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Tracking the T-cell repertoire after adoptive therapy
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In recent years, there has been increased interest in
using immunotherapy to treat cancer. Adoptive T-cell therapy

(ACT) involves the isolation and expansion of tumour-specific
T cells in vitro. Large numbers of tumour-specific T cells are
then infused back into cancer patients to provide a substantial
‘boost’ to anti-cancer immunity. While this personalised therapy
has shown promise across various cancer settings, response rates
still vary and significant energy is currently being invested
into understanding the immunology underpinning these diverse
clinical outcomes. Indeed, the burning question at present is
how do you identify an effective ACT product from ineffective?
Chaouis et al.1 recently probed this question by tracking ACT products
using T-cell receptor (TCR) deep sequencing. Using pre- and
post-infusion samples from melanoma, breast cancers and Merkel
cell carcinoma patients, the authors’ tracked clonotypes in the days to
months post infusion and compared clonotype parameters with
clinical parameters.
TCR deep sequencing is a significant stride forward from

previous Sanger sequencing-based methods designed around
T receptor beta variable (TRBV) primer-specific polymerase chain
reaction (PCR) or unbiased template-switch anchored reverse
transcription- PCR (RT-PCR) (reviewed2), which can only determine
dozens to hundreds of clonotypes per sample. In contrast, TCR deep
sequencing allows for thousands to millions of clonotypes to be
determined per run; typically profiling every clonotype in an input
sample. TCR deep sequencing platforms are based on TRBV primer-
specific multiplex PCR on DNA using Illumina sequencing3 or
unbiased template-switch anchored RT-PCR using 454 sequencing4 or
using Illumina sequencing.5 New technologies include single-cell
Drop-seq6 and single-cell unbiased template-switch anchored
RT-PCR7 that allow determination of TCR α/β (TCRαβ) pairings in
single T cells. An additional technique even allows for de novo
determination of clonotypes using total RNA-Seq data8 permitting
TCR mining across the many publically available RNA-Seq databases.
However given these TCR deep sequencing methodologies

are relatively new techniques, Chaouis et al1 first compared sequencing
data to conventional quantitative methods such as tetramer staining.
After infusion with a MART-1-specific monoclonal ACT product,
tetramer frequencies and absolute clonal frequencies correlated well
over months of sampling establishing confidence that TCR deep
sequencing can be used to quantitatively track ACT-derived T-cells
post infusion. Using deep sequencing, the authors showed
that tumour-specific T-cell frequencies increased from o0.001%
pre-infusion to a median of 1.5% in the days post infusion. Overall,
these frequencies generally waned during the weeks following

post infusion. Of note, the clonotype diversity and clonal hierarchy
of the ACT products pre-infusion were heterogeneous and could
not predict clinical outcome. Additionally, for some patients,
the clonal hierarchies in the ACT product did not correlate with the
peak clonotype hierarchy’s post infusion suggesting considerable
restructuring of the T-cell repertoire once the product went
in vivo. When looking at clonotype persistence after polyclonal
ACT infusion, the authors showed that patients with complete
remissions maintained high frequency of a single immunodominant
clonotype that persisted for many months post infusion.1 When
calculating the ‘longevity’ of infused clonotypes, they found patients
with complete remission had clonotypes that could expand and
persist in vivo exhibiting half-lives 2- to 13-fold longer than in
patients with partial remission, stable disease or progressive
disease (Figure 1). Interestingly, across all patients, the majority of
clonotypes expanded in T-cell products were not detected in the
peripheral blood mononuclear cells (PBMC) before infusion indicat-
ing preferential expansion of rare clonotypes (o0.001%) during
in vitro culture and suggesting some confines of limiting blood
sampling even while using a TCR deep sequencing readout.
Collectively, this study highlights how TCR deep sequencing

could one day provide predictive information on ACT
product ‘quality’ and patient outcome. The authors show that
sustained clinical responses result from the in vitro expansion of
rare clonotypes that go on to dominate the tumour-specific T-cell
repertoire in vivo. Currently, the origins of these low-frequency
clonotypes are not known. These rare T cells could be
low-frequency effector cells, naive cells or possibly even memory
stem cells,9,10 which are known to have superior anti-cancer
properties.11 The authors suggested that the culturing method
(antigen-pulsed dendritic cells in the presence of interleukin
21 (IL-21)) stimulated naive T cells to expand in the ACT
product and subsist in vivo in sustained responders. However, this is
speculative, and more details are required to understand the origins
of these low-frequency clonotypes and how they can be identified
and manipulated to improve the impact of ACT products.
Given advances in single-cell transcriptomics, which can now provide
both the TCRαβ sequence and transcriptional landscape of individual
T cells,7 retrospective analysis of effective clonotypes in ACT
could reveal many details about the ‘quality’ of superior
T-cell clonotypes in ACT products. Mechanisms for duplicating
this phenotype (cytokine cocktails, CRISPR gene editing and so on)
could be developed and applied to GMP manufacture to better
'groom' T-cell products for the in vivo environment.
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Indeed, persistence is encouraged as TCR deep sequencing can
reveal strong correlates of disease. For instance, TCR deep sequencing
has been adapted as a tool to assess minimal residual disease
in lymphoid malignancies to very high resolution.12 In immunother-
apy, TCR deep sequencing revealed increased TCR clonality
within tumour biopsies from advanced melanoma patients correlated
with response to monoclonal antibody against PD-1.13 The
same conclusion was drawn from a second group showing
increased clonality was predictive of response to PD-1 blockade
but not CTLA-4 blockade.14 Highly expanded clonotypes have also
been observed in tumour infiltrating lymphocytes (TIL) in
melanoma,15 where clonal size positively correlated with PD-1
expression. However, some complexity is introduced when taking
into account the mutation load of the cancer. A study was recently
performed with de novo assembly of TCR sequences from RNA-Seq
data from 29 cancer types from the The Cancer Genome Atlas
(TCGA).8 They found that TCR diversity of TILs positively correlated
with somatic mutation load. However, T-cell clonality does not
always associate with positive outcome as shown by large
clonal expansions in affected joints in newly diagnosed rheumatoid
arthritis patients.16

Future studies in ACT immunotherapy should focus on
biopsy sampling to: (i) verify that ACT products traffic to the
tumour and; (ii) determine precisely which clonotypes are doing
the damage at the site of disease. Finally, given that the T-cell
repertoire is highly structured2 increasingly sophisticated measures
of TCR parameters (entropy/diversity measurements, TRV/TRJ/CDR3
combinations and biochemistry and so on) could disclose
novel correlates of therapeutic response, particularly when paired
with T-cell transcriptional profiles7 in multivariate analysis. Once
these novel correlates of disease are established the next challenge
will be to develop pipelines that can deliver this information in
clinically helpful time frames and at low cost. Overall, bias in
the T-cell repertoire has been shown to have important biological
implications across a wide range of diseases including malignancy,
infectious disease and autoimmunity.2 It is clear that TCRs 'make a
difference'. Likewise, we are in the beginnings of immunomics

and new technologies such as TCR deep sequencing and single-cell
transcriptomics will give us new insights into the composition
of T-cell repertoires in the blood and tissues in unprecedented detail.
Indeed, using these techniques we are now understanding
the structure of the T-cell repertoire over the human life course,
observing gender differences in T-cell subsets and radical repertoire
remodelling with age.17,18 Immunomics will also allow us to determine
how these repertoires are shaped by infection,19 vaccination and/or
distorted by disease. New data gleaned from these and future
studies will allow us to understand and one day manipulate the
TCR repertoire for positive therapeutic outcomes across many human
diseases.
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Figure 1 Clinical response to adoptive T-cell therapy (ACT) correlates
with expanded immunodominant clonotypes that are at very low
frequencies ex vivo. The figure depicts PBMC that are stimulated
with tumour-associated antigens presented by APC to generate an ACT.
The polyclonal ACT is infused into patients and a second round of
expansion dynamics occurs in vivo. Patients with complete remission
comprise ACT products with immunodominant clonotypes that have
long half-lives post infusion. These clonotypes are at very low frequencies
in the starting PBMC material. In contrast, patients with progressive
disease comprise ACT products with diverse clonotypes with short half-lives
post infusion.
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