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In the beginning, cerebral ultrasound (US) was not considered feasible because the intact

skull was a seemingly impenetrable obstacle. For this reason, obtaining a clear image

resolution had been a challenge since the first use of neuroultrasound (NUS) for the

assessment of small deep brain structures. However, the improvements in transducer

technologies and advances in signal processing have refined the image resolution,

and the role of NUS has evolved as an imaging modality for the brain parenchyma

within multiple pathologies. This article summarizes ten crucial applications of cerebral

ultrasonography for the evaluation and management of neurocritical patients, whose

transfer from and to intensive care units poses a real problem to medical care staff. This

also encompasses ease of use, low cost, wide acceptance by patients, no radiation risk,

and relative independence from movement artifacts. Bedsides, availability and reliability

raised the interest of critical care intensivists in using it with increasing frequency. In this

mini-review, the usefulness and the advantages of US in the neurocritical care setting are

discussed regarding ten aspects to encourage the intensivist physician to practice this

important tool.

Keywords: transcranial Doppler, ultrasonography, intensive care unit, optic nerve sheath, transcranial color-coded

duplex, neurocritical care

INTRODUCTION

Ultrasound (US) has gained a prominent role in critical care clinical practice. Cerebral US
does not replace advanced and precise static imaging exams, it adds dynamic cerebrovascular
information of a non-invasive test at the bedside, that does not displace the patient from the
intensive care unit (ICU), does not expose them to radiation, and allows for prompt re-evaluation
after some intervention or clinical change (1, 2). Recent consensus has been published, such as
neuroultrasound (NUS) in basic US skills that intensivists should possess/acquire for the evaluation
and management of critically ill patients (3).

We propose the performance of NUS that comprises US measurement of the optic nerve
sheath diameter (ONSD), transcranial Doppler (TCD) evaluation by the “conventional” or “blind”
method, and transcranial color-coded duplex (TCCD). This study presents 10 reasons why NUS
should be part of the current clinical practice dealing with ICU patients, considering different
clinical contexts of patients admitted to a mixed general-neuro ICU.
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Non-invasive Intracranial Pressure: The
First and Legitimate One
Intracranial hypertension (IH) is one of the most hazardous
situations in neurocritical care, an emergency that can occur
in severe traumatic brain injury (TBI), extensive ischemia of
stroke or subarachnoid hemorrhage (SAH), the mass effect of
intracranial hemorrhage or another intracranial lesion, such as
tumor, abscess, and even advanced cerebral edema. It needs
prompt recognition and management (3). Not all patients will
have access to invasive intracranial pressure measurement, the
gold-standard method to verify IH (4).

Considering the non-invasive assessment of IH in the US
modality, the simplest one is the measurement of ONSD (4).
An enlarged ONSD (Figure 1A) may correspond to HI. Both
sides should be measured rather in a sequential comparison.
ONSD can enlarge a few minutes after IH begins (2, 5, 6) and
also decrease minutes after IH control. Studies are not uniform
about a precise cut-off to be considered enlarged ONSD. A meta-
analysis has demonstrated a wide range of diagnostic odds ratio
[67.5 (95% CI 29–135)] of sonographic ONSD measurement
to detect IH (7). Even though, diameters larger than 5–6mm
in adults are currently considered enlarged. In current clinical
practice, measurement of ONSD is a tool to alert about IH
suspicion or discard it (2).

Transcranial color-coded duplex and TCD are methods based
on cerebral blood flow (CBF) velocity that are related to cerebral
perfusion pressure (CPP). In IH and compromised CPP, there is a
decrease in diastolic flow velocity (Figure 1B) and consequently
an increase in the pulsatility index (PI) (systolic flow velocity-
diastolic flow velocity/mean flow velocity [MFV]). Diastolic flow
velocity near zero and PI values higher than 2 are strongly
suggestive of IH and low CPP (Figure 1B) (8). Studies have
described a good correlation between invasive CPP and non-
invasive CPP (estimated by the formula: nCPP = mean arterial
pressure× diastolic flow velocity/MFV+ 14mmHg) (R= 0.61; p
= 0.003) (2, 9). A recent study has demonstrated that TCD values
combined with ONSDmeasurement increased the accuracy [0.91
(0.84–0.97)] of non-invasive methods to detect IH (9).

Second and Paramount: Diagnosing
Cerebral Circulatory Arrest (CCA)
In many countries, it is necessary to use an image complementary
diagnostic tool besides a clinical exam for the legal diagnosis of
brain death (BD). TCD is a common method recognized by this
application. Brunser et al. (10) demonstrated a sensitivity and
specificity for the diagnosis of CCA of 100 and 98%, respectively,
and the positive and negative likelihood ratios for BD were 45
and 0, respectively. Besides, the TCD method has the advantages
of not moving the patient from ICU and not using contrast.

Before performing the TCD exam for CCA diagnosis,
the systolic arterial pressure must be at least 70 mmHg to
guarantee that this cerebral circulatory failure is not attributed
to hemodynamics conditions (10). The absence of CBF is then
confirmed by the presence of any of the 4 patterns in both
MCA and vertebral arteries: diastolic blunting (diastolic flow
velocity becomes zero), diastolic flow reversal or biphasic flow

(diastolic flow, which was previously zero, appears at the opposite
direction, indicating the retrograde flow of the diastolic phase
in the cardiac cycle), systolic flow spikes (minimal spikes that
correspond to cardiac systole), and no TCD signal. If there is no
TCD signal, it should have a previous detection of TCD signal
in the same acoustic window, performing TCD at least 2 times
within 30-min apart (2, 10).

Monitoring Cerebral Hemodynamic
Transcranial Doppler-based methods allow the detection of
cerebral circulation status through the analysis of CBF velocities
intermittently or continuously. Besides recognizing critical
patrons of CBF, compromised CPP, and IH, it can also be found
oligemia, hyperemia, and vasospasm (2). Those transcranial
findings can be common to different pathologies.

In acute stroke, TCD or TCCD can detect stenosis, large
vessels occlusion, hemorrhagic complication, recanalization, and
patrons of hypoperfusion and hyperperfusion that deserves
increased attention if CA is impaired. NUS can also detect
malignant infarction and early cerebral perfusion compromise to
be submitted to an early decompressive craniectomy (DC) (2).

In patients with TBI, besides IH, there are some characteristic
sonographic findings associated with unfavorable outcomes.
According to Martin et al., there are 3 sonographic phases that
can appear during the first days after TBI (11). On the first
day, it is expected oligemia with low CBF velocities. In the
next 3 days, hyperemia, with high velocity but not as high as
vasospasm. Moreover, in the next 10 d, vasospasm. All these
patrons can appear in a different order during the days after
TBI. The presence of any of these 3 patrons is related to the
development of unfavorable outcomes. Also, the presence of low
diastolic flow velocity and high pulsatility index is related to
unfavorable outcomes (12).

After DC, when the initial insult is resolved, an oligemic
patron is observed ipsilateral the skull defect while normal
velocities are observed on the opposite side. Besides, right after
cranioplasty, there is a normalization of those previous low
CBF velocities (13–16). The physical phenomenon that justifies
these cerebral hemodynamic differences is not completely
understood, but we must bear it in mind while proceeding with
this evaluation.

Assessing Vasospasm, the Forth, and Nice
One
In 2012, the American Heart Association guidelines for the
management of SAH recommended the use of TCD for
monitoring the development of arterial vasospasm with class
IIa/level B evidence, and this setting is one of the most common
and current applications of TCD use. Vasospasm corresponds
to a vessel narrowing and should not be used as a synonym
of clinical neurological deterioration in DCI (17), nevertheless,
TCD-detected vasospasm is significantly predictive of Delayed
cerebral ischemia in current studies.

For the middle cerebral artery (MCA), MFVs of <120 cm/s or
>200 cm/s, a rapid rise in flow velocities or a higher Lindegaard
Index (LI = MFV of MCA/MFV of ipsilateral internal carotid)
may predict the absence or presence of clinically significant
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FIGURE 1 | (A) The axial image of the optic nerve sheath diameter (ONSD) in a patient with increased ICP. The ONSD is measured with a linear transducer placed

over the closed eye and the measurement of the ONSD is performed perpendicularly to an electronic caliper positioned 3mm behind the retina. The same

measurement is performed at least 3 times (or more, if the variation in between is beyond 10%). Each eye will have a mean value. (B) MCA waveform with color

Doppler. PSV, Peak systolic velocity, in cm/s. VDV, End diastolic velocity, in cm/s. Note the Pulsatility Index (IP) suggesting high ICP.

angiographic MCA vasospasm (12, 17). An MFV <120 cm/s
has a 94% negative predictive value, while an MFV > 200
cm/s has an 87% positive predictive value. MCA vasospasm is
graded as: mild, MFV > 120–150 cm/s mild, MFV > 120–
150 cm/s or LR 3.0–4.5; moderate, MFV > 150–200 cm/s or
LR 4.5–6.0; severe, MFV > 200 cm/s or LR > 6.0, or LR 3.0–
4.5; moderate, MFV > 150–200 cm/s or LR 4.5–6.0; severe,
MFV > 200 cm/s or LR >6.0. For the basilar artery (BA),
BA/extracranial vertebral artery ratio >2 (Soustiel index) was
associated with 73% sensitivity and 80% specificity for BA
vasospasm (8).

In hyperemia, the MFVs of both intracerebral and
extracerebral vessels are elevated (LI < 3). After the rapid
increase of MFV at the onset of vasospasm, there is a slow daily
MFV reduction, around 6 cm per second per day (18). TCD
detects vasospasm when artery narrowing is over 25%, being
arteriography more sensitive than TCD to detect vasospasm (19).

The sonographic vasospasm diagnosis has special importance
when the neurological exam is compromised in poor-grade
patients or sedated patients. Guidelines in SAH recommend TCD
to be performed around every 48 h at least during the first 14 d,
the risky period to develop vasospasm (19).

In SAH, besides vasospasm, NUS findings can suggest
IH, hydrocephalus, rebleeding, and cerebral infarction. NUS
investigation can help to set the best moment to insert a
ventricular shunt and proceed with a DC (2).

Investigating Shunt
In patients with ischemic stroke or transient ischemic attack,
an early diagnostic evaluation is recommended for gaining
insights into the etiology of stroke and the planning of optimal
strategies to prevent recurrent stroke (20). TCD tool allows early

evaluation of the presence of patent foramen ovale (PFO) and/or
intrapulmonary arteriovenous shunt, still within ICU stay (21).

To detect microbubbles by TCD, a gaseous contrast agent is
injected into the peripheral vein or agitated saline bubble (10-
ml syringe filled with 9ml of saline solution and 1ml of air,
and microbubbles are produced by shaking the syringe). The
microbubbles pass from the right to the left circulation during
the cardiac cycle, enter the systemic circulation, and TCD picks
them up (9). TCD should be performed during normal breathing
and repeated in association with provocative maneuvers, such
as the Valsalva maneuver, and successive coughs to increase the
accuracy of the procedure (22) (Supplementary Material).

However, transesophageal echocardiography is considered the
gold standard for PFO diagnosis. It is a semi-invasive technique
that relies on the compliance of the patient to a great extent
and could not always detect latent shunts either. On the other
hand, a pooled analysis of a systematic literature review found
that TCD had 96.1% sensitivity (95% CI, 93.0–97.8) and 92.4%
specificity (95% CI, 85.5–96.1) compared to transesophageal
echocardiography for detection of right-to-left shunting (22).
Besides this, it is a more sensitive tool for detecting a shunt at
the non-cardiac level (i.e., patent ductus arteriosus) (23).

Sequential Cerebral US—A Helpful Tool in
Evaluating Hydrocephalus
Hydrocephalus is a devastating complication, and it can occur
in up to 30% of patients with SAH, but also in intracranial
hemorrhagic and/or mass lesions of the posterior fossa and
acute meningeal diseases (1, 2). Sequential non-invasive bedside
monitoring of the ventricular system is crucial in disturbances of
cerebrospinal fluid circulation, whereas part of them is comatose
or sedated, and clinical examination is not the easiest method to
monitor for hydrocephalus.
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Transcranial color-coded duplex section should start from
the mesencephalic plane, and the imaging of the butterfly-
shaped brainstem is a prerequisite to obtain a landmark for
orientation, which can be observed in 90–95% of the patients
(7, 23, 24). The largest transverse diameter of the third ventricle
with its hyperechogenic margins is imaged by tilting the duplex
beam approximately 10 degrees upward (Figure 2A). At this
plane, the transverse diameter of the third ventricle and of the
frontal horn of the contralateral lateral ventricle can be measured
(25). To ensure the accurate and reproducible measurement
of the ventricles’ widths, measurements with the US should
be performed from the ipsilateral to the contralateral inner
layer of the hyperechogenic ependyma (Figure 2B). Because the
diameter of the ventricles, particularly the lateral ones, depends
on the angle of the probe, the correlation between NUS and CT
measurements is higher for the widths of the third ventricles than
for the lateral ventricles (25).

Transcranial color-coded duplex can be used to follow
hydrocephalus (3, 6) and is considered a reliable technique to
predict the need for cerebrospinal fluid drainage in patients
with external ventricular drainage (EVD). It estimated that a
cut-off value of an increase of 5.5mm in ventricle width after
clamping had high sensitivity (100%) and negative predictive
value (100%) (3).

Detecting and Monitoring Intracranial
Hematomas
Neuroultrasound in intracranial hemorrhage can contribute with
information about the hematoma per se, but also about the
cerebral hemodynamics repercussions of its presence. TCCD can
detect the hyperechogenic aspect of an intracranial hematoma,
specially up to 3 d after hemorrhage but rarely after 14
days (10). It also estimates hematoma volume and monitors
its expansion and midline shift, identifying hydrocephalus
and hemorrhagic hydrocephalus, besides detecting a possible
CPP compromise. ONSD measurement can identify those
patients whose hematoma is causing IH, generally expected for
hematomas larger than 25ml (2). An initial NUS evaluation and
daily hematoma monitoring measurement are recommended
to early detect possible hematoma expansion and associated
complications (2). Those patients who expand intracerebral
hematoma or rebleed present an increased risk of developing an
unfavorable outcome (10).

Evaluation the Cerebral Autoregulation
(CA) in Critical Care Patients: Is There a
Place?
Cerebral autoregulation defines the brain’s capacity to provide
stable CBF despite fluctuations in mean arterial blood pressure
(BP) (26). CA assessments are generally classified as “static” or
“dynamic” and can be performed by measuring the CBF velocity
of the MCA with TCD, simultaneously with BP (27). Static
CA represents the CBF dependence on BP under steady-state
conditions (27), and dynamic CA reflects the transient response
of CBF to sudden fluctuations in BP.

The relevance of CA assessment is increasingly recognized in
critical care scenarios. CA impairment can predict unfavorable

outcomes in TBI and SAH (28, 29). In non-neurological patients,
such as those who underwent cardiac surgery, the assessment
of CA before and after surgery has the potential for early
identification of patients at risk of delirium (29). In sepse,
patients can present impaired CA. Circulatory shock patients
were often associated with impairment of CA and the severity
of CA alterations correlated with the degree of multiple organ
failures (30).

There are several indexes andmethods in the literature and no
specific index is currently considered to be the “gold standard”.
The autoregulation index (ARI) and the mean flow index (Mxa)
(31) have been the ones most used once they do not require
invasive cerebral monitoring (32). Both indexes are based on
spontaneous fluctuation in BP and their correlation with changes
in CBF velocity, measured by TCD. The ARI is derived from
spontaneous fluctuations in BP and CBF velocity, and it reflects
both the temporal and amplitude relations between CPP and
flows, which characterizes the dynamic CA approach (33). ARI
= 0 indicates absence of CA, while ARI = 9 corresponds to the
most efficient CA. Mxa, assessed within the framework of linear
regression analysis, also using spontaneous fluctuations of BP, is
a “quasi-static” approach since in most cases no information can
be obtained about the speed of the response (32). Impaired CA
was defined as Mxa > 0.3.

An elegant technique to assess static CA at the bedside that
does not require additional software is the transient hyperemic
response test (THRT) with TCD. It investigates changes in peak
flow velocity (PFV) in ACM after a brief compression (reduction
≥30% of the baseline PFV) of the ipsilateral common carotid
artery (3–5 s) (34). Each side should be tested separately. CA is
preserved when a hyperemic response occurs (an increase >9%:
THRT ratio≥ 1.09) on both sides (35). In SAH, different CA can
predict functional outcome (36).

The study of CA in TBI has advanced. It is possible to estimate
the ideal arterial pressure range at which patients should be
managed in the acute phase (37). Studies have demonstrated
that those patients who kept a range of individualized CPP
goals developed a better outcome than those managed according
to a general value of current guidelines (37). The calculation
of the optimal CPP is based on the continuous monitoring
of PRx (CA index of the correlation between arterial BP and
intracranial pressure).

Moreover, in patients with ICH who need strict arterial
pressure control to avoid hypertension, it is very important to
know about the CA status. Patients that present failure of CA
are at risk of presenting cerebral hyper or hypoflow according to
arterial pressure oscillations (38).

Appraising Cerebral the Hemodynamic
After Reperfusion Treatments
Patients who underwent reperfusion treatments, such as
thrombectomy after ischemic stroke and carotid endarterectomy,
have a risk of bleeding and cerebral hyperperfusion syndrome.
BP control plays an important role in the management of these
patients in the ICU setting.

In these patients, TCD can demonstrate cerebral
hemodynamic status after these reperfusion procedures
and avoid hyperemia or oligemia, which are linked to brain
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FIGURE 2 | (A) Mesencephalic plane and the imaging of the butterfly-shaped brainstem is a prerequisite to obtain a landmark for orientation [observed in 90–95% of

the patients (3–5)]. (B) Tilting the probe 10◦ cranially, in a diencephalic plane and the third ventricle is obtained (A-A). It should be measured the largest transverse

diameter of the third ventricle with its hyperechogenic margins. In addition, the frontal horn of the contralateral lateral ventricle can be measured (5). To ensure the

accurate and reproducible measurement of the ventricles’ widths, measurements with the US should be performed from the ipsilateral to the contralateral inner layer

of the hyperechogenic ependyma. US, ultrasound.

edema and IH. We still cannot set an individualized BP goal
for those patients submitted to thrombolytic, thrombectomy,
or endarterectomy, considering the risk of hemorrhagic
transformation (39). The current guidelines suggest the BP
to be <185 mmHg systolic and <110 mmHg diastolic before
treatment with thrombolytic and <180/105 mmHg for the
first 24 h after treatment (39). Other studies recommend lower
systolic BP to be <140 mmHg after optimal recanalization is
achieved. Nonetheless, it is unknown the exact BP at a lower risk
of hemorrhage and edema after these therapies.

The analysis of MCA can avoid hyperemia state (risk of
hemorrhagic transformation), studies have been shown that a
1.5-fold postoperative increase of MCA MFV compared with
preoperative levels may predict the occurrence of cerebral edema
(39). TCD can individualize early management in the ICU point-
of-care.

Last One, but Extremely Useful: Detecting
Brain Midline Shift
Cerebral midline shift (MLS) is a life-threatening condition that
requires urgent diagnosis and treatment. In cases of a cerebral,
CT-scan is not immediately available and ICP could potentially
raise during transport of the patient, NUS has been proposed as a
useful tool to estimate MLS at the bedside (2, 25, 40).

Recent systematic review and meta-analysis were performed
to assess the reliability of NUS to measure MLS when compared
with cerebral CT-scan, 10 studies, such as 416 patients and 492
examinations, were analyzed and the authors concluded that
NUS may be a reliable alternative to brain imaging for the rapid
evaluation of cerebral MLS in brain-injured patients (7).

CONCLUSION

Although the main application of point-of-care US involves
primarily the investigation of the chest, abdomen, vessels,

cerebral US presents a huge contribution to neurocritical
patient evaluation and could also be integrated into critical
care scenarios. More than a single and isolated exam, these
methods should be added to the routine of clinical practice with
neurocritical patients.
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