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Abstract: Single-cell sequencing is a powerful technology that provides the capability of analyzing
a single cell within a population. This technology is mostly coupled with microfluidic systems for
controlled cell manipulation and precise fluid handling to shed light on the genomes of a wide range
of cells. So far, single-cell sequencing has been focused mostly on human cells due to the ease of
lysing the cells for genome amplification. The major challenges that bacterial species pose to genome
amplification from single cells include the rigid bacterial cell walls and the need for an effective lysis
protocol compatible with microfluidic platforms. In this work, we present a lysis protocol that can be
used to extract genomic DNA from both gram-positive and gram-negative species without interfering
with the amplification chemistry. Corynebacterium glutamicum was chosen as a typical gram-positive
model and Nostoc sp. as a gram-negative model due to major challenges reported in previous studies.
Our protocol is based on thermal and chemical lysis. We consider 80% of single-cell replicates that
lead to >5 ng DNA after amplification as successful attempts. The protocol was directly applied to
Gloeocapsa sp. and the single cells of the eukaryotic Sphaerocystis sp. and achieved a 100% success rate.

Keywords: bacteria lysis protocol; microalgae lysis; single-cell multiple displacement amplification

1. Introduction

Phenotypically identical cells from the same population can have dramatic heterogeneity in their
behavior. This heterogeneity plays a significant role in various biological processes including tumor
progression [1,2] and immune response [3]. Efforts have been focused on exploring the heterogeneous
behavior within the same population such as cell growth [4] and drug responses [5–8] using novel
molecular reporters and advanced imaging tools. These technologies are effective and popular,
however, to better understand the reason behind the different behaviors, it is necessary to identify the
variance in the genomes of these genetically similar cells on a single-cell level.

Single-cell whole genome sequencing (SC-WGS) is emerging as a promising tool for investigating
the genetic diversity and heterogeneity of complex biological systems [9–11]. This technology offers the
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ability of identifying genome mutations of a single cell within a population, which is often neglected
in standard studies such as metagenomics [12,13]. As a result, SC-WGS is starting to impact our
understanding of human physiology and diseases and bring forth new prospects such as evaluating
the role of genetic mosaicism [14] in diseases like cancer and facilitating the analyses of uncultured
species in environmental studies [15,16].

The key steps in SC-WGS include single-cell isolation, lysis and amplifying genomic DNA from
femto to picograms to reach the quantity sufficient for standard library preparation and sequencing
(>25 ng) [17,18]. Microfluidic platforms are often used for amplifying genome from single cells due to
their unique ability of handling nanoliters of fluid in a controlled manner [19–25], thus, allowing for
the isolation of single cells into compartments for lysis and genome amplification [26,27]. Multiple
displacement amplification (MDA) [28] has been a popular option for single-cell whole genome
amplification (SC-WGA) in microfluidic platforms [29–31]. It is based on ϕ29 DNA polymerase and
random primers to replicate template DNA with high fidelity and lower error rates following relatively
simple procedures compatible with microfluidic systems [32–34].

So far, most of the SC-WGS applications have been focused on human cells that can be easily
lysed using commercial SC-WGA kits. SC-WGS of bacterial species is still rare due to the 1000× lower
starting genomic DNA and the rigid and multi-layered cell walls of these microorganisms [35]. The cell
wall of gram-positive bacterial species generally consists of a thick layer of peptidoglycan outside of the
cytoplasmic cell membrane and, thus, is harder to penetrate. The cell wall of gram-negative bacterial
species generally has a thinner peptidoglycan layer between its outer and inner lipid membrane, and
are relatively easier to lyse. However, some gram-negative species have much thicker and complex
cell walls than most gram-negative microbes and are particularly resilient. For example, the cell wall
of cyanobacteria species contains a thick and highly cross-linked peptidoglycan layer and a surface
layer composed of polymerized proteins and exopolysaccharide [36], making it especially difficult
to penetrate.

Many standard bacterium lysis methodologies efficient for bulk studies such as bead beating and
high pressure are not applicable to microfluidic platforms [37–39]. Several existing methods effective
for the lysis of rigid species such as cyanobacterium were based on mechanical disruptions including
sonication and lyophilization [40], but these are low-throughput and not suitable for single-cell studies
in microfluidic systems. Others reported genetic-based methods which include expressing a lytic
cassette from a bacteriophage in certain strains [41], but these rely on labor-intensive strain-specific
genetic engineering and are not generally adaptable.

Chemical-based bacterial lysis is a popular option in microfluidic-based SC-WGA. However, the
key challenge is to use chemicals with minimal interference with the subsequent MDA amplification
chemistry. Due to the challenge of implementing wash steps in the microfluidic-based WGA process,
not all chemicals common for effective bacterial cell lysis are applicable. For example, ionic surfactants
such as sodium dodecyl sulfate and sarkosyl are often avoided in microfluidic-based WGA because
they almost completely inhibit polymerase activities [42]. Chemicals including phenol and spermine
have been proven effective for degrading bacterial cell walls, however, due to the toxicity, a fume
hood is required, thus, making it difficult to use in microfluidic systems. Freeze-thaw combined with
alkaline treatment has been proven highly efficient for the lysis of bacterial single cells for SC-WGA in
well plates [43], but requires placing the plates in −80 ◦C freezer for 1 h, therefore it is not applicable
for microfluidic experimental setups with complex controls.

To overcome these hurdles, others have pursued bacterial SC-WGA in microfluidic chips by
pre-lysing the cell population off-chip using ionic surfactants followed by standard in-tube wash prior
to introducing them into the chips [42]. This attempt has led to satisfactory results for studying pure
cultures cultivated in laboratory settings with an initial on-chip amplification followed by a second
round of amplification off-chip in a standard manner. Nevertheless, the off-chip pretreatments are
not suitable for bacterial cells in low abundance or are in a complex community such as clinical or
environmental samples. Besides, the pre-lyse step would possibly introduce extracellular contaminant
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DNA when amplifying the extremely low amount of DNA from a single bacterial cell. To perform the
entire process on-chip, multiple rounds of amplification can be an alternative to counter the insufficient
cell lysis, but it increases the percentage of duplicated reads and thus bias in the data analyses.

To extend the use of microfluidic platforms for SC-WGS to microbiological and microbiome
research, it is essential to develop protocols suitable for on-chip lysis of a single bacterial cell that
circumvents the aforementioned concerns. Moreover, cell wall structures of different bacterial species
vary, hence it would be ideal for a protocol to be easily adapted to various species without extensive
efforts. Therefore, in this work, we develop a bacterial single-cell lysis protocol as a guideline for
MDA-based bacterial SC-WGA in microfluidic platforms that produces >25 ng of genomic DNA per cell,
sufficient for downstream library preparation. This on-chip protocol combines three primary bacterial
lysis methods which include thermal [15,43,44], enzymatic [45,46] and chemical lysis [47–49] and was
tested on both gram-positive and gram-negative bacterial species for subsequent on-chip SC-WGA.
In this study, Corynebacterium glutamicum was used as a typical gram-positive model whose cell wall is
thicker than most gram-negative species. Besides, Corynebacterium species are increasingly recognized
as the occasional causes of prosthetic joint infection associated with significant morbidity [50]; and this
disease has a low organism burden and usually involves infection often caused by commensal flora,
and thus requiring higher sensitivity and specificity for its identification [51]. Nostoc sp. was chosen as
a gram-negative model due to the significant lysis difficulties encountered in previous studies [36,52].
The developed protocol was then tested on Gloeocapsa sp. and Sphaerocystis sp. due to the significant
lysis difficulty and the viscous extracellular matrix that largely hinders chemical penetration, and a
100% success was achieved for both species. In addition, Nostoc sp. and Gloeocapsa sp. belong to the
cyanobacteria, and cf. Sphaerocystis sp. (hereafter referred to as Sphaerocystis sp.) is a genus of green
algae (Chlorophyceae), and these species are of high interest in astrobiological and environmental
studies as such taxa were responsible for creating the oxygen atmosphere through photosynthetic
activities billions of years ago. We believe that the effective on-chip lysis method that enables successful
genome amplification of the chosen species would serve as a guideline for bacterial single-cell genomics
in microfluidic platforms, and can be applied to a wide range of applications including biomedical
research, environmental studies, and future human space exploration missions.

2. Materials and Methods

2.1. Cell Wall Components of Chosen Bacterial Cells

The components of the cell wall are illustrated in Figure 1. Generally, the envelope of Corynebacterium
spp. consists of an outer membrane primarily composed of polysaccharides and proteins, a cell wall of
peptidoglycan layers and a typical plasma membrane bilayer as the inner membrane [53]; while the
envelope of cyanobacterial species mainly consists of an external layer composed of exopolysaccharide
and polymerized proteins, an outer membrane, a much thicker peptidoglycan layer and an inner
cytoplasmic membrane [54]. Sphaerocystis sp. is a genus of green algae (Chlorophyta), in which the cell
wall surrounds the cytoplasm membrane and usually is composed of microfibrillar polysaccharides
and is covered by an extracellular polysaccharide matrix [55,56]. Therefore, the lysis protocol was
designed to sequentially break through the cell envelope from the outermost to the innermost layer
with minimal interference with ϕ29 DNA polymerase activity.
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glutamicum single cells were amplified with an average of 15.78 ng DNA in the same manner. This is 
likely due to the fact that the peptidoglycan layer of gram-positive species is multilayered, with a 
thickness range of 30–100 nm, while the gram-negative species has a single-layered peptidoglycan 
layer of 2–10 nm [54,57]. This shows that additional treatments are necessary to sufficiently lyse 
species with thicker cell walls.  

2.2. Cell Preparation 

C. glutamicum (donated by Dr. Robin Patel, Mayo Clinic, Rochester, MN, USA) was cultured in 
a nutrient broth (DB) at 37 °C and harvested during log phase and diluted in a sample diluent (0.08% 
Pluronic F127 (Sigma Aldrich, St. Louis, MO, USA) in Phosphate Buffer Saline (PBS)) to ~106/mL to 
facilitate single-cell trapping. The Antarctic strain CCCryo 231-06 of the cyanobacterium Nostoc sp. 
and the Arctic strain CCCryo 101-99 of cf. Sphaerocystis sp. (cf. = Latin.: confer, meaning “needs to be 
discussed”; the taxonomic identity of this strain is not yet fully resolved) were obtained from the 
Culture Collection of Cryophilic Algae (CCCryo) at the Branch Bioanalytics and Bioprocesses of the 
Fraunhofer Institute for Cell Therapy and Immunology (IZI-BB) in Potsdam. They were collected, 
cultured, and maintained in cooperation with the German Aerospace Center (DLR) Berlin. Gloeocapsa 
sp. was obtained from the University of Edinburgh, UK. All samples were received in the desiccated 
form and re-suspended in the sample diluent.  

2.3. Microfluidic Experimental Setup 

The study was performed in an optofluidic platform initially developed by Landry et al. [27] 
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USA), and a customized Polydimethylsiloxane (PDMS) microfluidic chip with 12 parallel reaction 
systems (Figure 2a). Each reaction system has a series of valves that control the opening and closing 
of the chambers, allowing for the on-demand creation of isolated microenvironments (Figure 2b). The 
details of the device fabrication protocol are provided in the Supplementary Materials. Other 
microfluidic systems such as droplet microfluidics [58–60] are attractive alternatives due to their 
high-throughput, however, these are based-on random encapsulation based on probability which is 
more suitable for the studies of pure cultures. Due to the complexity of the Nostoc sp., Gloeocapsa sp. 
and Sphaerocystis sp. we obtained, optical tweezers were chosen to ensure higher target single-cell 
confidence with minimal contaminants. 

In this study, the microfluidic channels for sample introduction were pre-soaked in the chip 
diluent (0.04% Pluronic F127 in PBS) for 30 min prior to experiments to prevent the cells from sticking 
to the PDMS channel surface during the cell sorting. Samples can be introduced into the chip, and 
single cells can be trapped and transported into microchambers by optical traps (Figure 2c). The 
valves of these chambers then can be closed to isolate the single cells. Visually identifiable 
contaminating cells can be trapped and transported out of the chambers to ensure only the target cell 
is in the chamber prior to the lysis step. The laser power at the objective was measured to be 50 mW, 

Figure 1. A representative illustration of the cell envelops of Corynebacterium, cyanobacterium species,
and green algae.

Others have proven that following the lysis instruction of the Relpli-g Single Cell kit (Qiagen)
would achieve a 90% amplification rate of single Escherichia coli [27]. However, only 30% of
C. glutamicum single cells were amplified with an average of 15.78 ng DNA in the same manner.
This is likely due to the fact that the peptidoglycan layer of gram-positive species is multilayered, with
a thickness range of 30–100 nm, while the gram-negative species has a single-layered peptidoglycan
layer of 2–10 nm [54,57]. This shows that additional treatments are necessary to sufficiently lyse species
with thicker cell walls.

2.2. Cell Preparation

C. glutamicum (donated by Dr. Robin Patel, Mayo Clinic, Rochester, MN, USA) was cultured in a
nutrient broth (DB) at 37 ◦C and harvested during log phase and diluted in a sample diluent (0.08%
Pluronic F127 (Sigma Aldrich, St. Louis, MO, USA) in Phosphate Buffer Saline (PBS)) to ~106/mL to
facilitate single-cell trapping. The Antarctic strain CCCryo 231-06 of the cyanobacterium Nostoc sp.
and the Arctic strain CCCryo 101-99 of cf. Sphaerocystis sp. (cf. = Latin.: confer, meaning “needs to
be discussed”; the taxonomic identity of this strain is not yet fully resolved) were obtained from the
Culture Collection of Cryophilic Algae (CCCryo) at the Branch Bioanalytics and Bioprocesses of the
Fraunhofer Institute for Cell Therapy and Immunology (IZI-BB) in Potsdam. They were collected,
cultured, and maintained in cooperation with the German Aerospace Center (DLR) Berlin. Gloeocapsa
sp. was obtained from the University of Edinburgh, UK. All samples were received in the desiccated
form and re-suspended in the sample diluent.

2.3. Microfluidic Experimental Setup

The study was performed in an optofluidic platform initially developed by Landry et al. [27]
and reconstructed at the Mayo Clinic (Rochester, MN, USA). Briefly, this platform integrates a
microscope (Nikon Eclipse, Melville, NY, USA), optical tweezers (1064 mn, Thorlabs, Newton, NJ,
USA), and a customized Polydimethylsiloxane (PDMS) microfluidic chip with 12 parallel reaction
systems (Figure 2a). Each reaction system has a series of valves that control the opening and closing
of the chambers, allowing for the on-demand creation of isolated microenvironments (Figure 2b).
The details of the device fabrication protocol are provided in the Supplementary Materials. Other
microfluidic systems such as droplet microfluidics [58–60] are attractive alternatives due to their
high-throughput, however, these are based-on random encapsulation based on probability which is
more suitable for the studies of pure cultures. Due to the complexity of the Nostoc sp., Gloeocapsa sp.
and Sphaerocystis sp. we obtained, optical tweezers were chosen to ensure higher target single-cell
confidence with minimal contaminants.

In this study, the microfluidic channels for sample introduction were pre-soaked in the chip diluent
(0.04% Pluronic F127 in PBS) for 30 min prior to experiments to prevent the cells from sticking to the
PDMS channel surface during the cell sorting. Samples can be introduced into the chip, and single
cells can be trapped and transported into microchambers by optical traps (Figure 2c). The valves of
these chambers then can be closed to isolate the single cells. Visually identifiable contaminating cells
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can be trapped and transported out of the chambers to ensure only the target cell is in the chamber
prior to the lysis step. The laser power at the objective was measured to be 50 mW, which was proven
by others with marginal effects on cell viability [61,62]. Genomic mutation of bacterial cells under the
effect of laser power has not been reported to the best of our knowledge, however, it would be valuable
to characterize this aspect in our future single-cell genomic studies. Reagents include lysis buffers
and DNA polymerase can be sequentially added to the isolated cells to perform chemical reactions.
The amplified product can be collected from the outlet ports of the chip and transferred into microwell
plates for downstream processing. All the supplies and reagents were filtered (0.2 µm), autoclaved
or UV-sterilized, except for the DNA polymerase. Ten single-cell reactions and two negative control
reactions were performed in each test.
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Figure 2. An overview of the optofluidic single-cell whole genome amplification (SC-WGA) platform.
(a) This platform integrates an advanced microscope, optical tweezers, and a microfluidic device.
The device consists of 12 parallel reaction systems. (b) The double-layer microfluidic device consists
of flow channels in the top layer and control channels in the bottom layer. Chambers are formed by
pressuring control channels into flow channels at their junctions. (c) Time-elapsed images of a single
Nostoc sp. cell is trapped and moved into a chamber. The inset illustrates the location of the cell in
the channel.

2.4. Choice of Lysis Buffer Components

The study started with REPLI-g Single Cell Kit (Qiagen, Germantown, MD, USA) instruction
as the baseline, along with the propriety D2 lysis buffer (concentrated alkaline) supplied in the kit.
Due to the insufficiency of the standard alkaline-based lysis protocol, we hypothesized that the
addition of brief heat-shock steps, an appropriate amount of lysozyme (Epicenter, Madison, WI, USA),
Dithiothreitol (DTT) (Biorad, Hercules, CA, USA) and Ethylenediaminetetraacetic acid (EDTA) would
significantly improve the lysis success for hard-to-lyse species according to the known effects of each
of these chemicals on the bacterial cell wall [42,46,63]. Note that EDTA was reported for enabling the
permeability of the outer membrane by chelating divalent cations that stabilizes negatively-charged
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sugars but with minor effects [36], therefore, we kept EDTA concentration at a constant value of 0.5 mM
without further optimization. Details of the concentration of lysozyme and DTT used in the lysis buffer
during the optimization process are presented in the Results and Discussion section.

2.5. Microfluidic Bacterial Lysis for SC-WGA Workflow

The general workflow is shown in Figure 3. After single-cell isolation in the microfluidic chip,
a heat-shock was performed by alternately placing the microfluidic chip on a hotplate and a cold block
for a controlled amount of time. Lysis reagents were introduced sequentially and the microfluidic
chip was placed on a hotplate for reagent incubation. After lytic reactions, the neutralized buffer in
the kit was added to terminate DNA denaturation at room temperature. The polymerase was mixed
according to the kit’s instruction and added into the reaction chambers, and the chip was placed on a
hotplate at 32 ◦C for 16 h. The amplification reaction was terminated by incubating the microfluidic
chip at 65 ◦C for 3 min and cooled on ice. Gel-loading pipette tips were inserted into the outlet ports of
the chip, and nuclease-free water was introduced into the chip to flush the amplified product into the
pipette tips until the fluid level reached the 20 µL mark. The product was collected and stored at 4 ◦C,
and a high-sensitivity Qubit assay (Thermo Fisher, Waltham, MA, USA) was performed to assess the
amount of the amplified genomic DNA from single cells. If the amplified genomic DNA from a single
cell was >25 ng while the DNA is not detectable in negative controls, we considered it a successful
lysis and amplification. No evaporation was observed during the process at elevated incubation
temperatures (up to 95 ◦C) as the fluid was contained in closed chambers. Details of the lysis buffer
incubation time and temperature used during the protocol optimization process are presented in the
Results and Discussion section. Note that the results from the protocol development processes that did
not lead to expected results (>25 ng) were also presented; however, we continued the optimization
until the average amount of DNA from a single cell was amplified to >25 ng.
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Figure 3. An overview of the workflow of single-cell isolation, lysis, and DNA amplification in
a microfluidic chip. The blue rectangles represent standard steps in an on-chip SC-WGA process.
The green box highlights the general steps of the lysis protocol developed and optimized.
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3. Results and Discussion

3.1. Optimization of Heat-Shock Treatment on C. glutamicum

Heat-shock is a physical treatment commonly used in bacterial transformation and lysis as it alters
the fluidity of the cell membrane and creates pores due to the sudden change in temperature [63–66].
We tested the effects of heat-shock temperature range on C. glutamicum as a pretreatment prior to
following the standard instruction (Figure 4). Performing heat-shock at different temperatures resulted
in different single-cell amplification rates and yields. Ice/65 ◦C slightly increased the single-cell
amplification rate by 10% and doubled the average amplified DNA amount, but the difference in
amplified DNA amount between the two conditions is not statistically significant. However, the
wide-spread amplified DNA amount (0.77–57.2 ng) suggests that the ice/65 ◦C treatment was sufficient
for certain single-cell replicates, but had a minor effect on the others possibly due to the stochastic cell
wall features of individual cells. To test if the heat-shock with a higher intensity would have a distinct
effect on the amplification rate for C. glutamicum single cells, more aggressive heat-shock tests were
attempted. When the upper temperature was increased to 90 ◦C, no detectable DNA was obtained
after amplification. We assume that the amplification failure was caused by the over-denaturation of
DNA rather than DNA degradation at high temperature, as DNA degradation starts at 100 ◦C [67]
and generally its melting temperature lies between 50–100 ◦C depending on factors including genome
size and guanine-cytosine content [68]. Since the D2 buffer already contained DNA denaturing agents,
incubating it at elevated temperature could possibly accelerate DNA denaturation.
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When the lower temperature was decreased to −80 ◦C, only 10% of the single cells amplified and
resulted in 2.9 ng DNA, while −20 ◦C/65 ◦C led to 90% of single-cell amplification with 6.81 ng of
DNA. Even though a more aggressive heat-shock is expected to exert stronger destabilization effect
on the bacterial cell wall through mechanical fracturing, DNA shearing could happen during ice
crystal formation [69] at extremely low temperatures which eventually lead to amplification failure.
We further investigated the effect of the number of heat-shock cycles by repeating the test with three
cycles of ice/65 ◦C treatment. This raised the lysis rate by 10% but lowered the amplified DNA to only
a few nanograms, which suggests that the template DNA quality may have been compromised during
the extended heat-shock cycles for C. glutamicum.
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3.2. Optimization of Lysozyme Treatment on C. glutamicum

To further increase the lysis rate and amplification yield, lysozyme was used after the heat-shock
due to its well-known effect of digesting the peptidoglycan layer [46,63]. We continued the lysis
optimization based on the optimal lysis condition achieved so far with other variables unaltered
(Figure 5). After one cycle of ice/65 ◦C heat-shock, 100 U/µL Ready-Lyse lysozyme was added
and incubated at 37 ◦C for 10 min; after that, the D2 buffer was added and incubated at 65 ◦C for
10 min prior to stopping the lytic reaction. Surprisingly, no amplification was measured in any of the
single-cell replicates. As a common bacterial DNA extraction reagent, lysozyme has not been reported
to cause DNA degradation [46]; besides, 200 U/µL of lysozyme poses marginal deleterious effect on
MDA-based genome amplification and has been widely used in various MDA reactions [42,58]. Due to
these reasons, we assume that the released DNA was overly denatured during the incubation of D2 at
65 ◦C. We verified this assumption by lowering the D2 buffer incubation temperature to 37 ◦C, and this
led to 10% of the amplification of single C. glutamicum cells with 1.76 ng DNA. However, the still
poor performance suggests that the combined use of heat-shock, lysozyme, and alkaline reagents was
too aggressive for C. glutamicum cells because the results above showed that the ice/65 ◦C treatment
combined with the alkaline-based lysis was already sufficient for certain single-cell replicates. To find
out an optimal condition, we used only lysozyme and the D2 buffer at 37 ◦C without heat-shock
treatment, and this resulted in 20% of the single-cell genome amplification with an average of 11.72 ng
DNA, and the single-cell amplification rate further increased to 30% with an average of 9.5 ng of
DNA when the D2 buffer was incubated at room temperature, thus confirming our assumption. These
results suggest that the elevated incubation temperature for the D2 alkaline buffer might have lysed
the C. glutamicum cells more effectively but may have caused damages to the template DNA; moreover,
this would narrow the window for finding out an ideal lysis condition while maintaining an acceptable
DNA integrity for successful amplification. For this reason, we decided to proceed with the protocol
optimization with the incubating D2 lysis buffer at room temperature rather than 37 ◦C since the
results from these two conditions were not statistically different.
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3.3. Optimization of Lysozyme Combined with DTT Treatment on C. glutamicum

Although using Ready-Lyse lysozyme followed by the D2 buffer did not lead to desirable
improvements in single-cell amplification, we assume that the lysozyme failed to reach and digest
the peptidoglycan layers in an effective manner. Therefore, the sulfhydryl compound DTT was used
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simultaneously with lysozyme because it is reported as an agent for degrading the external layers
due to its ability of breaking disulfide bonds, disrupting polysaccharide, and altering the extracellular
matrix of biofilms [70–72]. We used 100 mM DTT and 100 U/µL lysozyme simultaneously and
incubated them at 37 ◦C for 10 min, followed by adding the D2 buffer and incubating it at room
temperature for 10 min. Expectedly, the C. glutamicum single-cell amplification rate was raised to
80% with an average of 14.75 ng of DNA. However, under this lysis condition, most of the single-cell
replicates amplified to only 6–17 ng, and merely one single cell amplified to 48 ng, thus leading to
the widespread standard deviation. This shows that the same lysis condition could lead to significant
differences in cell lysis due to the stochastic features of different single cells within the same species,
which explains why it is generally easier to extract DNA from bulk cells without the need for intensive
lysis protocol development. Comparing with previous conditions in Figure 5, the improvement of
single-cell lysis and amplification by adding DTT implies that DTT assisted the bacterial cell lysis by
permeating the external layers to enable lysozyme to degrade peptidoglycan layers. As an effort to
further improve the amplification, the DTT concentration was increased to 200 mM while the lysozyme
remained 100 U/µL, however, no significant improvement in the amplification rate was achieved but
the DNA amount was increased by 21%, with the highest and lowest amplified DNA amount being
64 ng and 6 ng respectively. These results imply that 200 mM DTT is sufficient to break through the
external layer for lysozyme to take effect. Further improvement of cell wall penetration would possibly
rely on the increase of lysozyme concentration.

To find out whether DTT or lysozyme was more significant to the lysis process, 100 mM DTT and
200 U/µL lysozyme was used instead, and this achieved a 100% single C. glutamicum amplification,
however, the average DNA was lowered by 30%. These results imply that the increased concentration
of lysozyme penetrated the outer membrane of all the C. glutamicum replicates in the presence of
100 mM DTT but with rather low speed. This can explain why only 2 replicates were amplified to
>25 ng of DNA while the rest remained 6–10 ng. Thus, both DTT and lysozyme played a significant role
and the decreased concentration of either would compromise the amplification. Therefore, as a final
attempt, 200 mM DTT and 200 U/µL lysozyme was used at the same time; as predicted, this achieved a
100% amplification rate with an average of 29 ng DNA; and among the amplified single-cell replicates,
90% led to >25 ng DNA, improving significantly compared with the previous attempt (p-value = 0.017).
After the expected success of lysis and amplification of single C. glutamicum was achieved, we assessed
the integrity of the amplified DNA from single C. glutamicum cells in Tapestation (Agilent 2200, D1000
Screentape, Santa Clara, CA, USA), and the results show that the DNA was not degraded (Figure 6).
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3.4. The Cyanobacteria Species’ Cell Wall Description

As a gram-negative species, cyanobacteria cell wall structure is perhaps the largest and the most
diverse group of bacteria and is among the most challenging to break through. Some cyanobacteria
can have peptidoglycan layers of over 700 nm [73], and the degree of cross-linking of peptidoglycan
layer is 20–33% higher than most of the gram-negative species, similar to that of gram-positive species
(56–63%) [74]. In addition, cyanobacterial outer membranes components include carotenoids and
unusual fatty acids that are linked to the peptidoglycan layers via bridge-like coiled-coil domains [54].
These features make cyanobacterium perhaps the most difficult microbes to lyse for amplification and
thus has been rarely studied on a single-cell level. Therefore, it is necessary to rely on the combined
effects of heat-shock and aforementioned reagents with much-increased intensity to achieve the goal.

3.5. The Optimization of the Heat-Shock Treatment on Nostoc sp.

We started the investigation by treating the single cells with 200 U/µL Ready-Lyse lysozyme after
heat-shock (Figure 7). Unlike C. glutamicum, a cycle of ice/65 ◦C heat-shock did not pose any detectable
effect on Nostoc sp., instead, a cycle of −20 ◦C/65 ◦C heat-shock led to 10% of single-cell amplification
with 2.38 ng of DNA. However, no amplification was observed when a cycle of −80 ◦C/65 ◦C
heat-shock was performed. These phenomena show that bacteria with thicker walls are able of
enduring more aggressive thermal treatment with a larger temperature difference. Even so, extreme
temperatures are not ideal treatments for cell lysis even for species with thick, rigid and multilayered
cell walls due to the possibility of DNA shearing during ice crystal formation although the cell walls
may be shattered to some extent. To reinforce the Nostoc sp. cell wall destabilization while preserving
the integrity of the DNA template, a −20 ◦C/65 ◦C heat-shock was performed for 3 cycles consecutively.
As expected, the single-cell amplification rate was increased to 50% but the average DNA amount
still remained low. The further increase in the number of cycles did not induce statistically significant
improvement on either the amplification rate or the DNA amount. The tests on both C. glutamicum
and Nostoc sp. cells show that appropriate temperatures and cycles of heat-shock apparently assisted
the cell wall destabilization but only to a limited extent.
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Figure 7. The temperature range effect and cycles of heat-shock on Nostoc sp. lysis for SC-WGA. After
heat-shock treatment, a mixture of 200 U/µL Ready-Lyse lysozyme and 0.5 mM EDTA was added and
incubated at 37 ◦C for 2 h. The D2 alkaline lysis buffer was then added and incubated at 65 ◦C for 2 h.
N = 10 single cells per condition; error bars represent standard deviation.
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3.6. The Optimization of Lysozyme Combined with the DTT Treatment on Nostoc sp.

Therefore, chemical effects were investigated to sequentially degrade the multi-layered
cyanobacterial cell walls following the heat-shock treatment. Even though lysozyme is known for
degrading peptidoglycan layers [75,76] and interfering with nucleic acid polymerase [42,77], for the
cyanobacterium, the peptidoglycan layers are encapsulated by the thick external layer and outer
membrane that prevents lysozyme to permeate through. Therefore, DTT was used as an agent for
breaking disulfide bonds and disrupt polysaccharide of the external layer [70–72].

Based on the optimal lysis condition investigated to this point, different concentrations of DTT
and its incubation conditions were tested following the 3 cycles of −20 ◦C/65 ◦C heat-shock treatment
and the incubation of a mixture of 100–200 mM DTT, 200 U/µL Ready-Lyse lysozyme, and 0.5 mM
EDTA at 37 ◦C for 2 h (Figure 8). The procedure was followed by the addition of the D2 lysis buffer and
incubation at 65 ◦C for 2 h. However, this attempt did not lead to any detectable amplification. In spite
of the thick and complex cyanobacterial cell wall structure, we assume that the elevated incubation
temperature of the D2 buffer poses a very narrow window of optimal incubation time which is
tedious and time-consuming to pinpoint, and lowering its incubation temperature would broaden the
window of optimal incubation length and allow for the timely stopping of the reactions prior to the
over-denaturation of the released DNA templates. Therefore, the D2 buffer incubation temperature
was decreased to 37 ◦C while all the other parameters remained unchanged. As expected, the amplified
single cell rate ramped to 80% with an average of 8.21 ng of DNA. This suggests that penetrating the
external layers of Nostoc sp. is critical for lysozyme to reach and digest the peptidoglycan layers.

Micromachines 2018, 9, x FOR PEER REVIEW  11 of 17 

 

3.6. The Optimization of Lysozyme Combined with the DTT Treatment on Nostoc sp. 

Therefore, chemical effects were investigated to sequentially degrade the multi-layered 
cyanobacterial cell walls following the heat-shock treatment. Even though lysozyme is known for 
degrading peptidoglycan layers [75,76] and interfering with nucleic acid polymerase [42,77], for the 
cyanobacterium, the peptidoglycan layers are encapsulated by the thick external layer and outer 
membrane that prevents lysozyme to permeate through. Therefore, DTT was used as an agent for 
breaking disulfide bonds and disrupt polysaccharide of the external layer [70–72]. 

Based on the optimal lysis condition investigated to this point, different concentrations of DTT 
and its incubation conditions were tested following the 3 cycles of −20 °C/65 °C heat-shock treatment 
and the incubation of a mixture of 100–200 mM DTT, 200 U/µL Ready-Lyse lysozyme, and 0.5 mM 
EDTA at 37 °C for 2 h (Figure 8). The procedure was followed by the addition of the D2 lysis buffer 
and incubation at 65 °C for 2 h. However, this attempt did not lead to any detectable amplification. 
In spite of the thick and complex cyanobacterial cell wall structure, we assume that the elevated 
incubation temperature of the D2 buffer poses a very narrow window of optimal incubation time 
which is tedious and time-consuming to pinpoint, and lowering its incubation temperature would 
broaden the window of optimal incubation length and allow for the timely stopping of the reactions 
prior to the over-denaturation of the released DNA templates. Therefore, the D2 buffer incubation 
temperature was decreased to 37 °C while all the other parameters remained unchanged. As 
expected, the amplified single cell rate ramped to 80% with an average of 8.21 ng of DNA. This 
suggests that penetrating the external layers of Nostoc sp. is critical for lysozyme to reach and digest 
the peptidoglycan layers.  

 
Figure 8. The DTT effect on Nostoc sp. lysis for SC-WGA. After the heat-shock treatment, a mixture of 
0.5 mM of EDTA, 200 U/µL of Ready-Lyse lysozyme, and the DTT of different concentrations was 
added to the cells and incubated at 37 °C for 2 h, followed by adding a D2 alkaline lysis buffer. N = 10 
single cells per condition; error bars represent standard deviation. 

As an attempt to further increase the DNA amount, the DTT concentration was doubled to 200 
mM; however, that caused only a 10% amplification rate with a minute amount of DNA. Since the 
increased DTT concentration was expected to degrade the external layer more sufficiently as with C. 
glutamicum, the decline in the amplification rate could be explained by the possibility that the over-
denaturation still occurred due to the extended D2 buffer incubation despite the lowered 

Figure 8. The DTT effect on Nostoc sp. lysis for SC-WGA. After the heat-shock treatment, a mixture
of 0.5 mM of EDTA, 200 U/µL of Ready-Lyse lysozyme, and the DTT of different concentrations was
added to the cells and incubated at 37 ◦C for 2 h, followed by adding a D2 alkaline lysis buffer. N = 10
single cells per condition; error bars represent standard deviation.

As an attempt to further increase the DNA amount, the DTT concentration was doubled to 200 mM;
however, that caused only a 10% amplification rate with a minute amount of DNA. Since the increased
DTT concentration was expected to degrade the external layer more sufficiently as with C. glutamicum,
the decline in the amplification rate could be explained by the possibility that the over-denaturation
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still occurred due to the extended D2 buffer incubation despite the lowered temperature. To test this
assumption, we incubated the D2 buffer for 1 h, and the tests were repeated on the use of 100 mM
and 200 mM DTT with all the other parameters unaltered. In the test with 100 mM DTT, the reduced
incubation time of D2 buffer doubled the amplified DNA amount to 14.32 ng; while in the test with
200 mM DTT, 100% of amplified Nostoc sp. single-cell lysis and amplification rate and 32.7 ng of
DNA was achieved, and 80% of single-cell replicates reached >25 ng DNA with statistically significant
improvements compared to the prior attempt (p-value = 0.002).

Despite of the fact that C. glutamicum and Nostoc sp. differ greatly in cell wall structures, it is
worthwhile to mention that the chemical components of the customized lysis buffer mixture, their
concentrations, and incubation temperature necessary to achieve optimal lysis condition for the
subsequent DNA amplification turned out to be the same (200 U/µL Ready-Lyse lysozyme, 200 mM
DTT, 0.5 mM EDTA, 37 ◦C). This shows that the customized mixture has the potential to be used
without modification for lysing many other bacterial species, while its incubation time is determined
by the thickness and the nature of the cell walls. Thermal treatment poses a distinctive effect on species
that have thick and rigid cell walls, but may not be necessary for those with comparatively thinner
cell walls. As a last step of lysis and denaturing template DNA, we recommend using the Qiagen D2
buffer at 37 ◦C or lower to pinpoint an optimal incubation time for the customized lysis buffer.

3.7. The Evaluation of the Optimized Lysis Protocol Using Gloeocapsa sp. and Sphaerocystis sp.

To validate the effectiveness of this bacterial lysis method for especially rigid species in single-cell
genomic studies, we tested the optimized buffer mixture and lysis conditions on another two
hard-to-lyse species (Figure 9). Gloeocapsa sp. was chosen as the first target due to the significant
challenges of cell wall disruption, even in bulk studies. Sphaerocystis sp. was chosen as a second
target because even though it is a eukaryotic algal species, its very thick extracellular matrix,
mainly composed of polysaccharides, encapsulated the cells, making it equally hard to penetrate
for single-cell DNA amplification in our earlier attempts. Due to these reasons, we assume that these
two species would be lysed sufficiently for amplification by directly using the protocol optimized for
Nostoc sp. without further efforts or modification. Each set of validation experiment was repeated
three times for Nostoc sp., Sphaerocystis sp. and Gloeocapsa sp. As expected, the results show that all
three species reached a 100% single-cell amplification rate and an average of 66.5 ng, 73.0 ng and
42.8 ng of DNA respectively, and 100% of single-cell replicates amplified to >25 ng DNA. However,
Nostoc sp., Gloeocapsa sp. and Sphaerocystis sp. had an average of 7.8 ng, 18.1 ng, and 8.7 ng of DNA
in the extracellular milieu that the cells were suspended in, but no DNA was detected in the sterile
PBS after amplification. However, the amplified genomic DNA showed a reasonable quality and
was easily distinguished from the extracellular milieu based on the Tapestation results (Figure 10).
We concluded that there was extracellular DNA in the cell suspension which was most likely caused
by the process of dissociating the cell clusters into single-cell suspensions for species that are tightly
clustered. For Nostoc sp., pestling was necessary to obtain sufficient single cells; and for Gloeocapsa sp.
and Sphaerocystis sp. the dissociation relied on extended pestling and mild sonication, respectively,
which could lead to cell disruption. Besides, unlike pure bacterial cultures, the environmental samples
would be more likely to contain contaminants.
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experiment was repeated three times. The sterile PBS as a true negative control did not show any
contamination after amplification (not shown in the graph).
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4. Conclusions

Single cell whole genome sequencing has found various applications in mammalian cells due to
the ease of cell lysis for genome amplification. However, it has rarely been applied to microbial cells,
and one of the major hurdles is the sufficient lysis of the multilayered cell walls without compromising
the integrity of the minute amount of DNA template for subsequent amplification. This challenge
is especially prominent in microfluidic platforms as the microfluidic-based genome amplification is
incompatible with standard bacterial cell lysis methods and commonly used lytic chemicals. This work
focused on developing effective bacterial single-cell lysis methods and performed subsequent SC-WGA
in a microfluidic platform to obtain >25 ng genomic DNA sufficient for downstream processing. By
combining thermal treatment and chemicals including lysozyme, EDTA, DTT and alkaline-based buffer,
100% of the bacterial single-cell lysis rate was achieved for both gram-positive and gram-negative
species including C. glutamicum, Nostoc sp. and Gloeocapsa sp., as well as Sphaerocystis sp.—a
hard-to-lyse eukaryotic species, without resorting to off-chip conventional steps, polymerase-inhibitive
reagents or multiple rounds of amplification. Even though species may react differently to the same
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lysis protocol, a combination of three primary lysis treatments applicable in microfluidic platforms
that degrade bacterial cell walls in their distinct ways offers a baseline for adapting the parameters
to reach optimal conditions for species of interest. This work addressed one of the major obstacles of
applying SC-WGS technologies to the microbial cells by providing a single-cell lysis guideline that can
be adapted to facilitate the lysis and amplification of various types of bacterial and algal cells that are
challenging for single-cell genome analyses in microfluidic systems. Ultimately, we envision that it
would be possible to perform single-cell genomic studies on a vast range of microbial cells in various
research including environmental studies and the genomic investigation of rapidly-growing and deadly
but multi-drug resistant microbial pathogens such as ESKAPE [78] (Enterococcus faecium, Staphylococcus
aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.)
using microfluidic platforms and would potentially lead to the discovery of effective therapies.
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