
micromachines

Article

A Temperature-Compensated Single-Crystal
Silicon-on-Insulator (SOI) MEMS Oscillator with a
CMOS Amplifier Chip

Mohammad S. Islam, Ran Wei, Jaesung Lee , Yong Xie, Soumyajit Mandal * and
Philip X.-L. Feng *

Department of Electrical Engineering & Computer Science, Case School of Engineering, Case Western Reserve
University, Cleveland, OH 44106, USA; msi16@case.edu (M.S.I.); rxw210@case.edu (R.W.); jxl803@case.edu (J.L.);
yxx510@case.edu (Y.X.)
* Correspondence: soumyajit.mandal@case.edu (S.M.); philip.feng@case.edu (P.X.-L.F.);

Tel.: +1-(216)-368-1349 (S.M.); +1-(216)-368-5508 (P.X.-L.F.)

Received: 13 August 2018; Accepted: 18 September 2018; Published: 29 October 2018
����������
�������

Abstract: Self-sustained feedback oscillators referenced to MEMS/NEMS resonators have the
potential for a wide range of applications in timing and sensing systems. In this paper, we describe
a real-time temperature compensation approach to improving the long-term stability of such
MEMS-referenced oscillators. This approach is implemented on a ~26.8 kHz self-sustained
MEMS oscillator that integrates the fundamental in-plane mode resonance of a single-crystal
silicon-on-insulator (SOI) resonator with a programmable and reconfigurable single-chip CMOS
sustaining amplifier. Temperature compensation using a linear equation fit and look-up table (LUT)
is used to obtain the near-zero closed-loop temperature coefficient of frequency (TCf ) at around room
temperature (~25 ◦C). When subject to small temperature fluctuations in an indoor environment,
the temperature-compensated oscillator shows a >2-fold improvement in Allan deviation over the
uncompensated counterpart on relatively long time scales (averaging time τ > 10,000 s), as well as
overall enhanced stability throughout the averaging time range from τ = 1 to 20,000 s. The proposed
temperature compensation algorithm has low computational complexity and memory requirement,
making it suitable for implementation on energy-constrained platforms such as Internet of Things
(IoT) sensor nodes.

Keywords: oscillator; resonator; micro/nanoelectromechanical systems (MEMS/NEMS); application-
specific integrated circuit (ASIC); MEMS-ASIC integration; programmable sustaining amplifier;
single-crystal silicon (SC-Si); silicon-on-insulator (SOI); real-time temperature compensation loop

1. Introduction

Stable oscillators are vital for precision timekeeping in various applications, including wired and
wireless communications, positioning, navigation, and sensing. In particular, oscillator stability
against temperature variations and fluctuations is critical for many of these applications [1,2].
Temperature-compensated quartz crystal oscillators provide excellent stability versus temperature,
and have thus dominated the timing and frequency control market for decades. However, they are not
suitable for monolithic integration with CMOS circuitry, which makes them sub-optimal for emerging
applications such as mobile devices and IoT nodes, where miniaturization is important for reducing
cost. Thus, there has been a strong push towards miniaturized alternatives. Oscillators referenced to
micromachined resonators [2–5] are promising alternatives due to their small form factors, low phase
noise thanks to high Q, low power consumption, good long-term stability, compatibility with batch
processing, high reliability, low cost, and wide operating temperature range. It is important to select the
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right fabrication material in order to optimize such resonators for a particular application. For example,
silicon carbide (SiC) has outstanding mechanical or thermal properties, which makes SiC devices
suitable for high temperature applications. Here we focus on silicon (Si) devices, since they can be easily
integrated with CMOS technology, making them attractive for low-cost applications. Moreover, earlier
work has demonstrated the excellent short-term stability of oscillators based on Si MEMS resonators [5].
However, the elastic properties of Si are strongly temperature-dependent, so temperature fluctuations
degrade the long-term frequency stability of Si-based oscillators. A number of compensation methods
have been reported for improving temperature stability [2,6–13]. For example, in [12], the authors
implement a passive compensation method by utilizing silicon dioxide (SiO2), which has an opposite
TCf compared to the structural material of the main resonator (Si); this compensation technique results
in a parabolic (second-order) frequency dependence versus temperature. More recently, researchers
have proposed the use of multiple temperature compensated resonators with different TCf values to
generate a temperature-stable frequency output [13]. These studies, however, have been focused on
passive temperature compensation, which increases the complexity of the MEMS design, and therefore,
the overall cost of the system.

In this paper, we describe an active real-time software-controlled approach for temperature
compensation of MEMS-referenced oscillators (see Figure 1). In particular, we demonstrate our
approach using a high-Q single-crystal (SC) Si comb-drive MEMS resonator interfaced with a
programmable single-chip CMOS sustaining amplifier. The uncompensated oscillator has a negative
TCf, i.e., its oscillation frequency decreases as the temperature increases. In addition, the resonant
frequency increases if the DC polarization voltage decreases. We have built a linear regression model
based on training data to capture these phenomena, and then used them to develop a real-time
temperature compensation loop. The loop is based on (i) simultaneously sampling the oscillator
frequency and ambient temperature using a frequency counter and a microcontroller unit (MCU);
and (ii) changing the DC polarization voltage to cancel the expected frequency variation. This
straightforward technique significantly improves the long-term stability of the oscillator, thus making
it suitable for many emerging fundamental and industrial applications [14–20].
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Figure 1. Overview of the temperature-compensated oscillator.

2. System Architecture of the SOI MEMS Resonator and CMOS Sustaining Amplifier

2.1. Overview of the SOI MEMS Resonator

We use SC-Si MEMS comb-drive resonators manufactured in a silicon-on-insulator (SOI) process
at wafer scale to ensure high-Q and low phase noise. The SC-Si comb drive devices were fabricated on a
4-inch SOI wafer with a top device layer of 12 µm-thick SC-Si and an oxide (SiO2) with thickness of 2 µm.
We first performed standard photolithography with a resolution of 1 µm to pattern the wafer. The top
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SC-Si layer not protected by photoresist was etched away by the Bosch process in a deep reactive ion
etching (DRIE). The wafer was then diced into 5 mm × 5 mm chips. After etching in buffered oxide
etch (BOE) to remove the SiO2 under the comb drive shuttle, chips were released in a critical point
dryer (CPD) to prevent stiction to the substrate. Finally, aluminum (Al) wire bonding was performed
on the selective pads for electrical interfacing. As shown in Figure 2a, the fabricated comb-drive SOI
MEMS device has an overall length, width, and thickness of 900 µm, 700 µm, and 20 µm, respectively.
In addition, the comb-drive fingers are 2 µm apart. We use finite element method (FEM) simulations
in COMSOL Multiphysics to study the vibration pattern and mode shape of the first in-plane flexural
resonant mode (see Figure 2b). Figure 2 also summarizes the results from optical characterization
of the device resonance, which were obtained by using a custom-built laser interferometer specially
engineered for ultrasensitive detection of in-plane resonance modes [21,22]. The optically measured
resonant frequency for a DC polarization voltage of VDC = 20 V is f ≈ 26.8 kHz at room temperature
(the measurement system is shown in Figure S1 in the Supplementary Materials), with a quality factor
of Q = 13,000 at room temperature and in a moderate vacuum of ~5 mTorr. Figure 2c shows the
optothermally excited, optically detected resonance responses [21,22] of the device as a function of
temperature (at VDC = 20 V); we control the latter with a Peltier cooler. We then extract the resonance
frequency versus temperature from the optically measured data (see Figure 2d). The figure shows that
this MEMS device has a negative TCf of −34.9 ppm/◦C, which is similar to other SC-Si devices in the
literature. Figure 2e shows that the resonance frequency also shifts with the DC polarization voltage.
We use these empirical measurement results for temperature compensation, as we shall describe in
later sections.
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Figure 2. Single-crystal Si-on-insulator (SOI) comb-drive MEMS resonator characteristics. (a) Scanning
electron microscopy (SEM) image. The inset shows a partial zoom-in view of the comb drive and fingers.
Scale bar: 20 µm; (b) Simulated vibration pattern and mode shape for the first in-plane resonance
mode; (c) Optically measured transmission data and frequency response around the first resonance
as temperature increases; (d) Open-loop resonance frequency dependence on temperature for the
extraction of TCf from the data in (c); (e) Electrically measured transmission and frequency response
when various values of the DC polarization voltage are applied to the shuttle. The responses in (c,e)
have not been converted to dimensionless transfer functions since the measurement path includes both
electrical and optical components, which makes it difficult to derive absolute calibration factors.
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2.2. Overview of the Programmable Single-Chip CMOS Sustaining Amplifier

We have designed and fabricated a single-chip sustaining amplifier using the OnSemi 0.5 µm
CMOS process and interfaced it with the MEMS resonator as illustrated in Figure 3a. The chip
(see Figure 3b) contains a differential-difference low-noise amplifier (DD-LNA), two second-order
band-pass filters (BPFs), three all-pass filters (APFs) used as phase shifters, variable gain amplifiers
(VGAs), an automatic level control (ALC), a “background compensation network” (BCN) to cancel
the parasitic electrical capacitance of the resonator, and an op-amp-based output buffer [23]. Various
parameters of these blocks can be set by using programmable current sources implemented on the
test board.
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the CMOS sustaining amplifier chip; (b) Simplified block diagram of the programmable single-chip
CMOS sustaining amplifier (corresponding to the same color-coded dashed-line box in (a)).

To integrate the SOI MEMS chip and the CMOS amplifier chip, we connect the two differential
inputs of the DD-LNA to the MEMS resonator and the BCN, respectively. The DD structure eliminates
unwanted capacitive coupling between these terminals. The measured 1/f corner frequency of the LNA
is <10 kHz. We use a gate-input wide-linear-range operational transconductance amplifier (WLR-OTA)
as the basic building block for the rest of the circuit. The WLR-OTA uses source degeneration and
bump linearization to improve the input-referred linear range (VL) [24]. We use this OTA to implement
second-order Gm-C BPFs that determine the frequency response of the amplifier, i.e., select a particular
resonant mode. Each BPF uses two OTAs in a negative feedback loop to gyrate (invert) the impedance
of a capacitor to realize an active inductor, since passive on-chip ones are impractical at such low
frequencies. A third OTA acts as a variable resistor to form a parallel RLC circuit, and the OTA bias
currents are adjusted to set the resulting center frequency and Q.

Similarly, we use the OTA to implement Gm-C APFs that control the overall phase shift of the
amplifier, which enables the phase criterion for oscillations to be satisfied for the chosen mode.
Each APF provides unity voltage gain and a frequency-dependent phase shift of −2tan−1 (ωt), where t
= C/Gm. Thus, each APF provides a phase shift of 0–180◦ as t is adjusted from 0 to ∞ via an off-chip
bias currents. However, in practice, t can only be varied over a finite range, which reduces the useful
control range to ~120◦. Hence three cascaded APFs are used for ~360◦ control. The maximum signal
amplitude for total harmonic distortion (THD) <5% is ≈ 180 mV; this is largely limited by the OTAs.

Four cascaded VGAs control the voltage gain of the amplifier, i.e., enable the gain criterion for
oscillations to be satisfied for the chosen mode. Each VGA uses two OTAs to set the gain, and a
third OTA to create a high-pass filter. The latter allows the VGAs to be AC-coupled, which prevents
accumulation of DC offset and low-frequency interference. The chip also includes an ALC that
regulates the oscillator’s output voltage amplitude (VOUT) by adjusting the VGA gain. This reduces
amplitude-to-phase noise conversion and prevents accidental damage to the MEMS resonator due
to overload.
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The amplitude- and phase-tunable BCN is designed to cancel the parasitic electrical feedthrough
of the MEMS resonator. Such feedthrough, which is generally broadband, makes it difficult for the
system to oscillate at the true optimal mechanical resonance frequency [25]. This is undesirable, since
off-resonance operation degrades close-in (low offset frequency) phase noise. The BCN drives an
on-chip capacitor (Cf ≈ 28 fF) that feeds back a compensation signal to the negative input terminal of
the LNA.

Electrical characterization of the sustaining amplifier shows that the center frequency and Q of
the BPF are adjustable from ~10 to ~90 kHz and from 0.5 to 9, respectively, while the APF phase shift
can be adjusted over the full 360◦ range as expected. Moreover, the peak amplifier gain can be adjusted
from 0 to 80 dB by using the VGAs, which is sufficient to overcome the transmission loss of typical
comb-drive MEMS resonators within this frequency range.

The entire amplifier core occupies a layout area of 1150 µm × 1150 µm, and operates at a supply
voltage of 3.3 V. Figure 4a shows a die micrograph of the sustaining amplifier. The input-referred
noise of the amplifier with the BPF center frequency set to f = 26 kHz is ~7.2 nV/Hz1/2, which agrees
with circuit simulations and corresponds to an equivalent noise resistance of Rn = 4 kΩ at room
temperature. Moreover, Rn is typically much smaller than Rm, the motional resistance of comb-drive
MEMS resonators in this frequency range. Thus, the close-in phase noise of the oscillator will be
dominated by the high-Q resonator, as desired. Details of the measured specifications and performance
of the chip are summarized in Table 1.

Table 1. Summary of the electrical specifications and performance of the programmable
sustaining amplifier.

Chip Components Performance

Low-Noise Amplifier (LNA)
(for IB = 2.5 µA)

Gain: 12 dB; Bandwidth: ~1 MHz
Thermal Noise PSD: 13 nV/Hz1/2

1/f Corner Frequency: <10 kHz

Band-Pass Filter (BPF)
Center Frequency (f 0): 2–90 kHz; Q: 1–8

Dynamic Range (DR): 60.7 dB (24 kHz, Q = 2)
Linear Range: 500 mV (THD < 5%, 24 kHz, Q = 2)

All-Pass Filter (APF) Phase Control: 0–360◦

Phase Control Sensitivity: ~0.6◦/nA

Variable Gain Amplifier (VGA) Settable Gain: 0–80 dB

Automatic Level Control (ALC) Amplitude Control Voltage (VED): 0–0.5 V
ED Time Constant: 8-Bit control

Background Compensation Path Gain Control: −20 to 40 dB
Phase Control: 0–180◦
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3. Oscillator Referred to the Single-Crystal SOI MEMS Resonator

3.1. Oscillator System

The packaged sustaining amplifier chip is mounted on a test board designed to fit inside a vacuum
chamber (~5 mTorr, room temperature) along with the SOI MEMS resonator. The board only needs
four connections: power, output, and a two-wire I2C bus. An external MCU uses the bus to program
16 on-board digital potentiometers. The latter are combined with op-amps to realize programmable
bias current generators that, in turn, set all on-chip parameters with 8-bit precision. Figure 5 shows
the measured open-loop feed-forward transmission (magnitude and phase) using the MEMS and
sustaining amplifier for a DC polarization voltage of VDC = 20 V and a drive amplitude of −10 dBm.
We then create a MEMS-referenced oscillator by programming the BPFs, APFs, and VGAs to realize
enough gain and the correct phase near resonance. In addition, we program the ALC to set the output
amplitude to VOUT ≈ 400 mV.

The performance of the oscillator is monitored by using a spectrum analyzer (Agilent
4395A, Keysight Technologies, Santa Rosa, CA, USA) and a frequency counter (Agilent 53132A,
Keysight Technologies, USA). The measured single-sideband (SSB) phase noise spectrum of the
MEMS-referenced oscillator at ambient temperature is shown in Figure 6a, while the dependence of
the oscillation frequency on the DC polarization voltage VDC is shown in Figure 6b. Note that the
oscillation frequency is a non-monotonic function of VDC.
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3.2. Temperature Compensation of the MEMS-Referenced Oscillator

Figure 7 shows the block diagram of the overall real-time temperature compensation loop
(including calibration of the oscillator using a linear model). The overall real-time temperature
compensation loop (i.e., data acquisition, calibration, post-processing, and command execution) has
been implemented in a software environment (MATLAB, R2018a). The oscillator is placed inside a
vacuum chamber as shown in the left side of the block diagram along with a digital temperature sensor
(MCP9808, Microchip Technology, Chandler, AZ, USA) with a resolution of ±0.25 ◦C. The sensor
is directly attached to the DIP24 package containing the wire-bonded resonator to ensure that it
measures device temperature. A miniaturized development board (Arduino Uno R3, Arduino,
New York, NY, USA) based on an ATmega328 MCU (Atmel Corporation, San Jose, CA, USA) with
32 KB memory acts as the system controller. The MCU is used to program 16 on-board digital
potentiometers using a 2-wire I2C bus and also acquires data from the temperature sensor. A MATLAB
script stores all real-time experimental T-f data vectors and sends commands to set the desired
MEMS VDC voltage with a resolution of 5 mV using a source meter unit (Keithley 2450, Agilent
Technologies, Santa Clara, CA, USA) programmed over GPIB. In addition, the MATLAB script
implements temperature-to-frequency (T-f ) and either frequency-to-voltage (f-V) or frequency-to-phase
(f-φ) conversion functions to realize the proposed temperature control loop.
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Figure 7. Block diagram of the model calibration procedure, and the proposed real-time temperature
compensation loop.

During calibration, the device temperature is accurately set by using a Peltier module (CP08-63-06,
Laird Technology, Cleveland, OH, USA) which is powered from an external benchtop DC power
supply. The frequency counter has been used to measure the oscillation frequency over a period of
seven (7) days with a gate time (tg) of 100 ms. A data-driven linear model is then derived by using
offline post-processing. The best-fitting model given is given by

fosc = m × T + c, (1)
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where T is the temperature (in ◦C), fosc is the oscillation frequency (in Hz), m is the slope, and c is
the y-intercept. The coefficients of Equation (1) are computed by averaging the best-fitting values
from 6 runs (individual values are shown in Table 2). These coefficients are used for temperature
compensation. Specifically, Equation (1) is stored in MCU memory and used to calculate the optimal
VDC in terms of the measured temperature. Figure 8a shows how the frequency of the uncompensated
MEMS-referenced oscillator fluctuates due to room temperature variations; the estimated TCf =
−41 ppm/◦C is extracted from the fitting in Figure 8b. The result is in good agreement with the
open-loop resonator TCf shown in Figure 2d, which suggests that the closed-loop TCf is dominated
by the resonator and not the sustaining amplifier. A proportional control algorithm is then used to
compensate for the measured TCf, and the resulting frequency stability is estimated using the Allan
deviation, σA(τ), as a function of averaging time τ [26,27].
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Figure 8. (a) Measured temperature variation (top) and fluctuation of oscillation frequency (bottom) for
the uncompensated oscillator over 24 h; (b) Linear fit of the oscillation frequency versus temperature.

Table 2. Look-up table (LUT) used for temperature compensation.

Day #
Fitted Coefficients

m c

1 −1.022 27,035
2 −1.169 26,964
3 −1.459 27,067
4 −1.128 26,997
5 −1.1329 27,044
6 −1.1458 26,968

Mean value −1.1761 27,012

Figure 9a,b compare the stability of the temperature-compensated (red curve) and
uncompensated (blue curve) oscillators when subject to small indoor temperature fluctuations
(approximately ±0.5 ◦C, detailed statistics are shown in Figure S2 of the Supplementary Materials).
The temperature-compensated oscillator achieves a fractional frequency stability of ~3.6 × 10−6 in the
short-term (τ ~1 s), and ~3.7 × 10−6 for longer averaging times (τ ~1000 s). In the short-term regime
(say τ < 100 s), temperature compensation noticeably improves the Allan deviation. Long-term drift
dominates at averaging time of τ > 10,000 s; in this region, Allan deviation is significantly improved by
compensating for temperature-related drifts in the resonance frequency. We expect such improvements
to persist when the proposed temperature compensation method is extended to large batches of
wafer-fabricated resonators, since the resonator TCf is mainly determined by the intrinsic material
properties of SC-Si.
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Figure 9. (a) Instantaneous frequency of the uncompensated and compensated oscillators over 24 h;
(b) Measured Allan deviation σA (τ) with and without real-time temperature compensation.

We have further verified the performance of the proposed compensation method by measuring
oscillator frequency stability over a broader temperature range. For this purpose, we have varied
the operating temperature of the resonator from 11.2 ◦C to 41.2 ◦C by using either a Peltier module
(for cooling) or two ceramic space heaters (for heating). The temperature compensation loop is also
modified to control both the MEMS DC polarization voltage (VDC) and the feedback phase shift
(φ) of the sustaining amplifier to minimize the resulting frequency fluctuations. This is because
the oscillation frequency is a non-monotonic function of VDC (see Figure 6b), so it is unsuitable for
compensating large temperature variations and drifts. Thus, here we exploit φ as another degree of
freedom for compensation.

Experimental results are shown in Figure 10 (with supporting data shown in Figure S3 in the
Supplementary Materials). The results in Table S1 are plotted in Figure 10. The figure shows that the
uncompensated oscillator has the expected TCf of approximately −40 ppm/◦C (dominated by the
SC-Si resonator), while the compensated oscillator has near-zero TCf (within a measurement error of
about ±3 ppm) over this temperature range.
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Figure 10. Fractional frequency shift (in ppm) as the device temperature is varied, measured from both
the temperature-compensated and uncompensated oscillators over a temperature range of 10 to 45 ◦C.

Table 3 compares the performance of the proposed temperature-compensated oscillator with
other kHz-range MEMS-referenced oscillators. Our design achieves low close-in phase noise and good
long-term stability due to temperature compensation.
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Table 3. Comparison of performance between the temperature-compensated oscillator in this work
and other MEMS-referenced oscillators in the same frequency range.

Properties This Work [28] [29] [3]

Resonator Type
and Material

Single-Crystal SOI
Lateral

Comb-Drive
3C-SiC, Comb-Drive Capacitive Transduction

H-Shaped Tuning Fork

Poly-Si Two-Port,
Folded-Beam,
Comb-Drive

Modes of
Oscillation 3 3 1 1

Oscillation
Frequencies (fosc)

~27.0 kHz
(Mode 1 Only)

27.1 kHz, 30.3 kHz,
24.2 kHz 32.768 kHz 16.5 kHz

Q-Factor 13,000 13,550,10,300 and 9480 52,000 23,400

CMOS Sustaining
Amplifier Chip 0.5 µm CMOS Discrete Components 180 nm CMOS

CMOS
Transimpedance
Amplifier (TIA)

Die Size 1.5 mm × 1.5 mm Discrete Components 1.55 mm × 0.85 mm 420 µm × 320 µm
(Resonator Only)

Supply Voltage
(VDD) 3.3 V 3.0 V 1.4–4.5 V 2.5 V

SSB Phase Noise −65 dBc/Hz @
10 Hz Offset

−78 dBc/Hz @
12 Hz Offset Not Reported

−72 dBc/Hz @
1 kHz Offset
(Simulated)

FoM * 133.61 Not Reported Not Reported Not Reported

Startup Time ~600 µs Not Reported 0.2 s Not Reported

Real-Time
Temperature

Compensation
Yes No Yes No

Temperature
coeficients of

frequency (TCf )

−34 ppm/◦C
(MEMS only);

<±3 ppm (TCO)
over 11.2 ◦C to

+41.2 ◦C

24.75 ppm /◦C **
(rocking vibration

mode of MEMS) over
26.85 ◦C to +426.85 ◦C

±100 ppm (MEMS only);
±3 ppm (TCXO) & 100

ppm max (XO) over
−40 ◦C to +85 ◦C

−10 ppm/◦C
(MEMS only)

over 26.85 ◦C to
+96.85 ◦C

Year 2018 2009 2015 1999

* FoM = 20 log
( ω0

∆ω

)
− L(∆ω)− 10 log

(
PC

1 m W

)
, ** ANSYS finite element simulation results.

4. Discussion

Temperature-driven frequency fluctuations are ubiquitous, and are a major performance limiter
for SC-Si MEMS-referenced oscillators. Other potential sources of frequency fluctuations include
noise sources in the instrumentation [30–32], dielectric and charge fluctuations in the resonator,
bulk and surface effects in the resonator [33], and limited dynamic range of the sustaining amplifier.
The main purpose of the work is to build a temperature-compensated SC-SOI-MEMS oscillator (TCO)
for use in low power applications such as IoT sensor nodes. In addition, further improvements in
long-term stability can be obtained by replacing temperature compensation with temperature control
(i.e., implementing an oven-controlled oscillator (OCO)) and/or by locking the oscillator to an external
frequency reference such as GPS over long time scales [34,35]. However, TCOs are more attractive for
low-power applications than OCOs because they consume much less power.

5. Conclusions

We have demonstrated improved long-term frequency stability by implementing temperature
compensation for a single-crystal SOI MEMS-referenced oscillator with a reconfigurable CMOS
sustaining amplifier chip. A software-defined compensation loop has been developed for this
purpose. Experimental results confirm the effectiveness of the approach in significantly reducing
the Allan deviation on time scales τ > 10,000 s. These results open up new potential applications for
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MEMS-referenced oscillators, including high-precision sensing, environmental sensing and monitoring,
next-generation wireless communication, and navigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/9/11/559/
s1, Figure S1. Schematic of the optical measurement system used for characterizing the open-loop resonance
response and TCf of the single-crystal SOI MEMS comb-drive resonator. Figure S2. Power spectral density (PSD)
and stability estimation: (a) PSD of uncompensated and compensated oscillation frequency; (b) PSD of ambient
temperature fluctuations; (c) Allan deviation of uncompensated and compensated oscillation frequency; and
(d) Allan deviation of the temperature data shown in (b). Figure S3. Oscillation frequency traces versus time,
measured at five different temperature values set and controlled by the sample heating and cooling modules, for
oscillators (a) without and (b) with temperature compensation, respectively. Inset plot in (b) shows zoomed-in
view of the red box in (b). Table S1. Fractional frequency shift with and without temperature compensation.
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