic activity
Diffusion-weighted MR Cellularity, necrosis, cell membrane integrity and inflammation[59]

CTTA Hypoxia and angiogenesis[60]

Perfusion imaging (CT, MR, ultrasonography): tumour Microvascular density and vascular endothelial growth factor[61�63]

Perfusion imaging: Liver Micrometastases[64]
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biomarker as having a good or poor prognosis.
Multivariate analysis is required to demonstrate that the
prognostic performance of the biomarker is independent
of other known factors associated with survival such as
age, tumour stage, and other imaging biomarkers.

Prognostic imaging biomarkers entail a defined thresh-
old value against which measurements obtained in indi-
vidual patients are compared. Values falling above or
below the threshold determine whether the patient is
classified as having a poor or good prognosis. Many
studies reporting an association between a quantifiable
imaging characteristic and prognosis have established
this threshold in a single cohort of patients and then
used this threshold to determine prognostic performance
in the same cohort. This approach results in a biased
overestimation of prognostic performance. A range of
cross-validation approaches can be used to avoid this
bias, as summarized in Fig. 2. The most straightforward
approach is to establish the threshold value in one cohort
and apply this threshold to a separate cohort (Fig. 2A). A
cross-validation approach (Fig. 2B) randomly divides a
cohort into two, usually matched to ensure similar rates
for mortality or recurrence. The threshold value estab-
lished in one cohort is then used to classify patients in
the other cohort and vice versa. The resulting poor and
good prognosis groups are then combined to calculate
the hazard ratio and biomarker prevalence. A leave-one-
out approach (Fig. 2C) divides a single cohort into sev-
eral groups (or even individual patients). Patients in the
left-out group are classified based on a threshold estab-
lished from the remaining groups combined. The process
is repeated until all patients have been classified. Good
and poor prognosis groups are then combined to deter-
mine overall prognostic performance.

Prognostic impact

Prognostic impact refers to the change in prognosis that
results from deployment of the imaging biomarker. The
potential prognostic impact of imaging biomarkers can
be demonstrated using currently available clinical deci-
sion tools that allow for incorporation of prognostic bio-
markers. An example decision tool is Adjuvant! Online,
which aims to assist with decisions concerning adjuvant
chemotherapy for lung, colon and breast cancer by esti-
mating the cancer-related mortality without systemic

adjuvant therapy, the reduction in mortality afforded by
therapy, and the risks of side effects of the therapy[67].
The hazard ratio and biomarker prevalence values for a
prognostic imaging biomarker can be entered into the
decision software for a range of clinical scenarios, as
recently demonstrated for CTTA[68]. For example,
Adjuvant! Online indicates that the 5-year survival rates
for a 60-year-old male patient with at T2N0M0 NSCLC
and average comorbidities with and without platinum-
based chemotherapy would be 58.4% and 64.2%, respec-
tively. Table 3 shows the impact on prognostic estimates
resulting from use of an imaging biomarker with a hazard
ratio of 2.00 and biomarker prevalence of 50%. The
5-year survival rates with or without chemotherapy have
both increased in the good prognostic group but the
increase in survival gained by chemotherapy has fallen.
On the other hand, the patients with a poor prognosis
show decreases in 5-year survival but an increase in the
benefit gained from chemotherapy compared with that
predicted for patients without biomarker stratification.

Therapeutic impact

Therapeutic impact refers to the ability of a health tech-
nology to change the clinical management of patients. Of
the publications proposing prognostic imaging biomar-
kers to date, few have clearly identified clinical situations
in which deployment of the biomarker could potentially
result in change in therapy. This lack of identifiable
potential clinical applications represents a barrier to ima-
ging biomarker development.

A therapeutic impact may exist when the change in
prognostic confidence is sufficient to change manage-
ment. Considering the illustration above for a patient
with NSCLC, a previous study reported that most oncol-
ogists believe at least a 5% increase in 5-year survival is
required to justify platinum-based adjuvant chemother-
apy for this tumour[69]. The predicted improvement in
5-year survival of 4.2% for the patients with good prog-
nosis may therefore not be considered sufficient to war-
rant chemotherapy, suggesting a change in management
from that indicated by the 5.8% improvement in survival
for patients before stratification with the imaging
biomarker.

The potential therapeutic impact can be further quan-
tified by plotting the pretest improvement in 5-year

Biological & Technical Performance

Prognos�c
Performance

Prognos�c 
Impact

Therapeu�c
Impact

Health
Impact

Technical Performance

Diagnos�c
Performance

Diagnos�c 
Impact

Therapeu�c
Impact

Health
Impact

A B

Figure 2 Evaluation frameworks for diagnostic (A) and prognostic (B) applications of imaging in clinical practice.
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survival from chemotherapy against the post-test
improvement in 5-year survival (Fig. 3). Assuming an
improvement of 5% justifies chemotherapy, the red-
shaded region represents patients with a good prognosis
similar to that illustrated above for whom stratification
moves the anticipated 5-year survival benefit from treat-
ment to less than 5%. The blue-shaded region represents
patients whose prognosis would not have been consid-
ered sufficiently poor to warrant chemotherapy before
stratification but might be considered to benefit after
stratification. The combined area of the shaded regions
indicates the ability of the biomarker to affect therapeutic
decisions.

Health impact

Health impact refers to improvements in ultimate health
outcomes, most commonly survival, that would result
from deployment of the imaging biomarker. These
health effects can then be compared with the cost impli-
cations of biomarker deployment to assess cost-effective-
ness. One approach to demonstrating health impact
comprises a randomized trial in which health outcomes

are compared between two patient cohorts, with the ima-
ging biomarker deployed in one cohort. However, it can
be anticipated that the same difficulties recognized to
arise from application of this approach to diagnostic
uses of imaging will apply equally to prognostic applica-
tions[70]. Specifically, the outcomes are primarily deter-
mined by the treatment rather than imaging, and
statistical variability in the treatment effect tends to
mask the effects of imaging such that trials to demon-
strate the impact of imaging need to be large, expensive
and prolonged. Because of these difficulties, an alterna-
tive approach for diagnostic applications has comprised a
robust assessment of diagnostic performance followed by
decision modelling to assess health impact[70]. A similar
approach can be used to demonstrate the health impact
of prognostic imaging biomarkers as has been undertaken
for the use of CTTA for modifying postoperative surveil-
lance strategies in colorectal cancer[71]. The prognostic
performance characteristics required for modelling are
the hazard ratio and biomarker prevalence. Modelling
also allows these parameters to be varied between their
95% confidence limits to allow for uncertainties in the
prognostic performance characteristics.

Future directions

Collaboration

Collaboration among the broad group of stakeholders
across health care (public and private clinical providers,
government, enterprises in the biopharmaceutical and
software vendor industries, researchers and academics)
is vital if prognostic imaging biomarkers are to become
an integral part of medical practice. The Quantitative
Imaging Biomarkers Alliance (QIBA) initiative of the
Radiological Society of North America (RSNA) can
play an important role in uniting stakeholders in the
advancement of quantitative imaging and the use of ima-
ging biomarkers in clinical practice. The establishment of
QIBA highlights the increasing importance of quantita-
tive imaging but radiological training is yet to include
quantitative imaging on an equal footing with traditional
qualitative approaches.

Standardization and multicentre trials

To date, studies investigating the use of imaging biomar-
kers in survival prediction have mostly been single-centre

Table 3 Illustrative prognostic impact of an imaging biomarker with a hazard ratio of 2 and biomarker prevalence of
50% on the projected 5-year survival rates with and without chemotherapy for a 60-year-old man with NSCLC and average
comorbidities (derived using Adjuvant! Online[67])

All patients (%) Good prognostic group (%) Poor prognostic group (%)

5-year survival without chemotherapy 58.4 67.7 49.1
5-year survival with chemotherapy 64.2 72.1 56.0
Survival benefit from chemotherapy 5.8 4.4 6.9

Figure 3 Estimating the potential therapeutic impact of
an imaging biomarker with hazard ratio of 2 and 50%
prevalence. The hatched areas represent patients for
whom therapy might be altered by the imaging biomarker
assuming a 5% improvement in 5-year survival warrants
treatment.
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studies with relatively small sample sizes, and often dif-
ferences in chemoradiotherapy regimen, PET acquisition
protocols and image analysis. Adherence to standardized
recommendations, of which several exist[47,48], will hope-
fully address many of these issues and increase the oppor-
tunity for collaborative research across multiple centres.
QIBA undertakes important work in this area but is yet to
consider many imaging biomarkers that have progressed
furthest through the evaluation framework proposed in
this article, for example perfusion CT and CTTA.

Research design and reporting

Prognostic imaging biomarkers have a number of poten-
tial advantages over histological assays. Imaging is non-
invasive and can assess multiple tumour sites, which is an
important consideration given the known heterogeneity
of expression of many histological markers. By reflecting
the tumour phenotype, imaging biomarkers may poten-
tially be more closely related to tumour behaviour than
genetic markers. Approaches in which gene expression
and imaging of phenotypic tumour behaviour are
assessed collaboratively can be envisaged. However, ima-
ging biomarker research needs to parallel the research
designs used in tissue biomarker development. For exam-
ple, study design should include cross-validation of ima-
ging biomarker thresholds and final reports should state
the hazard ratio and biomarker prevalence with 95% con-
fidence intervals to allow subsequent modelling of health
and economic impacts.

Conclusion

With appropriate validation within an established evalu-
ation framework, prognostic imaging biomarkers have
the potential to contribute to individualized cancer
care, in some cases reducing the financial burden of
expensive cancer treatments by facilitating their more
rational use.
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