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ORIGINAL ARTICLE

IDEA: Integrated Drug Expression Analysis—Integration
of Gene Expression and Clinical Data for the
Identification of Therapeutic Candidates

MH Ung', FS Varn' and C Cheng"?*

Cancer drug discovery is an involved process spanning efforts from several fields of study and typically requires years of
research and development. However, the advent of high-throughput genomic technologies has allowed for the use of in silico,
genomics-based methods to screen drug libraries and accelerate drug discovery. Here we present a novel approach to
computationally identify drug candidates for the treatment of breast cancer. In particular, we developed a Drug Regulatory
Score similarity metric to evaluate gene expression profile similarity, in the context of drug treatment, and incorporated time-
to-event patient survival information to develop an integrated analysis pipeline: Integrated Drug Expression Analysis (IDEA).
We were able to predict drug candidates that have been known and those that have not been known in the literature to exhibit
anticancer effects. Overall, our method enables quick preclinical screening of drug candidates for breast cancer and other

diseases by using the most important indicator of drug efficacy: survival.
CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 415-425; doi:10.1002/psp4.51; published online on 18 June 2015.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC? 4 Large-scale genomic projects have allowed for the utiliza-
tion of drug treatment profiles and disease profiles to aid in drug discovery. However, the direct clinical usefulness of
these data has not been demonstrated in a rigorous manner. ¢ WHAT QUESTION DID THIS STUDY ADDRESS? M This
investigation aimed to integrate patient survival information from large-scale breast cancer genomic datasets to evaluate
drug efficacy. It also introduces a novel approach to assessing the similarity between drug treatment profiles and disease
gene expression profiles. ¢« WHAT THIS STUDY ADDS TO OUR KNOWLEDGE M Molecular information captured in drug
treatment profiles derived from cancer cell lines can be used in conjunction with clinical and gene expression data from
primary tumors to identify novel breast cancer drugs. It introduces an in silico screening method that can be introduced
into current preclinical drug discovery pipelines to make them faster and more efficient. ¢ HOW THIS MIGHT CHANGE
CLINICAL PHARMACOLOGY AND THERAPEUTICS [ The results from this study introduce an effective computational
drug screening schema that can modify how new therapeutic compounds are identified. Instead of using time-consuming
in vitro screening experiments to identify lead compounds, it may be possible to narrow down potential leads computa-
tionally before committing to more resource-intensive methods. Additionally, it suggests that tumor gene expression pro-

files can be used to guide drug treatment regimens in the clinic.

Early-stage attrition of candidate therapeutic compounds for
cancer is commonplace in today’s drug discovery pipelines
due to the complexity associated with drug action. As such,
the combination of large-scale data integration and comput-
ing power shows significant promise in transforming drug
discovery into a more analytical, systematic, and compre-
hensive enterprise.! In recent years, the Connectivity Map
(CMap) has gained popularity by providing an invaluable
resource containing drug effect information obtained
through large-scale molecular profiling of drug-treated cell
lines.2 Many methods have been proposed to utilize these
vast resources of genomic information to accelerate drug
development, including key studies by Sirota et al., Dudley
et al., and Hassane et al.’312

Despite the encouraging results of these studies, using
treatment profile similarity based on ex vivo or in vivo cell line

experiments as proxies for overall drug effect/action similarity
has certain limitations, especially if it is to be extrapolated to
clinical settings.'® Thus, in this study we hypothesized that the
inclusion of cancer patient time-to-event survival information
into drug treatment screening procedures can be used to
more accurately identify and reposition drug candidates. In
addition, we claim that it is also possible to stratify patients
into different prognostic groups using this approach. Specifi-
cally, we integrated breast cancer gene expression and clinical
survival information with CMap drug treatment profiles (DTPs)
in a systematic analysis to identify lead candidate therapeutics
for breast cancer.? In our approach, we circumvent obstacles
encountered by Amelio et al. including incomplete drug-
protein interactomes and determining P-value cutoffs by
developing the Drug Regulatory Score (DRS) metric system
that is more sensitive to gene expression changes than
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methods that involve defining gene sets and calculating
enrichment as performed by Amelio et al., or using simple cor-
relation analysis of DTPs.'*'® The DRS captures information
about the magnitude of change of all genes in a tumor gene
expression profile (GEP) and utilizes the entire DTP, which is
more representative of the overall effect of a drug on the final
phenotype.

Broadly, we interrogated all MCF7 cell line DTPs from
CMap against primary breast tumor GEPs to derive a DRS; a
modified similarity metric adapted from our previous
study.2'®'7 We then implemented Cox proportional hazards
survival analysis using DRS as input to identify drugs associ-
ated with patient survival.'® Furthermore, we show that DRS
can predict tumor metastatic potential in patients from an inde-
pendent dataset published by Vijver et al. using unsupervised
clustering and a random forest machine learning classifier."®
Finally, we verify that DRS can be used as a predictive marker
for paclitaxel-based neoadjuvant chemotherapy using another
independent dataset published by Hatzis et a/.?°

METHODS

Datasets

Normalized METABRIC (n=2,136) breast cancer gene
expression datasets were downloaded from the European
Genome-Phenome Archive (http://www.ebi.ac.uk/ega/) under
the accession number EGAS00000000083.'® Normal sam-
ples were removed leaving a total of 1,996 samples for our
analysis. The normalized Vijver (n= 260) dataset was down-
loaded from the Netherlands Cancer Institute’s data portal
(http://ccb.nki.nl/data/). The normalized Hatzis (n=508) and
Ur-Rehman (n= 1,570) breast cancer gene expression data-
sets were downloaded from the gene expression omnibus
(GEO) under the accession numbers GSE25066 and
GSE47561, respectively.2>2" The Hatzis dataset consisted of
HER2-negative breast cancer tumors GEPs measured prior
to neoadjuvant paclitaxel treatment. Time-to-event clinical
information was collected over the course of neoadjuvant
paclitaxel treatment.2® All datasets included time-to-event sur-
vival information and other clinical information including sub-
type, tumor grade, metastatic potential, etc. Raw DTPs (.CEL
files) derived from MCF7, HL60, and PC3 cell lines and sup-
plementary drug information were downloaded from the Con-
nectivity Map data portal (https://www.broadinstitute.org/
cmap/).2

Data preprocessing of DTPs

Robust Microarray Analysis (RMA) was used for background
correction of .CEL DTPs (n= 1,215), followed by quantile nor-
malization, and fitting of a multichip linear model to each probe
set; all techniques were implemented using the "affy" library
from Bioconductor.?? Probe sets were collapsed based on
average intensity values. Gene fold-change was calculated by
taking the ratio of treatment and control intensities followed by
a logo-transformation. Genes with a log, fold-change >0 were
labeled as the "up" group, and genes with a log, fold-change
<0 were labeled as the "dn" group. Log-transformed values
were z-transformed so that intensity values followed a stand-
ard normal distribution [logs(treatment/control) ~ N(0,1)].
From this distribution, a two-sided P-value was derived for
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each gene and —logqo-transformed to yield exponentially dis-
tributed values (—logqo(p-value) ~ Exp(1)), which assigned
heavier weights to more statistically significant genes when
calculating DRS scores. Values >20 were set to 20; all values
were then divided by 20 so that they took on a value with a
range of 0 to 1. The final set of relative values corresponding
to a drug was defined as the drug treatment profile or DTP.

Calculation of DRS

For each DTP, a DRS was calculated for each patient GEP
using a modified version of an algorithm published by Zhu
et al' Namely, each DTP was treated as a vector
d =[d;,d>ds...d...d]; where d;=— log(P-value) and n=#
of genes. We then defined a patient’s molecular profile as
the vector 9= (91,9295 ..9;-.9n);, containing the sorted
(decreasing) gene expression intensities for each gene g
d was sorted according to g. We then calculated a pre-
DRS (pDRS) for the "up" and "down" gene categories for
each DTP by applying the following formulas: First, we cal-
culate the foreground f(i) and background b(i) functions.

" lgd|
— @71 S i S n
> i lgdl
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- lg(1—=d)l
72’51 L 1<i<
S lg(1-d)]

Second, we calculate the pDRS for the "up" group
(PDRS,p) and the "dn" group (pDRS,,), separately.

b(i) =

pDRSlj;/dn = maX|f(imax) —b(imax); 0], Where imax
= argmax—123._n[f(i)—b(/)] (3a)

PDRS,; 4, = Min{f(imin) —b(imin), 0], Where imin
= argmini_123_n[f(i)—b(i)] (3b)

{ pDRS™, pDRS* > |pDRS™|

pDRS =
i PDRS™, otherwise

(3c)

The pDRS,y/an is then normalized by 1) permuting the
gene labels in the patient profile m times (e.g., m = 1,000)
and repeating steps 1-3 to yield a null pDRS,,/q, distribu-
tion and 2) dividing by the average of the null to yield
DRS,p/an- We then computed DRS,, — DRSy, to yield the
final DRS. For each breast cancer dataset, we constructed
a matrix where each element contained the DRS for each
drug-sample pair (Supplementary File 1).

Survival analysis

Survival analysis was carried out for each drug, using the
drug’s DRS profile and patient clinical information included
in breast cancer datasets. A univariate Cox proportional
hazards model was fitted for each drug using the DRS as
the independent variable.'® The model is formulized below:

h(t|DRS) = hy(t)ePorsDRS

where h(t|DRS) is the hazard function given the DRS and
ho(t) is the baseline hazard, both at time f. We also fitted


http://www.ebi.ac.uk/ega
http://ccb.nki.nl/data
http://https://www.broadinstitute.org/cmap
http://https://www.broadinstitute.org/cmap

multivariate models to correct for potential confounding
clinical factors by including patient age at diagnosis,
tumor grade, tumor size, tumor stage, estrogen receptor
(ER) status, HER2 status, and PR status as additional
model covariates. The multivariate model is formulized
below:

n
Z i/)’er

h(t]x) = hy(t)e

where x is the design matrix containing the drug’s DRS
profile and clinicopathological covariates, and their asso-
ciated value for each patient. Schoenfeld residuals were
analyzed to evaluate the proportional hazards assumption
for all fitted models. The Wald test was used to assess
significance of model parameters and outputted P-values
were adjusted for multiple hypothesis testing using the
Benjamini-Hochberg procedure (all P-values presented in
the Results were adjusted unless noted otherwise).?®
Drugs vyielding a P < 1E-5 were presumed to exhibit a
significant pharmacological effect in breast cancer
patients. Kaplan-Meier estimators and log-rank tests were
used to compare survival rates between patients stratified
on DRS. Patients were generally split at DRS = 0; if this
yielded disproportionate sample groups, patients were
stratified at DRSeqian instead. Survival analysis was
implemented using the "survival' R package (Supple-
mentary File 1).

GO enrichment analysis

For ciclosporin, genes with a fold-change <0.5 between
treatment and control samples were used as the downregu-
lated gene list that was inputted into the DAVID functional
annotation tool (http:/david.abcc.ncifcrf.gov/) to calculate
enrichment of GO Biological Process terms in the downre-
gulated gene set.?*

Machine learning analysis

Unsupervised hierarchical clustering of the patients in the
Vijver dataset was performed using DRS profiles that exhib-
ited a statistically significant difference between metastatic
and nonmetastatic tumors.’ In total, 84 DRS profiles
yielded P < 0.005 (Wilcoxon test), and were included as
features in the clustering analysis. A random forest classi-
fier was trained using the same features to predict the met-
astatic identity of tumors based on the 84 DRS profiles.
Ten-fold cross-validation and calculation of the area under
the curve (AUC) of the receiver operating characteristic
(ROC) curve were used to evaluate model performance.
Clustering analysis and the random forest model were
implemented using the R packages "gplots" and "random-
Forest," respectively.

Drug information

Information about US Food and Drug Administration (FDA)-
approved drugs was derived from the National Cancer Insti-
tute’s cancer drug information webpage (http://www.cancer.
gov/cancertopics/druginfo/breastcancer), which also pro-
vides links to more detailed drug descriptions. Literature
information about drugs mentioned in this study is provided
in the Supplementary Information.
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RESULTS

Overview of analysis

Our computational pipeline begins by first calculating a
DRS between a DTP and a tumor GEP for each drug-
tumor pair; a high DRS indicates that the baseline GEP of
a tumor sample closely reflects the DTP that is induced by
a drug, and vice versa for a low DRS (Figure 1). A Cox
proportional hazards model was then fitted to the DRS pro-
file (DRS across all patient tumors) of each drug to evalu-
ate its association with disease-specific patient survival
(Figure 1)."® If the DRS profile of a drug was significantly
correlated with patient survival, we considered the drug to
be a potential therapeutic candidate. Moreover, to under-
score the application of our methodology to precision medi-
cine, we modified our models to identify candidates in
several molecular subtypes of breast cancer.

To further evaluate DRS as an effective metric, we dem-
onstrated that DRS captures the molecular differences
between tumors by training a random forest classifier that
could differentiate tumors with high and low metastatic pro-
clivities using DRS across significant drugs as features.
Additionally, we confirmed that there was a statistically sig-
nificant difference between the DRS of patients with differ-
ent residual cancer burden (RCB) scores. Overall,
Integrated Drug Expression Analysis (IDEA) identifies drug
candidates that can modulate the baseline expression of
primary breast tumors in a way that affects patient survival
time.

Systematic identification of survival associated drugs

in breast cancer
Global summary of results. By hypothesizing that drugs

with DRS profiles that significantly correlate with patient
survival are pharmacologically active, we were able to iden-
tify several candidates using the METABRIC dataset from
Curtis et al. (Supplementary Table S1).'® These candi-
dates belonged to a variety of pharmacological classes
including known antineoplastic agents, antioxidants, hor-
mone therapeutics, and immunosuppressants (Supplemen-
tary Chart S1). To note, the CMap dataset contains data
corresponding to several replicate treatment experiments
with varying concentrations for each drug.? Thus, we chose
the replicate that yielded the most significant P-value from
the survival analysis to represent the drug. Replicates
where higher drug concentrations were used typically
yielded more significant results. Figure 2 shows the P-
value and hazard ratio (HR) distribution (Cox proportional
hazards model) of all drugs after selecting the most signifi-
cant replicate. In total, there were 169 drugs (out of 1,215
drugs) that yielded P < 1E-05 with 110 of these having HR
<1 and 59 having HR >1, when all samples were included
in the analysis (Supplementary Table S1). We reasoned
that drugs whose DRS profiles yield P < 1E-5 from the
model will exhibit a pharmacologic effect (therapeutic or
toxic). For example, alpha-estradiol was predicted to have
an effect with P=1.1E-20, Wald test, HR =0.91, along
with scoulerine with P=1.3E-15, Wald test, HR = 1.1 (Sup-
plementary Table S1). Figure 2b,c shows Kaplan-Meier
plots for these two drugs, respectively, where patients are
stratified by DRS. Patients with high alpha-estradiol DRS
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Figure 1 Overview of IDEA. Treatment and control DTPs derived from MCF-7 cell lines were downloaded from CMap and combined to
construct a DTP. DTPs were then compared against GEPs (GEP) of each patient from the breast cancer dataset of interest to generate
a DRS. This resulted in a DRS profile for each drug. Each DRS profile was then used as the covariate(s) in Cox proportional hazards
models. All drugs with DRS profiles that were significantly associated with patient survival were considered potential therapeutic
candidates.
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Figure 2 Output of IDEA. (a) Distribution of hazard ratios and P-values for all drugs. Each point corresponds to a drug, with red points
corresponding to drugs with P < 1E-5 and blue points corresponding to drugs with P > 1E-5. Drugs with HR <1 indicates that survival
is correlated with increased similarity of the DTP with breast cancer GEPs. Drugs with HR >1 indicates that survival is anticorrelated
with increased similarity of the DTP with breast cancer GEPs. (b) Kaplan-Meier plot of patients with DRS >0 and DRS <O for alpha
estradiol. Patients with high DRS exhibit significantly more favorable prognosis than patients with low DRS (P = 3E-20, Logrank test).
(c) Kaplan-Meier plot of patients with DRS >0 and DRS <0 for scoulerine. Patients with low DRS exhibit significantly more favorable
prognosis than patients with high DRS (P = 5E-13, Logrank test).
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Figure 3 Examples of drug candidates belonging to different pharmacological classes. (a) Kaplan-Meier curves of patients with DRS
>0 and DRS <0 for etoposide. (b) Kaplan-Meier curves of patients with DRS >0 and DRS <0 for methotrexate. (c) Kaplan-Meier
curves of patients with DRS >0 and DRS <0 for levonorgestrel. (d) Kaplan-Meier curves of patients with DRS >0 and DRS <0 for
wortmannin. (e) Kaplan-Meier curves of patients with DRS >0 and DRS <0 for LY-294002. (f) Kaplan-Meier curves of patients with

DRS >0 and DRS <O for sirolimus.

exhibited improved survival, whereas patients with low
scoulerine DRS exhibited better prognosis.

Association of model coefficients with drug effect. In
light of these results, we note that the interpretability of the
HR is limited in the context of this study. Specifically, DTPs
yielding an HR <1 indicates that patients with GEPs similar
to that induced by the drugs in MCF7 cell lines (high DRS)
tend to have better prognosis. This may suggest that
patients with lower DRS would be most responsive to the
drug because their GEPs are most dissimilar to the drug’s
DTP, possibly indicating that the drug may "reverse" the
patients” GEPs to mimic that of high DRS patients. Alterna-
tively, it may be that patients with high DRS would be more
responsive because it may be easier for the drug to
enhance an already similar GEP rather than act against a
dissimilar one. Indeed, these two possibilities are not mutu-
ally exclusive, given the complexity of drug action, and may
vary depending on the drug (see Discussion). Despite the
fact that predicted drugs may exhibit a general therapeutic
or toxic effect, it is reasonable to conclude that not every
patient will respond similarly to each drug. Hence, our anal-
ysis also allows us to identify patients who will not respond
in a way similar to that of the general sample population.
More specifically, patient samples can be stratified based
on their DRS. For example, if we stratify patients into

groups based on their DRS for alpha estradiol, patients
with DRS >0 exhibited a more favorable prognosis than
patients with DRS <0 (P =3E-20, Wald test, Figure 2b).
This indicates that, in general, alpha-estradiol may have a
pharmacological effect in breast cancer patients but only a
select group may be responsive. This demonstrates that we
can both evaluate the overall effect of drugs and subse-
quently predict individual patient response to them based
on their DRS.

Identification of chemotherapeutics, PI3K inhibitors,
and novel drug indications. Moreover, we identified
chemotherapy drugs in our analysis including etoposide
and methotrexate (Figure 3a,b). These results suggest that
our analysis was able to identify known anticancer agents,
thus validating our results.2>2 Second, we identified lova-
statin and levonorgestrel, both of which are currently under-
going clinical trials for the treatment of breast and ovarian
cancer, respectively (ClinicalTrials.gov Identifiers:
NCT00285857 (lovastatin), NCT00445887 (levonorgestrel))
(Supplementary Chart S1, Figure 3c).?’

In support of our hypothesis that survival information can
reveal bioactive drug leads, we were able to identify a num-
ber of drugs that have been experimentally shown to exhibit
anticancer activity. In particular, we identified several
phosphatidylinositol-4,5-bisphosphate ~ 3-kinase (PI3K)
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Figure 4 Examples of drug candidates not previously considered for chemotherapy. (a) Kaplan-Meier curves of patients with DRS >0
and DRS <0 for ascorbic acid. (b) Kaplan-Meier curves of patients with DRS >0 and DRS <0 for hydroflumethiazide. (¢) Kaplan-Meier
curves of patients with DRS >0 and DRS <0 for ticarcillin. (d) Kaplan-Meier curves of patients with DRS >0 and DRS <0 for myco-

phenolic acid.

pathway inhibitors that are known to inhibit proliferation,
reduce angiogenesis, and induce apoptosis in cancer cell
lines.2872 |dentified PI3K/mTOR inhibitors include wortman-
nin, LY-294002, and sirolimus (Figure 3d—f).23'*7 |n addi-
tion to known drugs, we identified drug candidates that have
not yet been experimentally tested or lack rigorous testing.
Among these compounds are ciclosporin, ascorbic acid,
hydroflumethiazide, ticarcillin, and mycophenolic acid (Fig-
ures 4, 5). To show that these candidates have therapeutic
potential, we exemplify the case of ciclosporin (P= 4.69E-
12, HR = 0.94, Figure 5a), which has a DTP similar to that of
thapsigargin, a drug shown to delay tumor growth in multiple
cancer mouse xenograft models.*®*° Ciclosporin’s DTP was
significantly correlated with the DTPs of only a few drugs,
as shown by the distribution of correlation coefficients
(Figure 5b).2 This suggests that the mechanism of action of
ciclosporin, if it does possess anticancer activity, is inherently
different from that of other top drugs identified in our analy-
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sis. Interestingly, ciclosporin was significantly correlated with
thapsigargin in their GEPs with a Pearson’s correlation coeffi-
cient of 0.6 (Figure 5¢). The fact that simple correlation anal-
ysis was able to detect a high similarity between the two
DTPs suggests that ciclosporin may be related to thapsigar-
gin in terms of drug effect. Additionally, we calculated the
enrichment of Gene Ontology Biological Process terms in
genes that were significantly downregulated between ciclo-
sporin treatment and control groups (Figure 5d, Supple-
mentary Table S2). Interestingly, we found highly relevant
cancer-associated pathways such as "steroid hormone
receptor signaling pathway," "regulation of cell cycle," and
"regulation of apoptosis" enriched in the downregulated gene
set, suggesting that ciclosporin may have a bioactive effect
on cancer growth. Overall, these results indicate that the
drugs we identified that are not currently recognized as can-
cer therapeutics may in fact be strong candidates for further
experimental testing.



Integration of Genomic and Clinical Data to Predict Drug Candidates

Ung et al.
421
a Ciclosporin b Ciclosporin c | ; .
(a) . (b) P : (c) Correlation of Expression Profiles
1.0 = ~~ DRS>0 (n=570) 10.0+ | .
. .
I N\ —— DRS <0 (n = 1422) |
2 0.94 |
4 |
5 7.5 c 25-
w = =
R 0.8+ 4| g
] S|
5.0 = 2
£ 0.7 el 2
o = 0]
© | |-E 0.0-
o
S 0.6 2.5 '
a |
Logrank P =8 E-07 |
0.54 | I
S N i L e . : | -25
0 5 10 15 20 25 0.0 0.2 0.4 0.6
Years PCC
Term P-Value Fold Enrichment | Bonferroni | Benjamini FDR
G0:0030518~steroid hormone receptor signaling pathway 5.61E-06 6.53 1.27€-02 1.27E-02 0.01
G0:0030522~intracellular receptor-mediated signaling pathway 9.74E-06 5.51 2.20E-02 1.11E-02 0.02
G0:0006974~response to DNA damage stimulus 1.19E-05 2.58 2.68E-02 9.01E-03 0.02
G0:0051726~regulation of cell cycle 3.63E-05 2.6 7.96E-02 2.05E-02 0.06
G0:0010942~positive regulation of cell death 6.87E-05 2.29 1.45E-01 3.09E-02 0.12
G0:0043068~positive regulation of programmed cell death 1.55E-04 2.23 2.98E-01 5.72E-02 0.27
G0:0033554~cellular response to stress 2.41E-04 2.01 4.23E-01 7.54E-02 0.42
GO:0051789~response to protein stimulus 2.69E-04 3.86 4.59E-01 7.40E-02 0.47
GO:0009615~response to virus 3.17E-04 3.79 5.15E-01 7.72E-02 0.55
G0:0043065~positive regulation of apoptosis 3.35E-04 2.16 5.35E-01 7.37E-02 0.58
G0:0010941~regulation of cell death 3.92E-04 1.77 5.92E-01 7.82E-02 0.68
G0:0030521~androgen receptor signaling pathway 5.31E-04 6.69 7.03E-01 9.61E-02 0.92
GO:0006281~DNA repair 6.28E-04 242 7.62E-01 1.05E-01 1.09
G0:0043067~regulation of programmed cell death 7.03E-04 1.74 7.99E-01 1.08E-01 1.22
G0:0010605~negative regulation of macromolecule metabolic process 7.22E-04 1.78 8.08E-01 1.04E-01 1.25

Figure 5 Ciclosporin DTP. (a) Kaplan-Meier curves of patients with DRS >0 and DRS <0 for ciclosporin. (b) Empirical distribution of
Pearson correlation coefficients (PCC) from comparing the ciclosporin DTP with all other DTPs. Red line indicates PCC from compar-
ing ciclosporin DTP with thapsigargin DTP. (¢) Scatterplot comparing ciclosporin and thapsigargin DTPs. Each point corresponds to a
single gene in the DTP. (d) GO enrichment analysis of downregulated genes between treatment and control DTPs for ciclosporin.

Drugs association analysis in stratified breast cancer
samples

In the clinic, immunohistochemical categorization of breast
cancer is an essential component of determining patient
prognosis and designing treatment regimens. Thus, the
effectiveness of drug treatment may vary according to ER,
p53, and/or HER2 expression. As such, we predicted drug
candidates for patients belonging to each of the six breast
cancer histological subtypes to increase the resolution of
our analysis and to approach drug discovery from a preci-
sion medicine standpoint. We found several significant drug
candidates for ER+ (P < 1E-05, Wald Test), ER— (P <
0.05, Wald Test), p53+ (P < 1E-04, Wald Test), and
HER2- (P < 1E-04, Wald Test) breast cancer subtypes
and no significant candidates for p53— and HER2+ sub-
types (Supplementary Tables S3-S8). Furthermore, to
demonstrate that drug efficacy varies across breast cancer
subtypes, we compared drugs between ER+ (n=1,518)
and ER- (n=474) breast cancer groups. Figure 6a,b
shows the global P-value and hazard ratio distribution of
each drug for ER+ and ER- tumors, respectively. Compar-
ing the top 100 drug candidates from each subtype, we
found that only 10 drugs were common between the two
groups. This suggests that ER status is an important pre-
dictive biomarker for drug efficacy. For instance, wortman-
nin yielded P=8.42E-12 (Wald test) and HR = 0.94 in ER+
samples but was not significant in ER- samples

(Figure 6c,d). Conversely, repaglinide was significant in
ER- samples (P=0.02, Wald test) but not significant in
ER+ samples (Figure 6e,f). These results suggest that our
analysis is sensitive to differences in prognostic features
exhibited by different tumor groups. Indeed, being able to
identify drugs for a specific subset of patients is powerful in
that it allows for the development of tailored treatments
based on optimal drug efficacy.

Integrative model for metastasis prediction using drug

regulatory scores

Since metastasis is an important driver of cancer progres-
sion, we postulated that there would be a relationship
between metastatic tumors and their DRS profiles. If DRS
does indeed capture information regarding metastatic tend-
ency, then the distribution of DRS should be different
between metastatic and nonmetastatic tumors. Thus, we
also aimed to evaluate the predictive power of DRS in strat-
ifying patients based on whether their tumors became met-
astatic by applying IDEA to an independent breast cancer
dataset from van de Vijver et al.'® We first identified 84
DRS profiles that exhibited the greatest difference between
metastatic and nonmetastatic tumor samples and then clus-
tered samples based on these DRS profiles to derive three
apparent clusters corresponding to the metastatic identity
of the samples (see Methods). The first cluster had 48
metastatic samples out of 103 (47%), the second cluster
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Figure 6 Drug candidates for ER+ and ER- patients. (a) P-value and hazard ratio distribution for all drugs for ER+ patients. (b) P-
value and hazard ratio distribution for all drugs for ER— patients. Red points indicate drugs with P < 1E-5 and blue points indicate
drugs with P > 1E-5. (c) Kaplan-Meier curves of patients with and for wortmannin for ER+ patients. (d) Kaplan-Meier curves of
patients with and for wortmannin for ER— patients. (e) Kaplan-Meier curves of patients with and for repaglinide for ER+ patients.
(f) Kaplan-Meier curves of patients with and for wortmannin for ER— patients. For ER— patients, stratifying patients at yields dispropor-

tionate sample sizes; therefore, the median DRS was used instead.

had 27 metastatic samples out of 99 (27%), and the third
cluster had eight metastatic clusters out of 58 (14%)
(Figure 7a). This indicates that DRS profiles can distin-
guish differences in metastatic potential between breast
cancer tumors, and implies that treatment with a subset
(cluster) of these drugs may predispose a tumor to take on
a prometastatic molecular identity. Conversely, another sub-
set may reverse a tumor’s tendency to metastasize. To fur-
ther evaluate this idea, we trained a random forest
classifier with the same DRS profile features to determine if
it could accurately stratify metastatic and nonmetastatic
tumors, and evaluated its performance using 10-fold cross-
validation. The model achieved an AUC of 0.71 calculated
from the ROC curve, suggesting that DRS is an informative
predictor when classifying tumors based on a known
survival-associated phenotype (Figure 7b). Furthermore,
we implemented IDEA in the van de Vijver et al. dataset
and were able to validate 28 drugs (P < 0.05, Wald test)

CPT: Pharmacometrics & Systems Pharmacology

including wortmannin, LY-294002, and etoposide (Supple-
mentary Table S9). Additionally, we were able to validate
20 of the 25 top candidates in an independent meta-
dataset compiled and normalized by Ur-Rehman et al.,?’
indicating that our methodology is robust across different
datasets. (P < 0.05, Supplementary Table S10).

Predicting patient response to neoadjuvant

chemotherapy using drug regulatory scores

Because our previous results were derived using survival
data that were collected over the course of entire treatment
periods, we aimed to determine if DRS could stratify
patients that would respond well to neoadjuvant chemother-
apy. Thus, we focused on the paclitaxel DRS profile since
paclitaxel is a common chemotherapeutic administered in
the clinic. Following our claim that the efficacy of a drug
can be determined by its DRS profile, we constructed a
Kaplan-Meier estimator for patient survival in the
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Figure 7 Use of DRS profiles to predict metastasis. (a) Hierarchical clustering of DRS profiles. Magenta sample labels indicate meta-
static tumors and aqua sample labels indicate nonmetastatic tumors. (b) Receiver operating characteristic curve for random forest

machine learning classifier, using 84 most significant DTPs.

METABRIC dataset using the paclitaxel DRS profile and
observed that patients with DRS >0 show poor survival
(Supplementary Figure S1A). Although patients in the
METABRIC dataset with DRS >0 exhibited poor prognosis,
the observed difference in survival rates is still indicative of
pharmacological activity. We then applied the paclitaxel
DTP to an independent breast cancer dataset, published by
Hatzis et al.,?° that includes patients who were adminis-
tered neoadjuvant paclitaxel therapy. We generated a DRS
profile for paclitaxel in the Hatzis dataset and found that the
DRS of RCB-I (low residual cancer burden) tumors were
significantly larger than the DRS of RCB-Il/Ill (high residual
cancer burden) tumors (P=0.01, Wilcoxon test, Supple-
mentary Figure S1B). This indicates that the paclitaxel
DRS profile can be used as a predictive marker. Addition-
ally, this result suggests that the patients with DRS >0
(poor survival group) in the METABRIC dataset would have
been more responsive to the effects of paclitaxel. Overall,
we were able to validate predicted paclitaxel pharmacologi-
cal activity in a separate dataset where patients were
actually treated with paclitaxel.

DISCUSSION

In this study we introduce the DRS and show that by using
it in conjunction with time-to-event clinical survival informa-
tion we can identify novel cancer therapeutics for different
breast cancer subtypes. Despite the success of our
method, we remark that there are several limitations to our
approach, many of which partially stem from a lack of
appropriate data. First, interpreting the hazard ratio is diffi-

cult in that we, as of yet, do not understand the biological
implications regarding high-matching profiles (high DRS)
and low-matching profiles (low DRS). In other words, it is
unknown whether patients with high DRS will benefit from
the drug due to enhancement of its current GEP or if
patients with low DRS will benefit more because the drug
will induce an opposite effect. Indeed, both mechanisms
are simultaneously possible, making interpretation even
more difficult. Moreover, this implies that our drug candi-
dates may either be therapeutic or toxic in nature, and the
effects may and probably do vary across individuals. Sec-
ond, our method is based on the assumption that DTPs
provide a functional readout of a drug’s overall biological
activity, which may not always be the case. Likewise, a
patient's GEP may not always reflect the molecular events
responsible for cancer development. Regardless, we hold
that we are able to identify bioactive agents that are indeed
associated with patient survival and that this drug identifica-
tion schema is a reasonable first in silico screening step.
Finally, we note that DTPs are derived from MCF7 cell
lines, which are ER+, and thus our results may be less
accurate in ER— tumor samples. However, we reimple-
mented IDEA using wortmannin, LY-294002, and sirolimus
DTPs from PC3 and HL60 cell lines to show that drug treat-
ment effects remain stable across different cell types (Sup-
plementary Table S11). More generally, cell lines
themselves may not be completely representative of actual
patient tumors, which are heterogeneous and complex in
nature. Despite issues with tissue specificity, cell lines are
still informative about the core genes that drive cancer
development. We also note that our datasets contain more
ER+ samples than ER- samples, which may be why no
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significant drug candidates were identified for ER— tumor
samples after correcting for clinical confounders.

Despite these limitations, our method improves on the
current state of in silico drug screening, by using the termi-
nal effect of a drug and molecular profiling of patient tumors
to guide preclinical drug development. Furthermore, our
approach can be extended to other cancers and diseases
for which molecular profiles and clinical information are
available. As more drug and clinical data become available,
this analytical pipeline can further be modified to incorpo-
rate additional information. Moreover, IDEA can be applied
to any disease in which GEPs and terminal phenotype data
(i.e., survival, flare-ups, outbreaks) are available. Overall,
we have presented a novel, integrated, and flexible
approach to in silico drug profiling that can achieve results
consistent with the known drug literature, identify novel
therapeutic candidates, and be potentially applied to other
diseases.
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