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Abstract. To identify genes regulated during skeletal 
muscle differentiation, we have infected mouse C2C12 
myoblasts with retroviral gene trap vectors, containing 
a promoterless marker gene with a 5' splice acceptor 
signal. Integration of the vector adjacent to an actively 
transcribed gene places the marker under the transcrip- 
tional control of the endogenous gene, while the adja- 
cent vector sequences facilitate cloning. The vector in- 
sertionally mutates the trapped locus and may also 
form fusion proteins with the endogenous gene prod- 
uct. We have screened several hundred clones, each 
containing a trapping vector integrated into a different 
endogenous gene. In agreement with previous esti- 
mates based on hybridization kinetics, we find that a 
large proportion of all genes expressed in myoblasts are 
regulated during differentiation. Many of these genes 
undergo unique temporal patterns of activation or re- 
pression during cell growth and myotube formation, 

and some show specific patterns of subcellular localiza- 
tion. The first gene we have identified with this strategy 
is the lysosomal cysteine protease cathepsin B. Expres- 
sion from the trapped allele is upregulated during early 
myoblast fusion and downregulated in myotubes. A di- 
rect role for cathepsin B in myoblast growth and fusion 
is suggested by the observation that the trapped cells 
deficient in cathepsin B activity have an unusual mor- 
phology and reduced survival in low-serum media and 
undergo differentiation with impaired cellular fusion. 
The phenotype is reproduced by antisense cathepsin B 
expression in parental C2C12 myoblasts. The cellular 
phenotype is similar to that observed in cultured myo- 
blasts from patients with I cell disease, in which there is 
diminished accumulation of lysosomal enzymes. This 
suggests that a specific deficiency of cathepsin B could 
contribute to the myopathic component of this illness. 

T 
HE expression of a myogenic basic helix-100p-helix 
(bHLH) 1 transcription factor of the MyoD family is 
sufficient to convert a variety of cultured cells into 

skeletal muscle (for review see Mtinsterberg and Lassar, 
1994), This initial switch is followed by an irreversible cas- 
cade of gene activation and repression events underlying 
the morphological differentiation. Earlier studies have an- 
alyzed global changes in sequence complexity and fre- 
quency distribution of messenger RNAs during muscle 
differentiation in vitro using DNA-RNA hybridization ki- 
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netics (Leibovitch et al., 1979). It was estimated that 
~30,0OO genes are expressed in skeletal myoblasts, and 
about two-thirds of those are regulated during the course 
of differentiation to myotubes. 

Gene trap vectors provide an alternative way to study 
both global and gene-specific changes in transcription and 
mRNA accumulation (Wurst et al., 1995; Skarnes et al., 
1995; DeGregori et al., 1994; Friedrich and Soriano, 1993). 
The vector that we used contains a promoterless marker 
gene with a 5' splice acceptor signal. Integration of the 
vector adjacent to an actively transcribed gene places the 
marker under the control of the endogenous transcription 
unit and facilitates its cloning. There are advantages com- 
pared to other approaches used to study gene induction or 
repression, such as subtractive hybridization or differential 
display. First, the trapping event is, in principle, indepen- 
dent of the abundance of the message, potentially allowing 
the identification of mRNA that exist in low numbers. 
Even differential display, the most sensitive of the hybrid- 
ization methods, shows a strong bias towards high copy 
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number transcripts (Bertioli et al., 1995). Second, the gene 
trap vectors may generate fusion products between the re- 
porter gene and part of the endogenous gene, which could 
include a subcellular localization signal, thereby providing 
information on the localization of the host encoded pro- 
tein. Third, although integration of the gene trap is most 
likely to result in a recessive loss of function mutation, 
some genes may be vulnerable to haploinsufficiency, and 
some established cell lines are hypodiploid (Siminovitch, 
1976). Integrations into such genes could result in a mu- 
tant phenotype and provide additional information on the 
function of the gene. 

We have therefore sought a strategy to identify and 
clone genes regulated during skeletal muscle differentia- 
tion employing retroviral gene traps, introduced into cul- 
tured mouse C2C12 mouse myoblasts. When C2C12 myo- 
blasts, growing in serum rich media, are placed into media 
with low serum concentration, they undergo differentia- 
tion characterized by the formation of myotubes. We have 
been able to screen hundreds of genes differentially regu- 
lated during muscle maturation and selectively pursue the 
cloning of those in which mutations produce the most in- 
teresting phenotypes and/or patterns of expression with 
respect to temporal sequence and subcellular localization. 

Among the first genes that we have identified in this 
manner is the lysosomal cysteine protease cathepsin B. We 
find that its expression is induced in myoblasts by serum 
starvation but downregulated in myotubes. Cells in which 
one cathepsin B allele is interrupted by the gene trap have 
a unique phenotype consisting of deficiency of myoblast 
fusion and an unusual growth morphology with decreased 
postmitotic survival. The phenotype is reproducible in pa- 
rental C2C12 myoblasts with antisense cathepsin B ex- 
pression. These results implicate cathepsin B in myoblast 
growth and fusion and suggest that a specific deficiency of 
cathepsin B could account for the myopathy of I cell dis- 
ease, in which there is reduced localization of lysosomal 
enzymes. 

Materials and Methods 

Cell Culture and Retroviral Infection 
Growth medium for C2C12 myoblasts and trapped subclones was Dul- 
becco's Modified Eagles Medium (DMEM) supplemented with 20% FCS. 
Differentiation was induced by culture for at least 48 h in serum poor me- 
dium (DMEM supplemented with 2% heat-inactivated horse serum). 1% 
penicillin/streptomycin was present in all media. The GP+E86 ROSAI3geo 
producer cell line was a gift from P. Soriano (FHCRC), and virus superna- 
tant was collected as described (Friedrich and Soriano, 1991). Retroviral 
infections were performed as described (Chen et al., 1994). Infected cells 
were trypsinized and replated in several 12-cm dishes in high-serum media 
in the presence of 0.5 mg/ml active concentration of G418. 

Recovery of Endogenous Sequences 
Endogenous sequences were recovered by a combination of 5' RACE, in- 
verse PCR, and adapter ligation/long range suppression PCR. 5' RACE 
with RNA adapter ligation was performed as described (Chen et al., 
1994). 

Inverse PCR was based on a protocol by van Lohuizen et al. (1991). 
Two amplification products are expected per genomic integration, each 
from one LTR. The product originating from the LTR located at the 5' 
end of the reporter gene includes part of the gene trap construct and is un- 
informative, but the product originating from the LTR located at the 3' 
end of the reporter gene includes flanking genomic sequence. To avoid an 

observed preferential amplification of the 5' product, the protocol was 
modified as follows: 3 l~g of genomic DNA were digested to completion 
with 20 U of HhaI in 1X PCR buffer (50 mM KCI, 10 mM Tris, pH 8.5, 2 
mM MgCI 2, 0.01% gelatin) in the presence of 0.01 Ixg RNase A in a final 
volume of 100 Ixl. After heat inactivation of the enzyme, one third of the 
restriction digest was used for a subsequent self-ligation step, in a total 
volume of 100 ixl adjusted with 1X PCR buffer, 1 Ixl of 10 mM ATP, and 1 Ixl 
of T4 DNA ligase (5 Weiss U//.tl). Ligation was performed for 15 rain at 
37°C followed by an overnight incubation at room temperature. Ligase 
was inactivated for 10 rain at 68°C, and 50 Ixl were digested with 20 U of 
XbaI for 60 min at 37°C. About one fifth of the restriction digest was used 
for a first round of PCR using two external primers, A (TCCATGCCT- 
T G C A A A A T G G C )  and B (GCGGCGGCCGCATGACCCTGTGCCT-  
TATT). First round of amplification was done in a 50-pA total volume con- 
taining 5 Ixl of 10× PCR buffer, 1 mM dNTPs, a 1-1xM concentration of 
each primer, and 2 U of AmpliTaq DNA polymerase (Perkin Elmer 
Corp., Norwalk, CT) using the following conditions: denaturation (94°C, 
30 s), annealing (58°C, 45 s), and extension (72°C, l min) for 35 cycles. 
TaqStart antibody (Clontech, Palo Alto, CA) was used to facilitate "hot 
start" PCR. 5 Ixl from the first round product were cut separately with 5 U 
of the following enzymes: XhoI or BamHl or Pstl that cut within the am- 
plified fragment originating from the gene trap vector. 1 Ixl of each one of 
these digestions was then used in the second round of nested priming, us- 
ing primers C (CGCGTCGACCTrGCCAACCTACAGGT)  and D (CTC- 
GCTTCTGTTCGCG) and conditions identical with the ones described 
above except for 25 cycles. The size of the amplification products obtained 
was between 300 and 1,000 bp and on the average ,-~400 bp. A source of 
background is amplification products originating from endogenous retro- 
viruses. These products co-appear occasionally (but not reproducibly) as 
fragments of °'300 bp and can be easily recognized and discarded by se- 
quence analysis. The PCR product was subcloned in the TA vector (Invi- 
trogen, San Diego, CA) and sequenced. 

Sequence data from the products of the 5' RACE, inverse PCR, and 
genomic walking was searched by BLAST (blast@ncbi.nlm.nih.gov). 

Sequence Confirmation of Cathepsin B Integration 
In the clone trapped at the cathepsin B locus, endogenous flanking se- 
quences were recovered through inverse PCR. Approximately 400 bp of 
sequence downstream of the retroviral integration site from the 3' LTR of 
the trapping vector to the leader C of mouse cathepsin B was essentially 
identical to published sequence data (Rhaissi et al., 1993). The integrity of 
the upstream cathepsin B genomic sequence was confirmed by genomic 
PCR, using a downstream primer contained within the I?,geo gene and 
three separate upstream primers, corresponding to genomic sequences 
1397 to 1420, 1610 to 1630, and 2329 to 2349. In each case, the expected 
size DNA fragment was uniquely amplified. 

X-Gai Staining 
13-Galactosidase activity was detected by staining cells fixed to the plate 
with X-gal. Cells were fixed by incubation for 5 rain in 4% paraformalde- 
hyde in phosphate buffered saline (PBS). The cells were washed three 
times, and then incubated at 37°C for 1-24 h in PBS to which was added 5 
mM K4Fe(CN)6, 5 mM K3Fe(CN)6, 1 mM MgCI2, and 1 mg/ml X-gal. 

Immunofluorescent Staining 
Immunofluorescent staining for ~3-galactosidase protein was performed by 
fixation of cells on plastic petri dishes for 3 min at room temperature in 
50% methanol/50% acetone, incubation with 1 txg/ml 5B88 mouse mono- 
clonal !3-galactosidase antibody (Life Technologies, Grand Island, NY) in 
PBS for 1 h at room temperature, and secondary incubation with fluores- 
cein-conjugated donkey ct-mouse antibody (Jackson Labs, West Grove, 
PA) at 20 ~g/ml in PBS for 30 min at room temperature, lmmunofluores- 
cent staining for the myosin heavy chain differentiation marker was per- 
formed by methanol/acetone fixation of cells growing in plastic dishes and 
primary incubation for i h at room temperature with 1:200 rabbit poly- 
clonal antiserum (Sigma Chem. Co., St. Louis, MO) in PBS with second- 
ary incubation with rhodamine-conjugated donkey a-rabbit antibody 
(Jackson Labs) at 20 Ixg/ml in PBS for 30 rain at room temperature. Im- 
munofluorescent detection of the myc-epitope tagged cathepsin B was 
performed by the same fixation method with primary incubation for 1 h at 
room temperature with 1:2 of mouse 9El0 hybridoma supernatant in PBS 
with secondary incubation with fluorescein-conjugated donkey a-mouse 
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antibody at 20 txg/ml in PBS for 30 min at room temperature and nuclear 
counterstaining with 0.5 txg/ml DAPI. The above staining was observed 
with a Zeiss photomicroscope III. 

Specific cathepsin B antisera were raised in rabbits against the mature 
double chain form from human liver, and an lgG fraction was purified 
(Campo et al., 1994; Moin et al., 1992; Sloane et al., 1994a). This antibody 
recognizes procathepsin B (Sloane et al., 1994a) and single and double 
chain forms of the mature enzyme in immunoblots (Campo et al., 1994; 
Moin et al., 1992) and immunoprecipitates (Sloane et al., 1994c) mature 
and pro forms of the enzyme. Intracellular cathepsin B was localized 
(Sloane et al., 1994c) by growing cells to 60-80% confluence on glass cov- 
erslips and fixing with 3.7% formaldehyde in PBS at room temperature. 
After washing with PBS, cells were blocked with 2 mg/ml BSA in PBS. All 
subsequent antibody and wash solutions contained 0.1% saponin. Cells 
were incubated with primary antibody for 2 h and washed. In controls, 
preimmune rabbit serum was substituted for the primary antibody. After 
blocking with normal 5% donkey serum, cells were incubated for 60 min 
with Texas red-conjugated donkey anti-rabbit antibody (Jackson Labs) at 
20 ~g/ml. After washing, the coverslips were mounted upside-down on 
slides with SlowFade (Molecular Probes, Eugene, OR) and observed with 
a Zeiss LSM 310 confocal microscope. 

Plasmids 
Mouse full-length preprocathepsin B cDNA (from pmCB58 (Chan et al., 
1986), a gift of A. Frankfater (Loyola, Chicago, IL) was cloned as an 
EcoRI fragment in either sense of antisense orientation into pEMSVscri- 
ben (Davis et al., 1987). The carboxyl terminus myc epitope tagged cathe- 
psin B construct was made by PCR of pmCB58 from bases 35 to 1047 
(containing the entire coding sequence) with BamHI and ClaI sites incor- 
porated into the upstream and downstream primers, respectively, and 
then ligated in frame into the corresponding sites of pCS2+(Myc 
epitope)6 (Turner and Weintraub. 1994; Rupp and Weintraub, 1994). 

DNA Transfection 
For stable transfection, 5 × 105 cells/60-mm petri dish were cotransfected 
in HBS with 0.5 txg pEMSVscribea-preprocathepsin B and 10 Ixg 
pSV2PAC (containing a puromycin resistance gene). Individual clones 
were selected for 14-21 d in 2 ixg/ml puromycin and then isolated and ex- 
panded. Subsequent experiments on growth and fusion were performed in 
the absence of puromycin. 

Reverse Transcription PCR 
To verify exon trapping from leader b of cathepsin B, RT PCR was per- 
formed using a primer specific to cathepsin B leader b from -2329 to 
-2309, following the numbering of Rhaissi et al., (1993), (CTGTGAT- 
TCTTGGTCACACA)  and a primer specific to the !3-galactosidase do- 
main of the [3-geo gene, nt 236 to 260 following the initiation codon 
(CCGTGCATCTGCCAGTI 'TGAGGGGA) .  A total of 200 ng of total 
RNA from the trapped cathepsin B clone was used. A control consisted of 
the same amount of total RNA from a different, arbitrarily chosen, clone 
trapped with ROSA[3geo. RT PCR was performed using the EZ rTth 
RNA PCR Kit (Perkin Elmer) following the manufacturer's default in- 
structions. 

FA CS Analysis 
FACS analysis of isolated nuclei from subconfluent myoblasts (~105 cells/ 
100-mm petri dish) in growth medium, was performed with propidium io- 
dide staining for DNA content as described (Vindelov et al., 1983). 

Immunoblotting 
105 cells were resuspended in 100 ixl of SDS-gel loading buffer (50 mM 
Tris, pH 6.8, 100 mM dithiothreitol, 2% SDS, 1% bromophenol blue, 10% 
glycerol), heated to 100°C for 3 rain and 10 ~l were loaded and subject to 
10% SDS-PAGE and electro-transfer to nitrocellulose. The filter was in- 
cubated with a 1:1,000 dilution of rabbit a-human cathepsin B antiserum 
(Athens Research, Athens, GA) for 1 h. Secondary detection was by 
HRP-conjugated antibodies and ECL chemiluminescence (Amersham). 

Results 

Identification of Genes Regulated 
during Differentiation 

We used the ROSAI3geo (Friedrich and Soriano, 1991) 
retroviral gene trap containing a splice acceptor 5' to a 
promoterless reporter gene encoding a fusion protein of 
13-galactosidase and neomycin phosphotransferase (13geo). 
When integrated into intronic sequences of an active gene, 
the vector may generate spliced fusion transcripts between 
the reporter and endogenous genes. The resulting gene 
product could be then, in some instances, a fusion of the 
endogenous protein with 13geo. Cells expressing 13geo can 
be selected with G418 as well as assayed by staining with 
X-gal. Insertions in the 5' untranslated region of a gene 
are also possible; in this case, the reporter gene is tran- 
scribed under the control of the regulatory elements of the 
host locus and is translated using its own initiation codon. 
Insertions of the gene trap vector may also result in muta- 
tion of one allele of the host gene. The insertion of the 
vector sequences facilitates the eventual cloning and iden- 
tification of the trapped gene. 

In pilot experiments, C2C12 myoblasts growing in high 
serum media were infected with pROSAI3geo at low mul- 
tiplicity (to lessen the likelihood of more than one integra- 
tion event per cell), and the cells were plated at clonal den- 
sity with G418 selection. After allowing the clones to grow 
to ,'~1,000 cells/colony, the plates were stained with X-gal. 
Southern blots of six arbitrary clones probed with the vec- 
tor confirmed random integration of the trap at a single lo- 
cus in each clone (not shown). We examined several thou- 
sand trapped clones, each therefore corresponding to 
integration of the 13geo gene into a unique, active locus. A 
broad range of staining intensities, presumably corre- 
sponding to differing levels of expression of the endoge- 
nous transcript, was observed. We found that only ,--~32% 
of all G418 resistant clones show detectable X-gal staining. 
This results from the fact that G418 selection is more sen- 
sitive than X-gal staining (Friedrich and Soriano, 1991). 
However, the proportion of X-gal positive clones increases 
to 62% when the cells are stained after they have been in- 
duced to differentiate by culture for 3 d in low-serum me- 
dia. This indicates that at least one third of active myoblast 
genes are transcriptionally upregulated upon differentia- 
tion. A more detailed microscopic examination of individ- 
ual clones showed that the upregulation of gene expres- 
sion was either confined to the myotubes (such as in Fig. 1 
A), or it was obvious in both the myotubes and undifferen- 
tiated myoblasts (not shown). 

We also tested whether we can identify genes that are 
repressed upon differentiation. In these experiments we 
analyzed 130 individually isolated and expanded clones of 
cells trapped with ROSAI3geo. We characterized the pat- 
tern of X-gal staining both in growth media (high serum) 
and after 3 d in differentiation media (low serum). In 
agreement with the experiment described above, about 
one-third of the clones showed upregulation of X-gal 
staining upon differentiation. In addition to that, however, 
X-gal staining decreased in intensity in ,-~12% of the ini- 
tially positive clones after differentiation. In some clones 
the myoblasts were X-gal positive in growth medium; after 
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Figure 1. Survey of trapped clones. Cells were stained with X-gal (A, B, D, and E) or immunofluorescently stained with ~3-galactosidase 
antibody (C). Interesting expression patterns are shown. The trapped gene is myotube specific (A), myoblast specific (B), forms a fila- 
ment (C), is nuclear myotube specific (D), or cell division upregulated (E). 

incubation in differentiation media the residual myoblasts 
remained positive, but the myotubes were negative (an ex- 
ample shown in Fig. 1 B). In another two clones, the myo- 
blasts were positive in growth medium, but after incuba- 
tion in differentiation media both the residual myoblasts 
and the myotubes became negative (not shown). 

Survey of Patterns of Trapped Genes 
during Differentiation 
In some of the trapping events the reporter gene may form 
fusion proteins with the endogenous product (although this 
is enhanced when the initiation codon is removed from 
13geo, Friedrich and Soriano, 1991). Therefore, the expres- 
sion of the 13geo marker may reflect not only transcrip- 
tional control of the endogenous gene, but, in addition, the 
effects of translational regulation, posttranslational pro- 
cessing, and subcellular localization. For example, in one 
clone, immunofluorescent staining with ~3-galactosidase 

antibody revealed that 13geo fused to a protein capable of 
forming filaments (Fig. 1 C). Another clone shows X-gal 
staining only within the nuclei of myotubes, suggesting 
that the trapping forms a fusion to a nuclear-targeted, myo- 
tube-specific protein (Fig. 1 D). In a different clone there 
is intense cytoplasmic staining in doublets of cells complet- 
ing mitosis, suggesting cell cycle regulation of the trapped 
locus (Fig. 1 E). 

Gene Trap Integration in Cathepsin B 

We recovered endogenous DNA sequences adjacent to 
the trapping vector integration site through a combination 
of 5 'RACE with 13geo primers, inverse PCR, and adapter 
ligation long range suppression PCR (see Materials and 
Methods). The sequences were searched against on-line 
databases. Sequences frequently were not found within 
the database, presumably representing novel genes and 
unsequenced intronic regions of known genes. With the 
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advance of the genome project, a greater proportion of re- 
covered sequences should become identifiable. 

Among the first of previously described genes that we 
have identified with our strategy is the lysosomal cysteine 
protease cathepsin B (Rhaissi et al., 1993). In this case, the 
ROSAI3geo trap has integrated within an intron located 
between the two downstream (of its three proposed) tran- 
scription initiation sites (Fig. 2 A). As with the majority of 
gene trap events (Friedrich and Soriano, 1993), the vector 
has integrated into a 5' intron upstream of the endogenous 
initiation codon. An obvious potential exon trapping event 
would correspond to the exon initiating from leader b to 
splice at its 3' end to the 5' splice acceptor signal of the 
trapping vector. By performing RT PCR with an upstream 
primer contained within leader b and a downstream 
primer from 13-geo, we confirm this interpretation by spe- 
cifically amplifying an RNA product of the anticipated 
size (Fig. 2 B). No specific amplification occurs in the con- 
trol of an arbitrarily chosen clone corresponding to gene 
trap integration at a different locus. 

The pattern of X-gal staining in this clone indicates that 
13geo expression from the cathepsin B locus is undetectable 
in myoblasts (Fig. 3 A), but induced in residual, unfused 
myoblasts (Fig. 3 B) following differentiation. Previous 
studies have found increases in cathepsin B enzymatic ac- 
tivity during myoblast differentiation and fusion (B'echet 
et al., 1991; Kirschke et al., 1983; Jane and Dufresne, 
1994). X-gal staining of individual cells (as in Fig. 3 B) 
more precisely reveals the surprising absence of staining in 
mature myotubes. This probably represents downregula- 

Figure 3. Expression of [3-geo from cathepsin B locus. (A and B) 
X-gal staining. There is undetectable X-gal staining in myoblasts 
in growth medium (A), but staining is induced in residual, un- 
fused myoblasts after 2 d in differentiation medium (B). 

Figure 2. Integration site of 
gene trap in cathepsin B pro- 
moter (A). The trap is in- 
serted in an intron between 
the distal two (of three pro- 
posed) transcription initia- 
tion sites. The sequence fol- 
lows the numbering of 
Rhaissi et al. (1993). Poten- 
tial transcription factor bind- 
ing sites are noted. The 
dashed line indicates the 
usual splicing, whereas the 
solid line indicates the pre- 
dicted splicing from the 3' 
splice donor of leader b to 
the 5' splice acceptor of the 
gene trap. RT PCR (B), us- 
ing an upstream primer con- 
tained within leader b and a 
downstream primer from 
13-geo, specifically amplifies a 
fragment of the size (410 bp) 
predicted for the generation 
of the cathepsin B/13-geo fu- 
sion transcript. Control RNA 
comes from a different, arbi- 
trary trapped clone. 
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Figure 4. Growth phenotype of cathepsin B trapped clone, its complementation with cathepsin B expression, and reproduction in 
C2C12 cells with antisense cathepsin B. The cells of the trapped clone clump together in growth media, most apparent at the edge of a 
growing colony. Reduced survival of the trapped clone after 3 d in differentiation medium is evident compared to C2C12 wild-type cells. 
(Note the cellular debris.) Both phenotypes are complemented by stable cotransfection with preprocathepsin B cDNA. (Shown are rep- 
resentative results of the subclones listed in Table I.) C2C12 cells stably cotransfected with antisense cathepsin B appear similarly to the 
cathepsin B trapped clone. 

tion below the X-gal staining sensitivity level rather than 
complete repression, since immunodetection with cathep- 
sin B antibody reveals the presence of residual cathepsin B 
in myotubes (not shown). 

Growth and Fusion Phenotype of  Trapped Clone 

The trapped cell line displays several interesting pheno- 
types with respect to myoblast growth and fusion. 

When the trapped cell line is plated in growth medium, 
we observed an unusual cellular morphology. The cells ap- 
pear rounded and are frequently in globular clusters with 
pyknotic nuclei (Fig. 4). The morphology is most apparent 
at the growing edge of a colony when the cells are plated 
at clonal density. 

We also observed that the trapped clone grew more 
slowly, in that the cells required passaging at less frequent 
intervals than control C2C12 myoblasts. Time-lapse photo- 
microscopy of the trapped clone (not shown) suggests that 

many of the rounded cells fail to continue dividing. FACS 
analysis of myoblasts in growth medium (Fig. 5) reveals a 
substantial sub-G1 peak of cells in the trapped clone. Sub- 
G1 peaks correspond to necrotic and/or apoptotic cells 
(Qian et al., 1995; Tounekti et al., 1995; Schmid et al., 
1994; PeUicciari et al., 1993; Ormerod et al., 1992). In sup- 
port of this, we observed that there is obvious loss of cellu- 
lar integrity evident as soon as 72 h following placement of 
the trapped clone in differentiation medium (Fig. 4), 
whereas wild-type C2C12 cells remain intact. 

The phenotype most probably reflects an effect of hap- 
loinsufficiency due to interruption of one copy of the 
gene for cathepsin B. Immunofluorescent staining (Fig. 6, 
A and B) and immunoblotting (Fig. 6 C) with cathepsin B 
antibody reveals a reduction in cathepsin B protein. Note 
that for the immunoblotting, extracts were prepared from 
an equal number of cells; normalizing to total protein con- 
centration or comparing to an arbitrary control protein is 
problematic in cells with a deficiency of lysosomal pro- 
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Figure 5. FACS of cathepsin B trapped clone compared to 
C2C12 wild-type. FACS histogram of C2C12 (shaded) and cath- 
epsin B trapped clone. Nuclei isolated from subconfluent myo- 
blasts in growth medium were stained with propidium iodide. A 
sub-G1 peak, potentially indicative of an apoptotic and/or ne- 
crotic cell fraction, is unique to the trapped clone. 

teases, since total intracellular protein concentrations may 
be disturbed. 

It has been shown that another protease, meltrin, partic- 
ipates in myoblast fusion (Yagami-Hiromasa et al., 1995). 
The expression pattern of cathepsin B, induced in myo- 
blasts by serum starvation, but repressed in mature myo- 
tubes, suggests it could also participate in fusion and dif- 
ferentiation. In fact, the trapped cells form myosin heavy 
chain positive myotubes typically containing few nuclei 
(Fig. 7), in contrast to the control C2C12 cells in which 
multiple nuclei per myotube are present. Disruption of 
cathepsin B expression does indeed interfere with myo- 
blast fusion and differentiation. 

Complementation of Growth and Fusion 
Phenotypes in the Trapped Clone with Sense Cathepsin 
B Expression and Reproduction of the Phenotypes in 
C2C12 Cells with Antisense 
Cathepsin B Expression 

To verify that it is disruption of the cathepsin B locus that 
is responsible for the growth and fusion phenotype, and 
not random clonal variation or another effect of the gene 
trap, we complemented the phenotype by stable cotrans- 
fection with preprocathepsin B cDNA. As shown in Table I, 
the three described phenotypes ("rough edge" growth, 
poor myotube fusion, and necrosis with prolonged incuba- 
tion in differentiation medium) can all be complemented 
in multiple subclones transfected with sense constructs. 
The phenotypes are not complemented in control cotrans- 
fections with antisense preprocathepsin B cDNA. (The 3 
out of 23 cases where the phenotype was not comple- 
mented with the sense construct presumably represent 

transfected subclones which stably integrated only the 
drug resistance plasmid (pSV2PAC) but failed to receive 
the preprocathepsin B cDNA expression vector.) Repre- 
sentative images of the complemented subclones are dis- 
played to illustrate the growth phenotype (Fig. 4) and the 
fusion phenotype (Fig. 7). 

We next tested whether antisense expression of prepro- 
cathepsin B cDNA could reproduce the phenotype of the 
trapped clone. Three of ten tested subclones were stably 
cotransfected with the antisense cDNA (Table I, Figs. 4 
and 7), and displayed similar phenotypes with respect to 
growth, fusion, and survival in low-serum media. (We 
speculate that the other seven subclones did not express 
sufficient quantities of the antisense construct to make the 
phenotype apparent.) This experiment provides confirma- 
tion that reduced levels of cathepsin B expression have an 
effect on myoblast growth and fusion. 

Effect of Overexpression of Cathepsin B in C2C12 Cells 

We noticed that in the control experiments in which 
C2C12 cells were stably transfected with preprocathepsin 
B, precocious myotube formation was evident, even when 
the cells were at subconfluent densities in high-serum me- 
dia (Fig. 8 A). To verify this effect, we constructed a car- 
boxyl terminus myc-epitope tagged cathepsin B. When 
this construct is transiently transfected, cells expressing it 
can be identified by immunofluorescent staining for the 
epitope tag. If overexpression of cathepsin B promotes 
precocious fusion, the prediction is that the majority of the 
epitope tag positive cells will be found in myotubes rather 
than in the population of the unfused myoblasts. In tran- 
siently transfected C2C12 cells maintained in high serum, 
myosin heavy chain positive myotube formation (Fig. 8 B) 
is largely confined to cells that stain positively for the 
epitope tag (Fig. 8 C), confirming that cathepsin B overex- 
pression promotes myotube formation. 

Discussion 

We have targeted gene trap integrations into genes active 
in myoblasts, and by staining with X-gal in growth and dif- 
ferentiatiorr conditions, have identified genes whose ex- 
pression is regulated upon differentiation in vitro. Consis- 
tent with earlier estimates based on hybridization kinetics, 
we observed that a large proportion of the genes ex- 
pressed in myoblasts are regulated upon differentiation 
into myotubes. We have specifically identified the lysoso- 
mal cysteine protease cathepsin B (for review see Barrett 
and Kirschke, 1981; Sloane et al., 1994b) as being regu- 
lated during skeletal myoblast fusion and differentiation. 
The general promise of this approach is substantiated by 
our finding that, irt a related screen for genes repressed by 
MyoD under high serum conditions (Gogos, J., and M. 
Horwitz, unpublished experiments), we have found inte- 
gration of the trap into the first intron of the cell cycle con- 
trol, RNA transport, and guanine nucleotide exchange 
factor RCC1. This intron also encodes the small nucleolar 
RNA U17, suggesting that these are among the earliest 
genes downregulated as MyoD induces differentiation. 

There are three phenotypes in the trapped cells: unusual 
appearance, poor survival with prolonged incubation in 
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Figure 6. Reduced expression of cathepsin B in the trapped clone. Compared to C2C12 wild-type cells (A), 
immunofluorescent staining for cathepsin B reveals lower levels of the enzyme in the trapped cells (B). 
Representative fields are shown. (C) Immunoblotting of cell extracts obtained from an equal number of 
C2C12 cells and ceils from the trapped clone also reveals reduced levels of cathepsin B. Mature single-chain 
cathepsin B is 31 kD (Barrett and Kirschke 1981). Bar: (B) 10 ~m. 

differentiation media, and deficient myoblast fusion. We 
show by four independent experimental lines of evidence 
that these are attributable to haploinsufficiency of cathep- 
sin B: (I) The trapped cell lines are unequivocally deficient 
in cathepsin B production (by both immunofluorescent 
staining and Western blotting). (2) All three phenotypes 
may be complemented in numerous subclones stably 
transfected with sense cathepsin B. (3) All three pheno- 
types may be reproduced in C2C12 cells by antisense 
cathepsin B. (4) Overexpression of cathepsin B in C2C12 
myoblasts seems to produce the opposite effect of promot- 
ing fusion. 

The tagged cathepsin B allele is upregulated in residual, 
unfused cells following serum starvation induced differen- 
tiation. Its expression is downregulated in mature myo- 
tubes. Examination of the promoter sequence indicates 
several potential myogenic bHLH responsive E boxes as 
well as a potential MEF2-binding site (Fig. 2 A). In prelim- 

inary unpublished studies, we have found, surprisingly, 
that MEF2A expression suppresses transcription from the 
trapped cathepsin B allele, potentially suggesting that 
MEF2A could act as an inhibitor of cathepsin B expres- 
sion in myotubes. The timing of expression of cathepsin B 
from this and other studies has implicated it as a potential 
mediator of myoblast fusion and differentiation. B'echet 
et al. (1991) found an increase in cathepsin B activity with 
fetal bovine skeletal muscle differentiation. Kirschke et al. 
(1983) and Jane and Dufresne (1994) found an increase in 
cathepsin B activity to be temporally associated with fu- 
sion in cultured rat L6 myoblasts. Inhibitor studies have 
further suggested that proteases are required for myoblast 
fusion (Couch and Strittmatter, 1983). Support for this 
role comes from our observations that the trapped cells, 
with reduced cathepsin B expression because of the dis- 
ruption of one allele, differentiate poorly, forming myo- 
tubes with few nuclei. Recently, the metalloprotease melt- 
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Figure 7. Deficient fusion phenotype 
of cathepsin B trapped clone, its com- 
plementation with cathepsin B expres- 
sion and reproduction in C2C12 cells 
with antisense cathepsin B. The cathep- 
sin B trapped clone and C2C12 cells 
stably qotransfected with antisense 
cathepsin B appear similarly. Stable 
cotransfection of sense preprocathep- 
sin B complements the phenotype of 
the trapped clone. (Shown are repre- 
sentative results of the subclones listed 
in Table I.) 

rin has been shown to promote skeletal myoblast fusion 
(Yagami-Hiromasa et al., 1995), and a deficiency of an- 
other cysteine protease, calpain 3, has been found as a 
cause of autosomal recessive limb girdle muscular dystro- 
phy (Richard et al., 1995). Therefore, proteases do have a 
role in the normal maturation of myotubes. 

Evidence that lysosomal enzymes, in particular, partici- 
pate in myoblast fusion comes from observations in pa- 
tients with I cell disease (for review see Kornfeld and Sly, 

1995), an autosomal recessive mucolipidosis in which there 
is deficient targeting of lysosomal proteins, including 
cathepsin B (Kopitz et al., 1993). Among many problems, 
these patients have neuromuscular disability. Histopatho- 
logic skeletal myofibrillar disorganization has been inter- 
preted to suggest that there is a defect in developing rather 
than mature muscle (Kula et al., 1984). In particular, cul- 
tured skeletal myoblasts from these patients poorly differ- 
entiate and form myotubes with few nuclei (Shanske et al., 
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Table L Complementation of Growth and Fusion Phenotypes in 
Cathepsin B Trap Clone by Stable Transfection of 
Preprocathepsin B and Reproduction of Phenotypes in C2C12 
Cells by Stable Transfection of Antisense Preprocathepsin B 

Failure to form Failure to survive 
"Rough edge" multinucleate in low-serum 

growth myotubes media 

19/22 4/4 4/4 Cathepsin  B trap 

clone/sense 

cathepsin B 

Cathepsin  B trap 

clone/antisense 

cathepsin  B 

C2C 12/antisense 

cathepsin B 

C2C 12/sense 

cathepsin B 

0/45 0/4 0/4 

3/10 3/3 3/3 

0/10 1/10 0/10 

The numerator indicates the total number of transfected subclones displaying the phe- 
notype of rough edge growth, failure to form multinucleate myotubes, and failure to 
survive in low serum. The denominator is the total number of transfeeted subclones 
that were tested. The criteria for multinucleate myotube formation was whether 75% 
or more of myotubes (in 20 random low power fields) contained three or more nuclei 
after 48 b in differentiation medium. The criteria for rough edge growth and survival 
after 72 h incubation in low-serum differentiation media were by subjective observa- 
tion. (Representative results are illustrated in Figs. 4 and 7.) For the cathepsin B trap 
clone stably cotransfected with either sense or antisense cathepsin B, four of the 
clones were expanded and analyzed for the fusion and survival phenotypes. For the 
C2C12 ceils, stably cotransfected with antisense cathepsin B, the three clones (from 
the 10 surveyed) that demonstrated a rough edge growth phenotype were also exam- 
ined for the fusion and survival phenotypes. For the C2C12 cells, stably cotransfected 
with sense cathepsin B, 10 clones were examined for each of the three phenotypes. 

1981). We speculate that a specific lysosomal deficiency of 
cathepsin B may be sufficient to account for the myopathy 
of I cell disease. 

We find that the trapped cells have a distinctive growth 
defect, characterized by slow growth, clumping of cells 
(most prominent at the edge of a growing colony), and 
poor survival after prolonged incubation in low-serum dif- 
ferentiation medium. FACS analysis suggests a sizable 
portion of the population of myoblasts to correspond to a 
sub G1, and therefore presumably necrotic and/or apop- 
totic population. It is not clear why a deficiency of a lyso- 
somal protease should have such an effect on cell growth. 
However, two clinical observations may suggest clues. 
First, in a variety of human tumors of differing tissue 
types, cathepsin B activity has been inversely correlated 
with prognosis as a result of increased anaplasticity, faster 
growth, and potential for local and metastatic spread (Bar- 
rett and Kirschke, 1981; Sloane et al., 1994a, b,c; Campo et 
al., 1994; Moin et al., 1992). While one interpretation of 
this data has been that proteases are required for local tis- 
sue invasion, our results would suggest a more direct effect 
of cathepsin B upon the control of cell growth. Second, 
diseases of lysosomal enzyme deficiency have been associ- 
ated with decreased survival of postmitotic cells (for review 
see Neufeld, 1991). There is neuronal degeneration in the 
human storage diseases with deficiency of glycolipid deg- 
radation (Tay-Sachs, Neimann-Pick, and Gaucher disease) 
and the mucopolysaccharidoses (the Hurler, Hunter, San- 
filippo, and Morquio syndromes) in which there is a defi- 
ciency of lysosomal glycosaminoglycan degradation. Our 
results suggest that deficiencies of other hydrolytic lysoso- 
mal enzymes, including proteases, also may affect cell 
growth and survival. One possibility is that cathepsin B is 
required for the maturation of other lysosomal hydrolases, 

Figure 8. Precocious myotube formation in C2C12 cells with 
overexpression of cathepsin B. C2C12 wild-type cells fuse at sub- 
confluency in growth medium following stable cotransfection of 
preprocathepsin B (A). Transient transfection of myc-epitope 
tagged preprocathepsin B into C2C12 cells reveals that fusion in 
growth medium is largely confined to cells immunofluorescently 
staining positive for the epitope tag, as revealed by double immu- 
nofluorescent staining for the epitope tag with DAPI nuclear 
counterstain (B) and the myosin heavy chain differentiation 
marker (C). 

and that a deficiency of cathepsin B leads to general defi- 
ciency in the processing of other lysosomal proenzymes. 
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