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ABSTRACT: Reservoir wettability is an important factor in the
process of reservoir reconstruction. Especially in hydrophilic
formation, it is easy to cause a water-locked phenomenon. A new
type of fluoropolymer microemulsion was prepared by emulsion
polymerization, and its structure and properties were characterized.
The average particle size in the prepared emulsion was about 2.0
μm. The emulsion had good stability and wettability reversal
performance for the storage of 30 days. After the treatment of 2.0
wt % emulsion, the contact angle between the core and water
changed from 26 to 128°, the core surface free energy decreased
from 66 to 2.6 mN/m, and the saturated water imbibition amount
of the core decreased from 1.38 to 0.15 g. The ability of the fluoropolymer microemulsion to enhance oil recovery was evaluated by
the visual displacement experiment. The fluoropolymer microemulsion can increase the displacement efficiency by more than 10%.
The wettability of the core changed from hydrophilicity to hydrophobicity, and wettability reversal was achieved.

1. INTRODUCTION

The wettability of a reservoir plays an important role in oil and
gas production and working fluid flowback.1,2 In the process of
oil and gas field development, a large amount of water-based
working fluid is often needed.3 In the reservoir with water
wettability, the migration of the water phase in the reservoir
has a great adhesion resistance. Furthermore, it causes a water-
locked phenomenon in the reservoir, which increases the
energy consumption in production and reduces the recovery of
oil, gas, and working fluid.4 In the process of drilling, welling,
and production, the retention of the water phase in porous
media is called a water-locked phenomenon or water lock
effect. Water lock reduces the reservoir permeability and oil−
gas relative permeability, which is not conducive to the
exploitation of oil and gas resources. The strong water
wettability of the reservoir is the main reason for this
phenomenon.5 Therefore, the transformation of reservoir
wettability is one of the core problems in reservoir
reconstruction. The change of the wettability of the reservoir
from hydrophilicity to hydrophobicity can release the water-
locked phenomenon.
The key problem to be solved in changing wettability is to

change the free energy of a solid surface.6 Generally speaking,
the higher the surface free energy, the stronger the adsorption
of the liquid on the surface, and vice versa.7 The wettability of
a surface can be changed in two ways. The direct way is to
change the roughness of the surface. The wettability of the
surface is enhanced by increasing the surface roughness.8 For
example, if the surface is hydrophobic, its hydrophobicity also

increases when the surface roughness increases.9 Another way
is to change the chemical structure of the surface material.10

The wetting property of the reservoir can be changed by
wetting inversion materials. Wetting reversal agents are mostly
surfactant materials. This kind of reversal agent has good
dispersibility.11 But it lacks erosion resistance and adsorption
capacity in the formation. Polymer materials can be used as
wetting reversal agents to solve these problems.12

Fluoropolymers have very low surface free energy due to the
small atomic radius of fluorine atoms and the large bond
energy of the C−F bond in the structure.13,14 Therefore,
fluoropolymers are widely used in the preparation of interface
materials with antiadhesion, antifriction, oil−water−gas
separation, and etc.15−17 But the preparation of fluorinated
materials is also limited because of their extremely low surface
free energy. The dispersity of fluoropolymers in water has
hindered their application in the development of oil and gas
fields.18,19 Fluoropolymers can be prepared as emulsions to
improve the dispersion in the water system.20,21 As reversal
agents, fluoropolymers are injected into the formation in the
form of polymer fluids. After adsorption on the rock surface in
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the formation channel, the wettability of the reservoir could be
changed.
In our previous research,22 we studied the wetting reversal of

fluoropolymers with similar structures. In this work, a new type
of fluoropolymer microemulsion was prepared by optimizing
the polymerization system. The emulsion has micron-level
particles and good dispersibility in the water system. The
polymer emulsion can be used as a wettability reversal agent.
We can change the wettability of the reservoir with low
permeability and enhance the recovery efficiency and the
recovery rate using the superhydrophobic property of the
fluoropolymer. In the application of enhancing oil and gas
recovery, it has reduced the surface free energy of the reservoir
and changed the wettability from hydrophilicity to hydro-
phobicity.

2. RESULTS AND DISCUSSION

2.1. Characterization. The prepared fluoropolymer was
separated and purified. The structure of the product was
characterized by Fourier transform infrared (FT-IR) and 13C
NMR spectroscopies. Figure 1b shows the FT-IR spectrum of
the product. The position of the peak at 1725 cm−1 belongs to
the characteristic absorption peak of the CO stretching
vibration of the ester structure. The peaks at 1202 and 1143
cm−1 belong to the C−O stretching vibration in the structure.
Wavenumbers of the peaks at 1330−943 cm−1 belong to the
characteristic absorption peak of the C−F stretching vibration

of the fluoroalkane structure.23 Figure 1c is the 13C NMR
spectrum of the product. The chemical shift at 170−160 ppm
belongs to the characteristic peaks of ester carbon in the
structure. The chemical shifts at 120 and 90 ppm belong to the
characteristic peaks of fluorine-substituted carbon in the
fluoropolymer.24 Other peaks were also marked at the
corresponding positions. Combined with the FT-IR and 13C
NMR results, the fluoropolymer is a block copolymer of F12
and MMA.
The size and shape of latex particles affect the performance

of an emulsion.25 The latex particles in the fluoropolymer
emulsion can be roughly observed using a polarizing
microscope. In the PM micrograph (Figure 2a), the bright
spots are the polymer latex particles, and the dark spots are air
bubbles in the emulsion. The latex particles distribute evenly in
the emulsion and with size at the micron level. It can be
observed more clearly using a transmission electron micro-
scope (TEM). In the TEM micrograph (Figure 2b), the latex
particles in the polymer emulsion are mostly spherical or
ellipsoidal. Combined with the particle size curve (Figure 2c),
the particle size distribution of the product is relatively
concentrated, and the particle size is about 2 μm. The prepared
product is a fluoropolymer microemulsion with uniform
distribution of emulsion particles and strong stability.
The formation is usually at a high temperature and pressure.

Organic chemicals cannot work because of the decomposition
at a high temperature.26,27 The thermal property of the product

Figure 1. Reaction scheme of the fluoropolymer (a). Spectrogram of the fluoropolymer for (b) FT-IR and (c) 13C NMR.
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was measured by thermogravimetry. In the TG curve (Figure
2d), the product has two-stage thermal decomposition. It is
consistent with the thermal decomposition characteristics of
the block copolymer. When the mass loss is at 5%, the
decomposition temperature is 200 °C. The results show that
the product has a strong temperature resistance. It can be used
in high-temperature reservoirs.
2.2. Wettability Reversal. Wettability expresses the

property for one fluid to adhere to a rock surface in the
presence of another immiscible fluid. Therefore, the wettability
type controls the distribution of fluids within the rock pore
space and framework. Wettability types can be divided into the
following: (1) Water-wet: the rock/mineral surface is coated
with water, while oil and gas occupy the central position of the
largest pores. (2) Oil-wet: the relative positions of oil and
water are reversed with respect to the water-wet state; the
rock/mineral surface is coated with oil and water is in the
center of the largest pores. (3) Intermediate wettability: this
term applies to reservoir rocks where there is some tendency
for both oil and water to adhere to the pore surface.28 The
wettability of the reservoir can be expressed by the contact
angle of the core surface.29 Figure 3 shows the contact angle
and surface free energy of cores treated with different
fluoropolymer emulsions. With the increase of concentration,
the contact angle between the core and water increased, and
the surface free energy of the core decreased. When the
fluoropolymer emulsion concentration was 2.0 wt %, the
contact angle between the core and water increased from 26°
(untreated) to 128°. The surface free energy of the core
decreased from 66 to 2.6 mN/m.

The contact angle results indicate that the prepared
fluoropolymer emulsion has a good wetting reversal ability.
After a certain concentration of the emulsion is applied to the
reservoir, the wettability of the core can be changed from
hydrophilicity to hydrophobicity, and the wettability reversal is
achieved.

2.3. Stability. The stability of the emulsion has a qualitative
impact on its properties. In general, the emulsion becomes
unstable after a certain storage time. The collision of latex
particles makes particles bigger and aggregate.30,31 The stability
of the emulsion can be represented by turbidity. The turbidity

Figure 2. Other characterization results of the product: (a) PM micrograph, (b) TEM micrograph, (c) particle size curve, and (d) TG curve.

Figure 3. Contact angle and surface free energy of cores treated with
different fluoropolymer emulsions.
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of 1 L of water containing 1 mg of SiO2 is a standard turbidity
unit and is denoted 1 NTU. In the experiment, 25 mL of the
polymer emulsion was added into a colorimetric tube. Under
room temperature and pressure, the turbidity of the emulsion
was measured after a period of storage time, and the stability of
the emulsion was observed.32 The turbidity of the emulsion
was 557.6 NTU at the initial state. When the emulsion was
stored for 30 days, the turbidity of the emulsion increased by
less than 2.5% to 571.5 NTU. After the treatment of 2.0 wt %
emulsion, the contact angle between the core and water
changed from 128 to 123°.
The results show that the fluoropolymer emulsion has good

stability and can be stored for a long time at room temperature
and pressure. After a certain period of storage, the
fluoropolymer emulsion can maintain a good wetting reversal
property.
2.4. Imbibition. Generally, the wettability of the reservoir

is water wetting. The liquid will be imbibed flowing through
the inner channel of the reservoir.33 The hydrophilic core has a
large amount of water imbibition because of the capillary force.
Imbibition increases the resistance of liquid migration and
reduces the passing capacity of the liquid.34 Figure 4 shows the

variation of core imbibition with time. The core imbibition
increased with time and finally reached saturation. With the
increase of fluoropolymer emulsion concentration, the
saturated imbibition capacity of the core decreased. When
the concentration was 2.0 wt %, the saturated imbibition of
water decreased from 1.38 to 0.15 g, and the saturated
imbibition time shortened from 120 to 60 min.
As a result, the fluoropolymer emulsion can reduce the

imbibition of the core. The treated core has become
hydrophobic. The reversal of reservoir wettability can reduce
the dialysis caused by the capillary force so as to reduce the
migration resistance of water on the core surface.
2.5. Adsorption. To observe its adsorption, the core

surface was tested by scanning electron microscopy (SEM) and
energy-dispersive spectroscopy (EDS). In the SEM photograph
(Figure 5a,b), it could be clearly observed that the surface of
the untreated core was uneven and the exposed rock was
angular. After being treated with 2.0 wt % fluoropolymer
emulsion, the adsorption layer obviously appeared on the core

surface. The whole surface showed a relatively flat structure,
which meant that the roughness of the core surface was
improved.
In the EDS results (Figure 5c,d), the element distribution

and mass content were obtained. The main elements on the
original core were carbon, silicon, oxygen, and common metal
elements, which indicated that the core was mainly composed
of silica, carbonate, and metal oxides.35 For comparison, a
considerable amount of fluorine element was added into the
treated core. As a result, the content of carbon element
increased, and the original elements were greatly reduced.
The adsorption of the fluoropolymer leads to the increase of

C and F contents. At the same time, it also causes the content
change of other elements. What makes the adsorption more
intense is the coordination between the ester group in the
polymer structure and the metal elements on the core surface.
Above all, the fluoropolymer can be effectively adsorbed on the
core surface. By changing the chemical structure of the core
surface, its roughness is also changed.

2.6. Recovery Rate. The prepared emulsion can change
the wettability of the reservoir and reduce the resistance caused
by imbibition. The prepared fluoropolymer emulsion can be
applied to oil and gas production to enhance the recovery
rate.36 By the visual displacement experiment, the oil recovery
rate was tested. In the experiment, we simulated the
displacement conditions of the two-stage displacement. First,
formation water was injected. Then, after 4 min, hydrogenated
polyacrylamide (HPAM) was dissolved in formation water and
injected continuously.
In contrast, 2.0 wt % fluoropolymer emulsion replaced the

formation water in HPAM displacement. Figure 6 shows the
curves of the recovery rate with time. When the fluoropolymer
emulsion was 2.0 wt %, the recovery rate increased more than
10% from 58.86 to 69.31%, and the recovery time decreased
from 12 to 9 min.
To summarize, the recovery efficiency of crude oil can be

effectively improved by adding a certain amount of the
fluoropolymer emulsion in the displacement fluid. The
application of the fluoropolymer emulsion to oil and gas
production can also shorten the recovery time.

3. CONCLUSIONS

In this work, a new type of fluoropolymer microemulsion was
prepared by emulsion polymerization. Fluorine-substituted
alkyl in the polymer structure can reduce the surface free
energy of the interface. The emulsion has micron-size particles
and good dispersibility and stability in water, making it play a
good role in water-based injection and production fluids. It can
also be applied to other fields to change the wettability of the
solid−liquid interface.
Fluoropolymers can change the chemical structure of the

core surface after adsorption. The wettability of the reservoir
changes from hydrophilicity to hydrophobicity. In the
application of reservoir reconstruction, the permeability of
the reservoir to the water phase is weakened while achieving
the inversion of reservoir wettability. Adding a certain
concentration of the fluoropolymer microemulsion can
enhance the recovery efficiency of crude oil and shorten the
recovery time.
There are still some problems to be solved, such as the high

cost of fluorine-containing monomers and the limitation of
applicable systems. In the later research, the focus of the

Figure 4. Curves of core imbibition with time.
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research is to reduce the use cost while ensuring the
performance of the product.

4. EXPERIMENTAL SECTION

4.1. Materials. The main reagents and samples used in the
experiment are listed in Table 1.

4.2. Preparation. Fifty milliliters of distilled water, 1.0 g of
MMA (0.01 mol), and 0.1 g of OBS were added into the
reaction vessel with condensation and stirring. Then, 4.0 g of
F12 (0.01 mol) and 0.1 g of AIBN were dissolved in 50 mL of
dimethylformamide (DMF) and added into the reaction vessel
and stirred at 60 °C for 15 min under ultrasonic
conditions.37,38 Then, the reaction was heated to 80 °C and
continued to react for 6 h. The emulsion with slight white
fluorescence was prepared as a fluoropolymer microemulsion
(Figure 1b). The reaction scheme is shown in Figure 1a.

4.3. Measurements. 4.3.1. Wettability. The core was cut
into cylinders about 1 cm long and soaked in a certain
concentration of the fluoropolymer emulsion. After being
soaked at room temperature and pressure for 24 h, the core
was taken out and dried at 60 °C for standby.39 The contact
angle between the core surface and water was measured by a

Figure 5. Adsorption and elements of the core surface (SEM: (a) untreated and (b) treated. EDS: (c) untreated and (d) treated).

Figure 6. Curves of the recovery rate with time.

Table 1. Materials in the Experiment

materials specifications source contributions

methyl methacrylate (MMA) AR, 99% Aladdin Shanghai, China
2,3,4,5,5,5-hexafluoro-2,4-bis(trifluoromethyl)pentyl methacrylate
(F12)

AR, 99% Xeojia Fluorine Silicon Chemical Harbin, China

azodiisobutyronitrile (AIBN) AR, 99% Aladdin Shanghai, China
2,5-dimethoxyaniline-4-sulfoanilide (OBS) AR, 99% Weng Jiang Reagent Guangdong, China
hydrogenated polyacrylamide (HPAM) nonionic Mn = 5000 000 Macklin Inc., Shanghai, China
core sample reservoir shale core K = 10−50 mD Shengli Oil Field, Sinopec Group Shandong, China
simulated oil crude oil ρ = 0.8902 g/m3 Shengli Oil Field, Sinopec Group Shandong, China
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contact angle instrument (JC2000D, POWEREACH, Shang-
hai, China).
Based on Young’s equation, the surface free energy of the

core was calculated by Berthelot’s rule40 according to the
following equation

θ γ γ= − +cos 1 2( / )sv lv
1/2

In the equation, θ is the contact angle between the core and
water (degree), γlv is the surface free energy of water (72.8
mN/m), and γsv is the core surface free energy (mN/m).
4.3.2. Imbibition. The core was cut into 5 cm long cylinders

and then treated according to the treatment method for
measuring the core contact angle. The bottom of the core was
in contact with the surface of 50 mL of distilled water
vertically, and the top of the core was connected to the
analytical balance. The increase of mass with time was
recorded as the water imbibition of the core.41

4.3.3. Visual Displacement. In the visual displacement
experiment, a microglass (5 × 5 cm2) was vacuumed and
injected with formation water. After the formation water was
injected, the simulated oil was injected into the glass model to
drive out the formation water. Then, the saturated oil model
was obtained (Figure 6, time 0). The oil recovery rate was
measured using a visual displacement device (QY-1, HAIAN,
Jiangsu, China).
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