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Explicit causal reasoning is needed to prevent prognostic

models being victims of their own success
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The recent perspective by Lenert et al1 provides an accessible and in-

formative overview of the full life cycle of prognostic models, com-

prising development, deployment, maintenance, and surveillance.

The perspective focuses particularly on the fundamental issue that

deployment of a prognostic model into clinical practice will lead to

changes in decision making or interventions, and hence, changes in

clinical outcomes. This has received little attention in the prognostic

modeling literature but is important because this changes predictor-

outcome associations, meaning that the performance of the model

degrades over time; therefore, prognostic models become “victims

of their own success.” More seriously, a prediction from such a

model is challenging to interpret, as it implicitly reflects both the

risk factors and the interventions that similar patients received, in

the historical data used to develop the prognostic model. The

authors rightly point out that “holistically modeling the outcome

and interventions(s)” and “incorporat[ing] the intervention space”

are required to overcome this concern.1 However, the proposed so-

lution of directly modeling interventions, or their surrogates, is not

sufficient. An explicit causal inference framework is required.

When the intended use of a prognostic model is to support deci-

sions concerning intervention(s), the counterfactual causal frame-

work provides a natural and powerful way to ensure that

predictions issued by the prognostic model are useful, interpret-

able, and less vulnerable to degradation over time. The framework

allows predictions to be used to answer “what if” questions; for an

introduction, see Hernan and Robbins.2 However, appropriate

modeling of these counterfactual scenarios is far more challenging

than pure prediction, particularly in the presence of time-

dependent confounding. Here, standard regression modeling

becomes inadequate and specialist techniques are required.2 In the

scenarios carefully articulated by Lenert et al, in which risk models

are used to alert to a high-risk situation and thereby inform inter-

vention, one should primarily be interested in the counterfactual

“treatment-naı̈ve” prediction: in other words, “what is the risk of

outcome for this individual if we do not intervene?” Failure to ex-

plicitly model this treatment-naı̈ve prediction will lead to high-risk

patients being classified inappropriately as low risk, as their pre-

diction is reflective of interventions made to lower the risk of simi-

lar patients in the past.3 This situation becomes more pronounced

when a successful model is updated, as interventions made based

on the predictions from the model are hoped to change the risk.

Recently, we illustrated how to calculate treatment-naı̈ve risk in

the presence of “treatment drop-in,” a scenario in which patients

begin taking treatments after the time a prediction is made but be-

fore the outcome.4

With treatment-naı̈ve risk as a baseline, one can move to evalu-

ating predictions under a range of different interventions; the

counterfactual causal framework allows a model to be interro-

gated with a series of “what if” questions. Comparison of the out-

come predictions or distributions under different scenarios

can then naturally provide information to support intervention

decisions.

Alongside this counterfactual framework, we agree with Lenert

et al that “robust performance surveillance of models in clinical use”

is required postdeployment as part of prognostic model maintenance

and model surveillance. However, doing this through so-called static

updating, in which previous iterations of a risk model are refined

according to new datasets observed in batches, still requires timely

identification of performance drift. This often leads to an

identification-action latency period, in which noticing and acting on

a deterioration in a model’s performance occurs much later in time

than should be acceptable in clinical practice. This is amplified by a

lower frequency of updating but could be mitigated through contin-

uous surveillance and maintenance of the prognostic models. So-
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called dynamic modeling is an emerging area of research5 that ena-

bles the continuous incorporation of surveillance and refinement

directly into the modeling processes and could prevent prognostic

models being “victims of their own success” if combined appropri-

ately with counterfactual frameworks.

While counterfactual prediction is only beginning to be applied

in prognostic model development, it is a technique that will allow

many of the issues eloquently described by Lenert and colleagues to

be mitigated. Moreover, it provides predictions that are arguably

closer to what a decision maker needs, and likely to be more robust

over time.
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