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Abstract: Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic 
obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated 
inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as 
corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In 
light of such cases, novel targeted medications must be developed that could control neutrophilic inflammation while still 
maintaining their antibacterial/anti-fungal properties, thus allowing individuals to maintain effective innate immune 
responses to invading pathogens. The aim of this review is to describe the molecular mechanisms of neutrophil apoptosis 
and how these pathways are modulated by glucocorticoids. These new findings are of potential clinical value and provide 
further insight into treatment of neutrophilic inflammation in lung disease. 
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INTRODUCTION  

 Neutrophils are the primary line of defense for the innate 
immune system. These polymorphonuclear leukocytes are 
produced in the bone marrow from myeloid stem cells and 
constitute 50-70% of white blood cells. Neutrophils in 
human blood are partitioned between two systems: a) the 
circulating pool and b) the “marginating” pool which is 
transiently arrested in narrow capillaries primarily in the 
lung [1]. Neutrophils are equally distributed and constantly 
exchanged between the two systems [2]. When inflammation 
occurs, an active process of adhesion is initiated where 
neutrophils are arrested from circulating in the blood vessels 
and are guided by graded concentrations of multiple chemo-
attractants across the endothelial layer, pericyte sheath and 
basement membrane and into extravascular tissue [3]. Once 
removed from the circulating pool, neutrophils continue to 
migrate until they reach the site of inflammation.  
 Neutrophils act by recognizing pathogen associated 
molecular patterns (PAMPs) through their germline encoded 
toll like receptors (TLRs) which help them to combat 
bacterial and fungal infections through phagocytosis and the 
release of granule contents [4]. They also express receptors 
for antibody (fraction crystallizable receptors: FcRs) and 
complement (CRs), and thus act in concert with many com-
ponents of the immune system to fight infection. Bacterial 
killing is usually done through phagocytosis, or the uptake of 
individual pathogens. This process involves FcγRII and CR3 
receptors that work in cooperation with their co-receptors, 
FcγRIIIB and CR1 [5]. Once encapsulated into the phago-
some, molecules such as neutrophilic proteases and reactive 
oxygen species are used to digest the contents of the vacuole. 
Another mechanism of bacterial killing utilized by neutro-
phils is degranulation, which occurs when neutrophils 
release their pre-stored granule contents to the outside  
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environment. Different types of granules contain various 
substances designed to kill target cells [5].  
 Neutrophils also have the capacity to generate massive 
amounts of oxygen and nitrogen intermediates through “res-
piratory burst” and other mechanisms. These intermediates 
are produced as a result of the assembly and activation of 
NAPDH oxidase which reduces oxygen to superoxide anion. 
This results in the production of intermediates containing 
free radicals that can be used to destroy phagocytosed 
microbes [6].  
 Finally, a novel anti-microbial mechanism of neutrophils 
has recently been characterized [7]. Neutrophil extracellular 
traps (NETs) are extracellular proteins mainly composed of 
chromatin, with specific granular components attached to 
them [8]. These threads form cables and three-dimensional 
“web-like” structures, which are “spat out” in response to 
cytokine-, FcR- or TLR-mediated activation [9, 10]. NETs 
have been shown to trap and kill both bacteria and fungi [7]. 
It should be noted that NET formation is also a form of cell 
death that does not implicate caspases or DNA fragmentation 
as in apoptosis [10].  
 All of the above mentioned neutrophilic activities are 
modulated by specific regulatory molecules. Cytokines such 
as tumor necrosis factor-α (TNF- α), interleukin (IL)-1β, 
granulocyte-colony stimulating factor (G-CSF) and granu-
locyte-macrophage colony stimulating factor (GM-CSF) and 
chemokines such as IL-8 have profound effects on neutro-
phils. They amplify several responses such as adhesion and 
respiratory burst [5]. It has now been accepted that neutro-
phils are not only the target of, but are also a source of 
various cytokines and chemokines [11]. Although neutro-
phils were long considered to be devoid of transcriptional 
activity, new evidence suggests that neutrophils constitu-
tively or inducibly synthesize and release these mediators 
[12].  
 Lastly, it is important that neutrophils have the ability to 
discriminate between pathogenic and harmless antigens [13]. 
Antibodies, complement molecules and cytokines all affect 
neutrophil activity by specifically assisting neutrophils in 
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distinguishing the “self” from the “non-self” and deter-
mining the course and intensity of the general immune res-
ponse. Considering the aggressive nature of neutrophils, a 
non-specific response can cause damage to healthy tissue. 
When regulatory processes that control recruitment, acti-
vation and apoptosis are impaired, neutrophils may become 
the predominant contributor to tissue injury [5]. 

NEUTROPHILS AND AIRWAY INFLAMMATORY 
DISEASES  

 Inflammation, and chronic persistence of granulocytes in 
tissue, is now recognized as a central process in the patho-
genesis of diseases such as COPD and bronchial asthma 
[14]. In inflammation, the potential for neutrophils to cause 
tissue damage via the release of toxic reactive oxygen 
species and granule enzymes such as proteases is very high. 
For example, it has been reported in the airways that 
secondary necrosis of apoptotic neutrophils leads to release 
of cytotoxic granules, causing harm to resident structural 
cells [15]. 
 Although glucocorticoids are generally considered to be 
the treatment of choice in many inflammatory diseases, 
glucocorticoid resistance in diseases such as asthma [16, 17], 
COPD [18], septic shock [19], idiopathic pulmonary fibrosis 
[20] and others has been associated with neutrophilic inflam-
mation. It is known that neutrophilic asthma represents a 
fairly large proportion of the disease overall, up to 50% by 
some reports [21]. Although glucocorticoids lead to marked 
reduction of eosinophils, mast cells, T lymphocytes and mac-
rophages in sputum, bronchoalveolar lavage and bronchial 
wall [21], changes in the neutrophilic components of asthma 
are often the opposite, with reports of increase in neutrophils 
after glucocorticoid therapy [22, 23].  
 The functional longevity of neutrophils at inflamed sites 
is generally controlled by apoptosis [14]. In treatment of 
asthma, clinical improvement is associated with granulocyte 
apoptosis and appearance of apoptotic bodies within airway 
macrophages [24]. As such, understanding the processes that 
regulate constitutive and delayed neutrophil apoptosis may 
assist in identifying new therapeutic targets [25]. 

NEUTROPHIL APOPTOSIS 

 In the immune system, a fine balance is constantly 
maintained between apoptosis and proliferation of immune 
cells. Apoptosis plays an important role by preventing over-
activation of immunity, consequently avoiding self-inflicted 
pathology. Once neutrophil apoptosis has occurred, the 
apoptotic cells are recognized and phagocytosed by macro-
phages. This prevents the release of potentially harmful 
neutrophilic substances into the extracellular environment. 
Furthermore, neutrophil elimination by macrophages is also 
associated with a subsequent release of anti-inflammatory 
molecules such as IL-10 and transforming growth factor-β 
[26]. During this process, the potential for neutrophils to 
cause tissue damage via the release of toxic reactive oxygen 
species and granule enzymes such as proteases is lowered by 
apoptosis and inflammation is discouraged.  
 The above mentioned phenomena explain the association 
between clinical improvement in the treatment of asthma and 

granulocyte apoptosis. In other words, modulators of neutro-
phil apoptosis as a way to decrease inflammation could 
prove useful in the treatment of inflammatory lung disease. 
On the other hand, an excess of apoptosis in the immune 
system is also unfavorable as it predisposes the host to 
infections by destroying cells that are reactive to pathogens, 
thus providing an escape mechanism for invaders [27].  
 In the human body neutrophil apoptosis is regulated by 
multiple proteins. The most notable are caspases, the Bcl-2 
family of proteins including myeloid cell leukemia-1 (Mcl-
1), inhibitor of apoptosis proteins (IAPs), phoshatidylinositol 
3- kinases (PI3Ks) and mitogen activated protein kinases 
(MAPKs). Any agent (e.g. glucocorticoids) capable of 
influencing the activity of these proteins may exert an effect 
on neutrophil apoptosis.  
 Caspases are cysteine proteases that carry out the final 
stages of apoptosis by cleaving more than 200 substrate 
proteins at specific consensus sites [28]. Each caspase is 
present constitutively as a zymogen that must be proteo-
lytically cleaved in order to be activated. Caspases can be 
activated through either the extrinsic or intrinsic pathway. 
The binding of death ligands to their receptors on the cell 
surface activates the extrinsic pathway (for example Fas 
ligand binding the Fas receptor) [29]. In contrast, the 
intrinsic pathway is triggered in response to death stimuli 
from within the cell such as DNA damage or oncogene 
activation [30]. The intrinsic pathway is mediated by the 
mitochondrion which releases initiator proteins, namely 
cytochrome c and second mitochondria-derived activator of 
caspases (Smac) aka direct IAP binding protein with low pI 
(DIABLO). Due to the fact that these proteins are found in 
the mitochondria, the release of caspase activator proteins 
depends on the permeability of the mitochondrial membrane. 
As such, the molecules responsible for controlling mitochon-
drial membrane integrity constitute the major checkpoint of 
the intrinsic pathway. They are referred to as Bcl-2 family of 
proteins.  
 There are around 20 members of the Bcl-2 family of 
proteins. Bcl-2, Bcl-xl, Bcl-w, myeloid cell leukemia-1 
(Mcl-1) and A1 are all anti-apoptotic family members. The 
major pro-apoptotic members are the cytosolic Bcl-2-
associated X protein (Bax) and the outer mitochondrial 
membrane bound Bcl-2 homologous antagonist-killer (Bak) 
[31]. Activation of Bax/Bak is assured by other pro-
apoptotic Bcl-2 family members such as BH3 interacting 
domain death agonist (Bid). Although the specific activation 
mechanism is not clear, it has been proposed that some 
proteins interact directly with Bax/Bak to activate them [32]. 
In another proposed mechanism, these pro-apoptotic proteins 
bind to anti-apoptotic factors thereby neutralizing their effect 
on Bax/Bak [32]. In this way, the Bcl-2 family of proteins 
interacts, often blocking one another’s function, and con-
sequently the mitochondrial membrane integrity is efficiently 
controlled.  
 In an interesting report in 1998, Moulding et al. com-
pared the expression of various Bcl-2 family members in 
neutrophils. They reported a lack of Bcl-2 and Bcl-xL but an 
abundance of Mcl-1 protein [33]. Pro-survival signals such 
as cytokines and growth factors have been reported to induce 
Mcl-1 expression, whereas its levels are down-regulated 
during apoptosis [33]. There have been multiple mechanisms 
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proposed for the induction or repression of Mcl-1 at the 
promoter level. In GM-CSF stimulated neutrophils, the Janus 
kinase/signal transducers and activators of transcription 
(JAK/STAT) pathways as well as PI3K are important for the 
induction of Mcl-1 [34]. Moreover, IL-3 in murine pro-B 
cells brings about PU.1 mediated transcription of Mcl-1 
through activation of p38 MAPK [35]. The exact mode of 
function of Mcl-1 is not clear but it is thought to prevent loss 
of mitochondrial integrity and cytochrome c release. This 
may occur through heterodimerization with pro-apoptotic 
Bcl-2 family members such as Bim, Bak or Bax [34, 36].  
 Additional checkpoints for apoptosis include IAPs and 
PI3K. IAPs inhibit caspase activity by directly binding to 
them [37]. The pro-apoptotic mitochondrial proteins Smac/ 
DIABLO and Omi aka high temperature requirement A2 
(HtrA2) antagonize IAPs, thus allowing caspase activity to 
pursue [38]. Secondly, the PI3Ks constitute a unique and 
conserved family of intracellular lipid kinases that phos-
phorylate the 3’hydroxyl group of phosphatidylinositol and 
phosphoinositides [39]. PI3K seems to function as a 
signaling molecule that is ubiquitously needed for survival of 
neutrophils. Many anti-apoptotic agents require the PI3K 
signal [4, 40-43].  
 One last apoptotic checkpoint to be mentioned is the 
MAPKs. MAPKs are a family of conserved protein kinases 
that phosphorylate target protein substrates and regulate a 
number of cellular activities including gene expression, 
mitosis, cell movement, metabolism, cell survival and apop-
tosis. Conventional MAPKs consist of three family mem-
bers: the extracellular signal-regulated kinase (ERK); the c-
Jun NH2-terminal kinase (JNK); and the p38 MAPK. All 
three family members have distinct regulation and functions 
[44].  
 There is evidence that ERK, p38 and JNK MAPKs are all 
important in regulating granulocyte apoptosis [45]. More 
specifically, it has been shown that p38 MAPK is the only 
one of the three MAPK family members that is essential for 
dexamethasone induced survival of human neutrophils [46, 
47]. Another study done by Alvarado-Kristensson et al. con-
firmed the anti-apoptotic role of p38 MAPK by demons-
trating that it can phosphorylate and inactivate caspase-3 and 
caspase-8 [48]. Despite these findings, many other studies 
have demonstrated the pro-apoptotic effects of p38 MAPK. 
p38 MAPK has recently been shown to be essential in 
inducing apoptosis in human neutrophils exposed to 
Mycobacterium tuberculosis [49]. Taken together, these 
findings highlight the complexity of the regulatory processes 
that govern the activity of MAPKs. In fact, both p38 and 
JNK MAPK have dual pro-/anti-apoptotic roles, while ERK 
appears to be primarily important in the propagation of anti-
apoptotic signals [46, 47]. In the context of Dex induced 
survival of neutrophils, the exact role of p38 MAPK remains 
unknown.  

GLUCOCORTICOIDS AND NEUTROPHIL APOP-
TOSIS 

 Glucocorticoids are part of the steroid family of hor-
mones. They mediate their effect on target cells by directly 
binding to cytosolic glucocorticoid receptors (GRs). The 
unligated GR is normally found in the cytoplasm in a 

complex with multiple other proteins. Binding of the ligand 
then induces release of the receptor from its protein complex, 
dimerization and translocation to the nucleus where the GR 
can regulate the expression of genes. The nuclear GR binds 
to specific sequences of nucleic acids called Glucocorticoid 
response elements (GRE) in the promoter region of res-
ponsive genes and can either induce or repress transcription 
of various molecules including inflammatory mediators [50]. 
Indirect transcriptional effects of glucocorticoids result from 
their interaction with other transcription factors such as 
activating protein-1 (AP-1) and nuclear factor-κB (NF-κB) 
[51]. Glucocorticoids can also have non-transcriptional 
effects on cell activity by modulating various intra-cellular 
signaling pathways [52].  
 Perhaps the most important pharmacologic property of 
glucocorticoids is their immunosuppressive effect. Gluco-
corticoids have been shown to decrease expression of pro-
inflammatory molecules and increase expression of anti-
inflammatory molecules [53]. They also induce apoptosis of 
thymocytes, T cells and eosinophils [54]. However, although 
glucocorticoids are most notorious for their apoptosis 
inducing properties, it has become increasingly clear that 
they can also inhibit apoptosis and induce survival in many 
cell types  [55-70]. Various mechanisms for glucocorticoid 
mediated inhibition of apoptosis have been proposed that 
include up-regulation of anti-apoptotic Bcl-2 family 
members [55, 56, 70]; stabilization [62] and induction [68] 
of IAPs; activation of NF-κB [59, 61]; suppression of 
components of the extrinsic pathway of apoptosis [57, 65]; 
and induction of signaling molecules such as MAPK 
phosphatase-1 (MKP-1) and Serum and glucocorticoid 
activated kinase-1 (SGK-1) [63, 69] (Table 1). 
 
Table 1. Currently Proposed Mechanisms for Glucocorticoid 

Mediated Inhibition of Apoptosis 
 

a) Up-regulation of anti-apoptotic Bcl-2 family members [55, 56, 80]. 
b) Stabilization and induction of IAPs [47, 61, 62].  
c) Activation of NF-κB  [61]. 
d) Suppression of components of the extrinsic pathway of apoptosis [57, 

79]. 
e) Induction of signaling molecules such as MAPK phosphatase-1 

(MKP-1) and Serum and glucocorticoid activated kinase-1 (SGK-1) 
[63, 69]. 

 
 Many studies have reported the in vitro anti-apoptotic 
effect of glucocorticoids on human neutrophils [46, 47, 71-
73]. It is now clear that glucocorticoids including dexa-
methasone (Dex) inhibit spontaneous neutrophil apoptosis in 
a concentration-dependent manner [71-76]; the anti-apop-
totic effect of Dex is abolished by transcription/translation 
inhibitors [72, 75] and is mediated through the GR [72, 76, 
77]; and unlike GM-CSF and lipopolysaccharide (LPS), Dex 
does not lead to activation of neutrophils, as measured by IL-
8 and superoxide production [71]. 
 There have been a number of mechanisms proposed so 
far for the above described phenomenon of glucocorticoid-
mediated survival specific to neutrophils. One common 
theory is that the dominant negative GRβ isoform, which is 
expressed at a higher level than GRα in neutrophils, 
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interferes with GRα mediated expression of pro-apoptotic 
genes. The GRβ isoform has no transcriptional activity, lacks 
the ability to bind ligands and inhibits GRα activity [78] 
which could explain the unique neutrophil response to Dex 
stimulation. However, current results argue against trans-
repression of pro-apoptotic genes as a mechanism for 
glucocorticoid mediated survival [46, 47]. 
 In 2004, Chang et al. [79] found that bovine neutrophils 
treated with Dex demonstrated a decreased expression of Fas 
mRNA and protein, which correlated with decreased 
caspase-8 activity in these cells. Thus, the inhibition of the 
extrinsic pathway of apoptosis is a possible contributor to the 
glucocorticoid effect. In 2005, Madsen-Bouterse et al. [80] 
observed an increase of anti-apoptotic A1 and a decrease of 
pro-apoptotic Bak in Dex treated bovine neutrophils. These 
findings correlated with decreased activity of caspase-9, and 
were proposed as another possible mechanism of gluco-
corticoid-mediated survival. 
 Lastly, a few reports have confirmed the up regulation of 
Mcl-1 in neutrophils as a result of Dex stimulation [46, 47, 
81]. Interestingly, up-regulation of the short pro-apoptotic 
splice variant of Mcl-1 has not been observed. It has also 
been demonstrated that Mcl-1 anti-sense oligonucleotides 
abolish Dex-induced Mcl-1 expression and survival in 
human neutrophils [81]. 

MECHANISM OF GLUCOCORTICOID-MEDIATED 
NEUTROPHIL SURVIVAL 

 It has been suggested that glucocorticoids affect 
neutrophil apoptosis by suppressing various pro-apoptotic 
molecules. However, selective induction of the trans-
repressive function of GR by the GR modulator Compound 
A (CpdA) does not alter neutrophil apoptosis, suggesting 
that trans-repression is not responsible for the glucocorticoid 
effect [82]. Moreover, it has been observed that, in human 
neutrophils, the levels of pro-apoptotic proteins such as Fas, 
FasL, Bid and Bax are not significantly decreased following 
stimulation with Dex [46, 47]. Furthermore, the inhibitory 
impact of Dex on neutrophil apoptosis cannot be considered 
uniquely non-genomic, since the effect is abrogated by 
transcription/translation inhibitors [50, 83]. Consequently, it 
is now generally agreed that Dex does not act by decreasing 
pro-apoptotic factors [42, 81, 84, 85], but instead increases 
anti-apoptotic factors such as Mcl-1 and IAPs through trans-
activation (Fig. 1).  
 Mcl-1 is the sole anti-apoptotic member of the Bcl-2 
family consistently detected in human neutrophils at the 
protein level [25]. It has previously been observed that 
glucocorticoids can inhibit apoptosis by enhancing anti-
apoptotic Bcl-2 family members [55, 56, 70]. For instance, 
Sivertson et al. [81] have detected increases in Mcl-1 mRNA 

 
Fig. (1). A schematic model of glucocorticoid induced survival of human neutrophil. 

Following treatment of neutrophils with dexamethasone, the latter binds to GR inducing release of the receptor from its protein complex, 
dimerization and translocation to the nucleus where it can up regulate Mcl-1 and XIAP expression. The net effects are maintenance of 
mitochondrial integrity and suppression of caspases. GR also modulates P38 and PI3K activation that may influence Mcl-1 expression or 
function.  
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and protein in Dex treated human neutrophils. The conse-
quence of the up-regulation of Mcl-1 is seen at the 
mitochondrial level, as Mcl-1 is an inhibitor of Bax, a pro-
apoptotic Bcl-2 family member that mediates the loss of 
mitochondrial membrane integrity. In this way, glucocorti-
coids are able to regulate apoptosis at the mitochondrial level 
(Fig. 1). In addition, many studies have confirmed the impor-
tance of PI3K and p38 MAPK in neutrophils and other cell 
types that respond to pro-survival agents by enhancing Mcl-1 
[34, 35, 86].  
 Another family of proteins up-regulated as a result of 
glucocorticoid stimulation is the IAP family, which prevent 
caspase/Smac activity [37]. It has been shown that the level 
of XIAP, the prototypic IAP, can be maintained by gluco-
corticoids [46, 47, 87, 88]. This may partially account for the 
decreased activity of caspase-3 in neutrophil cultures [47].  
 It remains to be established whether glucocorticoids lead 
to direct activation of p38 MAPK and PI3K in neutrophils as 
it has been shown for GM-CSF [34, 47]. However, it is clear 
that Dex induced survival of neutrophils is suppressed by 
blocking PI3K and p38 but not JNK or ERK MAPK [34, 
47]. It has been observed that the effect of Dex on both 
neutrophil survival and Mcl-1 enhancement is dependent on 
protein translation and signaling through PI3K and p38 
MAPK [47] (Fig. 1). These findings indicate a role for PI3K 
and p38 MAPK in the translation dependent enhancement of 
Mcl-1 by Dex; however, these signaling pathways also have 
alternative translation-independent anti-apoptotic effects that 
may in fact contribute to glucocorticoid-mediated neutrophil 
survival. For instance, p38 has been shown to phosphorylate 
and deactivate caspases-3 and 8 [48]; and PI3K-initiates pro-
survival phosphorylation of Bad, Bax and caspase-9 [89, 90]. 
Thus, glucocorticoids may also exert non-transcriptional 
effects through these signaling pathways.  

CONCLUSION 

 In asthma, corticosteroids have been shown to increase 
airway tissue neutrophils [23, 91]. They have also been 
shown to decrease chemotactic factors for T cells and 
eosinophils but not neutrophils in asthmatic airway mucosa 
[92]. Furthermore, glucocorticoids are reportedly inefficient 
in controlling increased neutrophil matrix metalloproteinase 
(MMP) in severe asthma. Thus, glucocorticoids alone may 
not be sufficient to manage certain asthma cases, particularly 
those characterized by neutrophil-dominated inflammation.  
 From a physiological point of view, the neutrophilic 
reaction that follows in vivo glucocorticoid administration 
may have developed as a response to stress that boosts the 
innate immunity. For instance, it has been shown that 
although increased levels of corticosteroids in mice lead to a 
decrease in the lymphocyte population and suppression of 
the adaptive immune response, it increases neutrophil 
numbers and enhances anti-bacterial immunity. Mice with 
increased serum glucocorticoids that were exposed to L. 
monocytogenes and S. pneumonia demonstrated enhanced 
clearance of these bacterial infections [93].  
 Future studies are required in order to further clarify the 
mechanisms responsible for glucocorticoid induced survival 
of neutrophils. Determining the non-genomic effects of 

glucocorticoids, such as phosphorylation/dephosphorylation 
of key cellular proteins, or specifying the pathways 
downstream and upstream of PI3K/p38 MAPK may prove 
useful. It may also be helpful to identify the gene targets of 
glucocorticoids in neutrophils and to learn how induction/ 
repression of such genes impacts cellular function. Finally, 
one could even go a step further and assess the importance of 
the above mechanisms in survival mediated by other 
glucocorticoid drugs available.  
 Taken together, the observations presented previously 
provide a model in which Dex-mediated inhibition of pri-
mary human neutrophil apoptosis is associated with inc-
reased levels of Mcl-1 and XIAP. Up-regulation of these 
molecules correlates with suppression of various down-
stream pathways of apoptosis. These mechanisms may be 
initiated by GR-mediated trans-activation of anti-apoptotic 
genes independently of, or in association with, intra-cellular 
signaling molecules and transcription factors. Collectively, 
the above results underline mechanisms through which cor-
ticosteroids undesirably modulate apoptosis of an inflam-
matory cell. Development of GR ligands that selectively 
inhibit neutrophil inflammatory function without inducing 
survival is thus warranted. 
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