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a b s t r a c t 

TDP-43 and FUS are linked to amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration

(FTLD), and loss of function of either protein contributes to these neurodegenerative conditions. To

elucidate the TDP-43- and FUS-regulated pathophysiological RNA metabolism cascades, we assessed the

differential gene expression and alternative splicing profiles related to regulation by either TDP-43 or

FUS in primary cortical neurons. These profiles overlapped by > 25% with respect to gene expression

and > 9% with respect to alternative splicing. The shared downstream RNA targets of TDP-43 and FUS

may form a common pathway in the neurodegenerative processes of ALS / FTLD. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disor-

der characterized by the death of motor neurons in the spinal cord,

brainstem, and motor cortex [ 1 ]. Frontotemporal lobar degeneration

(FTLD) is a dementia syndrome characterized by progressive changes

in behavior, personality, and / or language resulting from the grad-

ual deterioration of the frontal and temporal lobes [ 2 , 3 ]. Transactive

response (TAR) DNA-binding protein 43 (TDP-43) and fused in sar-

coma (FUS) have been genetically and pathologically linked to ALS

and FTLD; however, the underlying mechanisms by which TDP-43

and FUS induce ALS and FTLD pathologies are unknown [ 2 , 3 ]. 
� This is an open-access article distributed under the terms of the Creative Com- 

mons Attribution-NonCommercial-No Derivative Works License, which permits non- 

commercial use, distribution, and reproduction in any medium, provided the original 

author and source are credited. 

Abbreviations: ALS, amyotrophic lateral sclerosis; Cugbp1, CUG triplet repeat, RNA- 

binding protein 1; DAVID, Database for Annotation, Visualization and Integrated 

Discovery; FTLD, frontotemporal lobar degeneration; FUS, fused in sarcoma; GFAP, 

glial fibrillary acidic protein; GO, Gene Ontology; hnRNAPs, heterogeneous ribonu- 

cleoproteins; LTP, long-term potentiation; RIN, RNA integrity numbers; RMA, robust 

multichip average; RRMs, RNA recognition motifs; SBMA, spinal and bulbar muscu- 

lar atrophy; shCont, shRNA / control; shCugbp1, shRNA / Cugbp1; shFUS, shRNA / FUS; 

shTDP, shRNA / TDP-43; TDP-43, transactive response (TAR) DNA-binding protein 43; 

TGF, transforming growth factor. 
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TDP-43 was identified as a major component of cytoplasmic neu-

ronal inclusions in sporadic ALS and FTLD patients [ 4 , 5 ], and missense

mutations in TARDBP , the gene encoding TDP-43, are a known cause

of familial ALS and FTLD [ 6 –8 ]. Familial cases of ALS and FTLD involv-

ing TDP-43 mutations and sporadic cases of these diseases exhibit

highly similar clinical and pathological characteristics [ 9 ], suggest-

ing that TDP-43 plays an important role in the pathogenesis of spo-

radic ALS and FTLD. Similarly, FUS is also a causative gene for familial

ALS and FTLD; in these diseases, redistribution to the cytoplasm and

the formation of cytoplasmic aggregates occur for both the TDP-43

and FUS proteins [ 10 , 11 ]. TDP-43 and FUS also share many common

pathophysiological characteristics. In particular, these proteins are

structurally similar heterogeneous ribonucleoproteins (hnRNPs), as

both TDP-43 and FUS are RNA-binding proteins with RNA recognition

motifs (RRMs); they are typically predominantly found in the nu-

cleus; their pathological forms are located mainly in the cytosol; and

they are involved in transcription, alternative splicing, translation,

and RNA transport [ 12 –14 ]. 

Although it remains unclear whether a loss of function or gain

of toxicity of TDP-43 or FUS is a major cause of ALS / FTLD, the loss of

these RNA-binding proteins in the nucleus is a plausible trigger of neu-

rodegeneration. This hypothesis has been supported by several lines

of evidence, including the fact that TDP-43 or FUS nuclear staining is

lost in the nuclei of neurons in both human ALS / FTLD tissue [ 15 , 16 ]

and TDP-43 overexpressing mice [ 17 , 18 ]. In addition, animal models

involving the loss of either TDP-43 or FUS mimic the pathology of ALS /
FTLD [ 19 –22 ]. Recently, analyses of TDP-43 using fly models revealed
f European Biochemical Societies. All rights reserved. 
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hat the up- and down-regulation of TDP-43 produced highly simi- 

ar transcriptome alterations [ 23 ]. Cross-rescue analysis in Drosophila 

emonstrated that FUS acted together with and downstream of TDP- 

3 in a common genetic pathway [ 21 ]. Thus, it is intriguing to compare

he transcriptome profiles from neurons with silenced TDP-43 or FUS. 

his experiment could clarify the common molecular mechanisms of 

LS / FTLD that are associated with TDP-43 and FUS. 

Recently, we investigated the transcriptome profiles of FUS reg- 

lation in different cell lineages of the central nervous system and 

etermined that FUS regulates both gene expression and alterna- 

ive splicing events in a cell-specific manner that is associated with 

LS / FTLD [ 24 ]. In the current study, we investigated the transcrip- 

ome profiles of TDP-43-silenced primary cortical neurons and com- 

ared these profiles with the transcriptome profiles of FUS-silenced 

eurons. The gene expression and alternative splicing event profiles 

elated to regulation by TDP-43 and by FUS were rather similar, sug- 

esting that TDP-43 and FUS may regulate common downstream RNA 

argets and molecular cascades that could potentially be associated 

ith the pathomechanisms of ALS / FTLD. 

. Methods 

.1. Lentivirus 

We designed two different shRNAs against mouse Tardbp 

 Tdp-43 ), Fus , and a control shRNA. The targeted sequences were 

 

′ -CGATGAACCCATTGAAATA-3 ′ for shRNA / TDP-43–1 (shTDP1); 

 

′ -GAGTGGAGGTTATGGTCAA-3 ′ for shRNA / TDP-43–2 (shTDP2); 

 

′ -GCAACAAAGCTACGGACAA-3 ′ for shRNA / FUS1 (shFUS1); 5 ′ - 
AGTGGAGGTTATGGTCAA-3 ′ for shRNA / FUS2 (shFUS2); 5 ′ - 
GCTTAAAGTGCAGCTCAA-3 ′ for shRNA / Cugbp1 (shCugbp1); and 

 

′ -AAGCAAAGATGTCTGAATA-3 ′ for shRNA / control (shCont). The 

hRNAs were cloned into a lentiviral shRNA vector (pLenti-RNAi-X2 

uro DEST, w16–1, which was a kind gift from Dr. Eric Campeau at 

esverlogix Corp.). Lentivirus was prepared in accordance with the 

rotocols detailed by Campeau et al. [ 25 ]. 

.2. Primary cortical neuron culture and the depletion of TDP-43 and 

US 

Primary cortical neurons were obtained from the fetal brains 

f C57BL / 6 mouse embryos on embryonic day 15 (E15). The de- 

ailed procedure for acquiring these neurons was described in pre- 

iously published reports [ 26 ]. On day 5, neurons were infected with 

 × 10 10 copies / well (1.5 × 10 7 copies / μl) of lentivirus express- 

ng shRNA against mouse Tdp-43 (shTDP1 or shTDP2), mouse Cugbp1 

CUG triplet repeat, RNA-binding protein 1) (shCugbp1), or scram- 

led control (shCont). The virus-containing media was removed at 

 h after infection. The neurons were then cultured for 6 additional 

ays and harvested on day 11 for RNA extraction and cDNA synthe- 

is. Each knockdown experiment was performed in triplicate for each 

icroarray analysis. Experiments were performed in accordance with 

he Guide for the Care and Use of Laboratory Animals issued by the 

ational Institutes of Health and with the approval of the Nagoya 

niversity Animal Experiment Committee (Nagoya, Japan). The ex- 

eriments on FUS-silenced primary cortical neurons were performed 

n the manner described above and have been detailed in a previously 

ublished report [ 26 ]. 

For immunohistochemical analyses, we used an anti- β-tubulin 

ntibody (TU20, Santa Cruz, Santa Cruz, CA), an anti-glial fibrillary 

cidic protein (GFAP) antibody (EB4, Enzo Life Sciences, Plymouth 

eeting, PA), and 4 ′ ,6-diamidino-2-phenylindole (DAPI) staining. 

For immunoblot analyses, cells were lysed in TNE buffer containing 

rotease inhibitors for 15 min on ice. The lysates were then cleared by 
centrifuging the cells at 13,000 g for 15 min at 4 ◦C. Lysates were nor- 

malized for total protein (10 μg per lane), separated using a 4–20% lin- 

ear gradient SDS–PAGE and electroblotted. For immunoblot, we used 

anti-FUS antibodies (A300–293A, Bethyl Laboratories, Montgomery, 

TX), anti-TDP-43 antibody (Proteintech, Chicago, IL), and anti-actin 

antibody (Sigma, St. Louis, MO). 

2.3. Microarray analysis 

Total RNA was extracted from primary cortical neurons using 

the RNeasy Mini Kit (Qiagen, Hilden, Germany). We confirmed that 

the RNA integrity numbers (RIN) for the extracted samples were all 

greater than 7.0. We synthesized and labeled cDNA fragments from 

100 ng of total RNA using the GeneChip WT cDNA Synthesis Kit 

(Ambion, Austin, TX). Hybridization and signal acquisition for the 

GeneChip Mouse Exon 1.0 ST Array (Affymetrix, Santa Clara, CA) 

were performed according to the manufacturer’s instructions. Each 

array experiment was performed in triplicate. The robust multichip 

average (RMA) and iterative probe logarithmic intensity error (iter- 

PLIER) methods were employed to normalize exon-level and gene- 

level signal intensities, respectively, using Expression Console 1.1.2 

(Affymetrix). We utilized the gene annotation provided by Ensembl 

version e!61, which is based on the National Center for Biotechnology 

Information (NCBI) Build 37.1 / mm9 of the mouse genome assembly. 

All microarray data were registered in the Gene Expression Omnibus 

with accession numbers of GSE36153 (shFUS) and GSE46148 (shTDP- 

43 and shCugbp1). 

Using Student’s t -test, we compared the gene-level signal intensi- 

ties from three controls treated with shCont with the gene-level sig- 

nal intensities of three samples treated with either shTDP1 or shTDP2. 

We also analyzed alternative splicing profiles by filtering the exon- 

level signal intensities, using a t -test with a threshold of p -value ≤0.1. 

Gene expression and alternative splicing profiles related to FUS reg- 

ulation in primary cortical neurons were also obtained by compar- 

ing gene-level and exon-level signal intensities from three controls 

treated with shCont with the corresponding signal intensities from 

three samples treated with either shFUS1 or shFUS2, as previously 

described [ 26 ]. As a control for the RNA-binding protein-silencing 

model, we analyzed the gene-level and exon-level signal intensities 

of three samples treated with wither shCugbp1or shCont. 

2.4. RT-PCR for alternative splicing analyses 

Total RNA was isolated from cells using the RNeasy Mini Kit 

(Qiagen). The extracted RNA was then treated with DNase I (Qi- 

agen). cDNA was synthesized from 1 μg of total RNA using 

oligo(dT) primers (Promega, Madison, WI). Primers for each candi- 

date exon were designed using the Primer3 software program ( http: / 
/ frodo.wi.mit.edu / primer3 / input.htm ). The primer sequences are 

provided in Supplementary Table 1 . Semi-quantitative reverse tran- 

scription polymerase chain reaction (RT-PCR) was performed using 

Ex Taq (Takara Bio Inc., Otsu, Japan), with the following amplifica- 

tion conditions: 25–30 cycles of 98 ◦C for 10 s, 60 ◦C for 30 s, and 

72 ◦C for 1 min. The PCR products were electrophoresed on a 15% 

acrylamide gel and stained with ethidium bromide. The intensity of 

each band was measured using the Multi Gauge software program 

(Fujifilm, Tokyo, Japan). 

2.5. Real-time qPCR for gene expression analysis 

The RNeasy Mini Kit (Qiagen) was used to isolate total RNA from 

cells; 1 μg of total RNA was then reverse transcribed, using oligo- 

dT primers. This transcription utilized the CFX96 system (BioRad, 

Hercules, CA) and thermocycler conditions of 95 ◦C for 3 min followed 

by 40 cycles of 95 ◦C for 10 s and 55 ◦C for 30 s. 

http://frodo.wi.mit.edu/primer3/input.htm
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Fig. 1. Comparisons of the gene expression and exon splicing profiles of TDP-43-silenced primary cortical neurons and FUS-silenced primary cortical neurons. (A) Gene expression 

and alternative splicing profiles of TDP-43-silenced primary cortical neurons- and FUS-silenced primary cortical neurons were compared. Venn diagrams indicate the overlaps in 

the genes (top) and exons (bottom) with expression levels that were uniquely or concordantly regulated by TDP-43 and / or FUS ( t -test, p < 0.05; fold change ≤0.67 or ≥1.5). (B) 

The fold changes in overlapping genes filtered by t -tests (with a threshold of p < 0.1) were plotted for TDP-43-silenced primary cortical neurons and FUS-silenced primary cortical 

neurons. Scatter plots of the fold changes in gene expression levels (left) and alternative splicing events (right) for shTDP-43 and shFUS. The R 2 value was calculated for genes and 

exons with t -test p -values < 0.1. 
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Fig. 2. The validation of differentially expressed genes regulated by both TDP-43 and FUS. Twelve genes with differential expression in both TDP-43-silenced neurons and FUS- 

silenced neurons in Table 2 were validated by real-time qPCR ( n = 3; mean and SD). Quantities are calculated by the ratio to β-actin and shown as the relative expression ratio to 

shCont. Five commonly down-regulated genes (A) and seven commonly up-regulated genes (B) are indicated. Statistics were done by one-way ANOVA and Tukey test. * ( p < 0.05), 

** ( p < 0.01), and *** ( p < 0.001) denote significant differences. 
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Fig. 3. The validation of representative altered splicing events in TDP-43-silenced primary cortical neurons and FUS-silenced primary cortical neurons. Eight exons with differential 

expression in both TDP-43-silenced neurons and FUS-silenced neurons were validated by semiquantitative RT-PCR. The top panel provides a schematic of splicing changes mediated 

by TDP-43 and / or FUS. The second and third panels display representative RT-PCR results for the indicated exons and the densitometric quantification (ratio of inclusion to exclusion) 

of these results ( n = 3; mean and SD) after either TDP-43 or FUS depletion. * p < 0.05 by t -test. Statistics were done by one-way ANOVA and Tukey test. * ( p < 0.05), ** ( p < 0.01), 

and *** ( p < 0.001) denote significant differences. 
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Table 1 

Gene Ontology terms for gene expression / alternative splicing in TDP-43- or FUS-silenced neurons. 

shTDP-43 Gene expression shFUS Gene expression 

GO ID Term p -Value GO ID Term p -Value 

GO:0007264 Small GTPase mediated signal 

transduction 

8.37E −07 GO:0019637 Organophosphate metabolic 

process 

3.68E −04 

GO:0007242 Intracellular signaling cascade 1.04E −05 GO:0006644 Phospholipid metabolic process 4.89E −04 

GO:0044271 Nitrogen compound biosynthetic 

process 

2.98E −04 GO:0016055 Wnt receptor signaling pathway 5.21E −04 

GO:0006790 Sulfur metabolic process 9.94E −04 GO:0009100 Glycoprotein metabolic process 5.30E −04 

GO:0009100 Glycoprotein metabolic process 0.00169596 GO:0007264 Small GTPase mediated signal 

transduction 

5.91E −04 

GO:0009101 Glycoprotein biosynthetic process 0.0019038 GO:0006650 Glycerophospholipid metabolic 

process 

8.42E −04 

GO:0018130 Heterocycle biosynthetic process 0.0033067 GO:0007242 Intracellular signaling cascade 0.00122745 

GO:0022604 Regulation of cell morphogenesis 0.00426464 GO:0007265 Ras protein signal transduction 0.00389788 

GO:0016055 Wnt receptor signaling pathway 0.00455985 GO:0046486 Glycerolipid metabolic process 0.00481341 

GO:0031344 Regulation of cell projection 

organization 

0.00619132 GO:0006665 Sphingolipid metabolic process 0.00514754 

GO:0043085 Positive regulation of catalytic 

activity 

0.0063261 GO:0030384 Phosphoinositide metabolic 

process 

0.00562443 

GO:0031345 Negative regulation of cell 

projection organization 

0.00656187 GO:0006793 Phosphorus metabolic process 0.00563812 

GO:0043413 Biopolymer glycosylation 0.00855583 GO:0006796 Phosphate metabolic process 0.00563812 

GO:0006486 Protein amino acid glycosylation 0.00855583 GO:0006643 Membrane lipid metabolic 

process 

0.00613362 

GO:0070085 Glycosylation 0.00855583 GO:0009101 Glycoprotein biosynthetic process 0.00691847 

GO:0010975 Regulation of neuron projection 

development 

0.00912726 GO:0051348 Negative regulation of transferase 

activity 

0.00924863 

GO:0030384 Phosphoinositide metabolic 

process 

0.010632 GO:0006600 Creatine metabolic process 0.01095567 

GO:0010769 Regulation of cell morphogenesis 

involved in differentiation 

0.01225994 GO:0044242 Cellular lipid catabolic process 0.01200742 

GO:0019932 Second-messenger-mediated 

signaling 

0.01617062 GO:0006486 Protein amino acid glycosylation 0.01276803 

GO:0050770 Regulation of axonogenesis 0.01657312 GO:0070085 Glycosylation 0.01276803 

shTDP-43 Alternative splicing shFUS Alternative splicing 

GO ID Term p -Value GO ID Term p -Value 

GO:0016192 Vesicle-mediated transport 2.76E −05 GO:0045202 Synapse 6.85E −07 

GO:0044057 Regulation of system process 2.41E −04 GO:0042995 Cell projection 2.54E −06 

GO:0006936 Muscle contraction 5.09E −04 GO:0043005 Neuron projection 2.29E −05 

GO:0003012 Muscle system process 7.75E −04 GO:0005856 Cytoskeleton 1.73E −04 

GO:0006897 Endocytosis 0.00107681 GO:0005886 Plasma membrane 1.88E −04 

GO:0010324 Membrane invagination 0.00107681 GO:0043232 Intracellular 

non-membrane-bounded 

organelle 

2.07E −04 

GO:0046903 Secretion 0.00244805 GO:0043228 Non-membrane-bounded 

organelle 

2.07E −04 

GO:0048167 Regulation of synaptic plasticity 0.00322575 GO:0044456 Synapse part 3.76E −04 

GO:0050804 Regulation of synaptic 

transmission 

0.00339707 GO:0030424 Axon 5.70E −04 

GO:0050808 Synapse organization 0.00342093 GO:0031252 Cell leading edge 7.01E −04 

GO:0043524 Negative regulation of neuron 

apoptosis 

0.0036232 GO:0044463 Cell projection part 7.08E −04 

GO:0051969 Regulation of transmission of 

nerve impulse 

0.00432752 GO:0030054 Cell junction 7.20E −04 

GO:0006887 Exocytosis 0.00477415 GO:0015630 Microtubule cytoskeleton 0.00738251 

GO:0031644 Regulation of neurological system 

process 

0.00525083 GO:0045211 Postsynaptic membrane 0.00825557 

GO:0032940 Secretion by cell 0.00587779 GO:0042734 Presynaptic membrane 0.0133955 

GO:0006816 Calcium ion transport 0.00667547 GO:0044430 Cytoskeletal part 0.02340953 

GO:0016044 Membrane organization 0.0067241 GO:0044459 Plasma membrane part 0.02454379 

GO:0046777 Protein amino acid 

autophosphorylation 

0.00788146 GO:0001726 Ruffle 0.03547283 

GO:0007628 Adult walking behavior 0.01199082 GO:0032589 Neuron projection membrane 0.04340658 

GO:0043523 Regulation of neuron apoptosis 0.01330492 GO:0005938 Cell cortex 0.04544057 

i

o

β
e

a

The relative quantity of each transcript was calculated by creat- 

ng a standard curve using the cycle thresholds for serial dilutions 

f complementary DNA (cDNA) samples, normalized to quantities of 

-actin. The PCR was performed in triplicate for each sample, and all 

xperiments were repeated twice. iQ SYBR Green Supermix (BioRad) 

nd the sets of primers listed in Supplementary Table 1 were used 
for real-time quantitative polymerase chain reaction (qPCR) amplifi- 

cations. 
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Table 2 

Differentially expressed genes regulated by both TDP-43 and FUS. 

Gene symbol Gene name shTDP FC shFUS FC 

Tgfbr1 Transforming growth factor, beta 

receptor 1 

0.38 0.40 

Tap1 Transporter 1, ATP-binding cassette, 

sub-family B (MDR / TAP) 

0.53 0.41 

Ccbe1 Collagen and calcium binding EGF 

domains 1 

0.60 0.60 

Sla src-like adaptor 0.61 0.58 

Vamp1 Vesicle-associated membrane protein 1 0.66 0.64 

Rab15 RAB15, member RAS oncogene family 1.96 2.10 

Taf9b TAF9B RNA polymerase II, TATA box 

binding protein (TBP)-associated factor 

2.00 3.13 

Ilk Integrin-linked kinase 2.08 2.16 

Nacc1 Nucleus accumbens associated 1, BEN 

and BTB (POZ) domain containing 

2.29 2.49 

Qpctl Glutaminyl-peptide 

cyclotransferase-like 

2.37 2.63 

Syt17 Synaptotagmin 17 3.08 1.82 

Stx1a Syntaxin 1A 3.08 2.45 

Table 3 

Genes with altered exon splicing regulated by both TDP-43 and FUS. 

Gene symbol Gene name Spliced site 

Braf Braf transforming gene Exon12 Skipping 

Camk2a Calcium / calmodulin-dependent 

protein kinase II alpha 

Exon14 Skipping 

Cttn Cortactin Exon11 Skipping 

Deaf1 Deformed epidermal autoregulatory 

factor 1 

Exon2 Skipping 

Erc2 ELKS / RAB6-interacting / CAST family 

member 2 

Exon12 Skipping 

Kcnip1 Kv channel-interacting protein 1 Exon2 Skipping 

Ncor1 Nuclear receptor corepressor 1 Exon9 Skipping 

Anks1b Ankyrin repeat and sterile alpha motif 

domain containing 1B 

Exon7 Inclusion 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Results 

3.1. The shRNA-mediated silencing of TDP-43 and FUS in primary 

cortical neurons using lentivirus 

To compare the global profiles of RNA molecules regulated by

TDP-43 and FUS in primary cortical neurons, we produced TDP-43-

silenced primary motor neurons by infecting neurons with lentivirus

expressing shRNA against TDP-43; control neurons were produced by

infection with lentivirus expressing RNA against a scrambled control.

The profiles of FUS-silenced primary cortical neurons using shFUS1

and shFUS2 were established in a previous study [ 26 ]. The purity of the

primary cortical neurons was confirmed through immunostaining.

We successfully established the desired primary cortical neurons with

a purity of greater than 95% ( Supplementary Fig. S1A ). 

The expression levels of TDP-43 were suppressed by approxi-

mately 60–90% by shTDP1 or shTDP2, as measured by real-time qPCR

( Supplementary Fig. S1B ). The expression levels of FUS were also sup-

pressed by 80–90% by shFUS1 or shFUS2, as reported previously [ 26 ].

The protein levels of TDP-43 were markedly lower in primary neu-

rons infected with shTDP1 and shTDP2 than in neurons infected with

the shCont based on the immunoblot analysis ( Supplementary Fig.

S1C , left). In addition, a reduction in FUS protein levels was observed

in primary neurons infected with shFUS1 or shFUS2 ( Supplementary

Fig. S1C , right). 

As a control for the RNA-binding protein-silencing model, we

knocked down the Cugbp1 gene in primary cortical neurons and con-

firmed that this knockdown produced a silencing efficiency of greater

than 70% ( Supplementary Fig. S2 ). 
 

3.2. Significant overlap in the transcriptomes of TDP-43-silenced 

neurons and FUS-silenced neurons 

We analyzed gene expression levels and alternative splicing in

TDP-43-silenced primary neurons using the Affymetrix GeneChip

Mouse Exon 1.0 ST Array (GEO Accession No. GSE46148 ). We used

Student’s t -test to compare the gene-level signal intensities of three

controls treated with shCont with the gene-level signal intensities

of three samples treated with either shTDP1 or shTDP2. Among the

21,603 genes on the mouse exon array, 1411 genes had p -values ≤0.01

for both shTDP1 and shTDP2 treatments in the t -tests, and the corre-

lation coefficient between the fold changes of the shTDP1 and shTDP2

treatments was 0.83 ( Supplementary Fig. S3A ). 

We also analyzed alternative splicing profiles by filtering the exon-

level signal intensities using a threshold of a t -test p -value ≤0.1. This

filtering yielded 4973 exons that were altered by both shTDP1 and

shTDP2, with a correlation coefficient of 0.801 ( Supplementary Fig.

S3B ). To identify common effects produced by silencing TDP-43 and

silencing FUS, we compiled a list of differentially expressed genes

and alternatively spliced exons in primary cortical neurons silenced

by shTDP-43 and in primary cortical neurons silenced by shFUS. By

applying the threshold of a t -test p -value of ≤0.05 and a fold change

of ≤0.67 or ≥1.5 for both shTDP1 and shTDP2, we obtained 204 genes

with altered expression levels upon TDP-43 knockdown. Similarly,

183 genes were obtained for FUS by applying the threshold of a t -

test p -value of ≤0.05 and a fold change value of ≤0.67 or ≥1.5 for both

shFUS-1 and shFUS-2. Venn diagrams indicated that the set of genes

or exons with expression that were differentially and consistently

regulated by FUS markedly overlapped with the corresponding set of

genes or exons for TDP-43 ( t -test, p < 0.05). In particular, an overlap

ncbi-n:GSE46148
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f more than 25% was observed among the gene expression profiles 

f shTDP-43- and shFUS-treated neurons ( Fig. 1 A, top panel; 51 / 204 

25.0%) of the genes for shTDP-43; 51 / 183 (27.9%) of the genes for 

hFUS). 

We also filtered the exon-level signal intensities by applying a 

hreshold of a t -test p -value of ≤0.05 and a fold change value of ≤0.67 

r ≥1.5. We then determined TDP-43- and FUS-regulated exons as 

ell as the overlap between these exons using the same approach that 

e applied for gene expression. We obtained 675 TDP-43-regulated 

enes and 429 FUS-regulated genes with altered exon expression. 

enn diagrams indicate that there was an overlap of approximately 

0% between the alternative splicing profiles produced by shFUS and 

he alternative splicing profiles produced by shTDP-43 ( Fig. 1 A, bot- 

om panel; 61 / 674 (9.1%) of the genes for shTDP-43; 61 / 428 (14.3%) 

f the genes for shFUS). 

We then compared the changes in the overlapping genes or exons 

ffected by both shTDP-43 and shFUS after filtering these genes and 

xons using a t -test (with a threshold of p < 0.1). The fold change plot 

nalysis demonstrated a strong correlation between shTDP-43 and 

hFUS with respect to gene expression ( Fig. 1 B left; R 2 = 0.78); in con- 

rast, the gene expression profile for neurons transduced with shRNA 

argeting a different RNA-binding protein, Cugbp1, did not correlate 

ell with the expression profiles of neurons transduced with shTDP- 

3 ( R 2 = 0.46) or shFUS ( R 2 = 0.53) ( Supplementary Fig. S4A ). The fold

hange plot analysis of exon splicing also demonstrated a moderate 

orrelation between shTDP-43 and shFUS ( Fig. 1 B right; R 2 = 0.64). 

he exon splicing profile for neurons silenced with shRNA against 

ugbp1 showed lesser correlation with the exon splicing profiles of 

eurons transduced with shTDP-43 ( R 2 = 0.52) or shFUS ( R 2 = 0.48) 

 Supplementary Fig. S4B ). 

We next analyzed the Gene Ontology (GO) terms for the genes 

hat were regulated by TDP-43 and FUS ( t -test, p < 0.1; fold change 

f ≤0.77 or ≥1.3) using the Database for Annotation, Visualization 

nd Integrated Discovery (DAVID), version 6.7 [ 27 , 28 ]. Genes regu- 

ated by TDP-43 were mainly categorized as being involved in sig- 

aling cascades and metabolic processes, and the GO terms for these 

enes were similar to the GO terms for genes regulated by FUS. In 

he list of the top 20 GO terms for genes with TDP-43-regulated ex- 

ression and the corresponding list for genes with FUS-regulated ex- 

ression, we identified eight common GO terms, including “small 

TPase-mediated signal transduction” and “Wnt receptor signaling 

athway” ( Table 1 ). We also compiled the list of top 20 GO terms for 

enes with Cugbp1-regulated expression ( Supplementary Table S2 ). 

nly one and three common GO terms were identified in between the 

ists of Cugbp1- and TDP-43-regulated expression (GO:0007264) and 

ugbp1- and FUS-regulated expression (GO:0007264, 0019637, and 

006644), respectively. In contrast, the GO terms for genes with TDP- 

3- or FUS-related alternative splicing regulation mainly referred to 

arious neuronal functions; however, none of the same GO terms 

ppeared in both the list of the top 20 GO terms for genes with TDP- 

3-regulated alternative splicing and the corresponding list for genes 

ith FUS-regulated alternative splicing ( Table 1 ). 

.3. Gene expression profiles are similar among the top 20 genes 

egulated by TDP-43 and FUS 

We next investigated the detailed gene expression profiles of TDP- 

3-silenced primary cortical neurons. By filtering gene-level signal 

ntensities using a t -test (with a threshold of p -value ≤0.1) and fold 

hange (which was required to be ≤0.67 or ≥1.5), genes with differen- 

ial expression in TDP-43-silenced primary cortical neurons were se- 

ected. Fourteen of the top 20 genes with expression regulated by TDP- 

3 were also regulated by FUS ( Supplementary Table S3 ). To select 

enes with differential expression upon changes in FUS regulation, 

ene-level signal intensities in the profile of FUS-silenced primary 
cortical neurons were filtered using a t -test (with a threshold of p - 

value ≤0.1) and fold change (which was required to be ≤0.67 or ≥1.5). 

Genes that were differentially expressed in both TDP-43-silenced pri- 

mary cortical neurons and FUS-silenced primary cortical neurons (as 

determined by the p -value ≤0.1 and fold change of ≤0.67 or ≥1.5 

requirements) are listed with their fold change values in Table 2 . The 

list of commonly regulated genes includes 12 genes: five downreg- 

ulated genes, such as Tgfbr1 (transforming growth factor- β receptor 

I; Fig. 2 A), and seven upregulated genes, such as Stx1a (syntaxin 1A; 

Fig. 2 B). The results were validated using quantitative reverse tran- 

scription polymerase chain reaction (qRT-PCR) and shown as mRNA 

expression ratio to β-actin ( Fig. 2 ) and Gapdh ( Supplementary Fig. 

S5 ). 

3.4. Genes with altered exon splicing regulated by both TDP-43 and FUS 

After filtering the exons in genes that were differentially expressed 

in both shTDP1- and shTDP2-treated neurons, using the threshold of 

a t -test p -value of ≤0.1 and a fold change of ≥1.3 in primary neurons, 

we compared these exons with the profiles of alternatively spliced 

exons in shFUS1 and shFUS2 to obtain genes with altered splicing 

events that were commonly regulated by both TDP-43 and FUS. After 

validation by RT-PCR, we obtained 8 exons with alternative splicing 

events regulated by both TDP-43 and FUS ( Table 3 and Fig. 3 ). 

4. Discussion 

Both TDP-43 and FUS are involved in multiple levels of RNA pro- 

cessing, and mutations in these two genes are responsible for familial 

ALS and FTLD. Although TDP-43 and FUS pathologies appear to largely 

be mutually exclusive, the molecular and functional similarities be- 

tween these two molecules suggest that TDP-43 and FUS may share 

a common downstream pathway leading to neuronal degeneration 

[ 29 , 30 ]. 

Genes with altered expression levels or alternatively spliced ex- 

ons in both TDP-43- and FUS-silenced primary neurons have funda- 

mental functions in neurons, suggesting that transcriptome changes 

produced by loss-of-function mutations of TDP-43 and / or FUS may 

lead to neuronal cell death. This conjecture is supported by cross- 

rescue findings from fish and fly models in which FUS overexpression 

rescued the defect phenotype caused by TDP-43 knockout [ 20 , 21 ]. 

How do TDP-43 and FUS regulate common downstream genes 

and exons? These proteins do not appear to share the same binding 

target RNAs in neuronal tissue; in particular, it has been reported 

that the consensus sequences of TDP-43 are (UG) repeats [ 31 , 32 ], 

whereas FUS has a widespread RNA binding pattern [ 26 , 33 ]. Research 

has indicated that these two RNA binding proteins may target distinct 

sets of cytoplasmic mRNA molecules in NSC-34 cells [ 34 ]. Although 

we found that there was an overlap of approximately 10% between 

genes with altered splicing after shFUS treatment and genes with 

altered splicing after shTDP-43 treatment, the regulation mechanism 

of common alternative splicing events remains unclear. 

Our results indicated that 25% of genes with altered gene expres- 

sion levels and 10% of genes with alternatively spliced exons were 

common to the transcriptome profiles of both TDP-43-silenced pri- 

mary cortical neurons and FUS-silenced primary cortical neurons. 

These findings were comparable to the results reported by Lagier- 

Tourenne et al., which demonstrated that in adult mouse striatum, 

there was an overlap of more than 10% between alternative splicing 

events observed due to TDP-43 knockdown and alternative splicing 

events observed due to FUS knockdown [ 35 ]. Discrepancies between 

this prior study and the current investigation with respect to targeted 

RNAs could reflect the different cell types used in these studies; we 

specifically assessed neurons, whereas the mouse striatum contains 

a variety of cells, including neurons, glial cells, and other cell types. 
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In fact, in a recent study, we found distinct FUS-regulated transcrip-

tomes among different cell lineages [ 24 ]. 

Among the target RNA molecules that we identified, Stx1A is one

of the most differentially upregulated genes in both TDP-43-silenced

neurons and FUS-silenced neurons ( Table 2 ). Stx1A encodes Syntaxin

1A, which is a member of the syntaxin super family that is associated

with the vesicle fusion process as a component of the SNARE complex

[ 36 ]. The overexpression of Stx1A disturbed synaptic vesicle exocy-

tosis in hippocampal neurons [ 37 ], suggesting that up-regulation of

Stx1A by silencing TDP-43 or FUS may produce synaptic dysfunction.

Tgfbr1 is one of the most significantly downregulated genes in both

TDP-43-silenced neurons and FUS-silenced neurons ( Table 2 ). Tgfbr1

encodes transforming growth factor (TGF)- β receptor I, which binds

to TGF- β and transduces TGF- β signals from the cell surface to the

cytoplasm. TGF- β signaling was disrupted in the motor neurons of

mouse models of ALS and spinal and bulbar muscular atrophy (SBMA)

[ 38 , 39 ]. This finding, in combination with our results, suggests that

the TGF- β signaling pathway may be a strong candidate for targeted

molecular therapy for motor neuron degeneration. 

In addition, exon 14 of the Camk2a gene, which encodes the

calcium / calmodulin-dependent protein kinase type II α chain, was

skipped in both TDP-43-silenced primary neurons and FUS-silenced

primary neurons. Camk2a is a critical player in calmodulin-dependent

activity, long-term potentiation (LTP), and learning [ 40 ]. The expres-

sion of Camk2a has been reported to be decreased in Alzheimer’s

patients [ 41 ]. Clarifying the role of exon 14 of Camk2a in the function

of this protein might link the calmodulin-dependent pathway to TDP-

43- and FUS-associated FTLD. Despite the discovery of considerable

evidence linking alternative splicing and various diseases, including

neurodegeneration, it remains unclear how much alternative splic-

ing is “noise” and how much of this splicing truly contributes to cell

fate [ 42 ]. Further verification of whether these altered splicing events

have pathogenic roles is required. 

In this study, we determined that TDP-43-silenced neurons and

FUS-silenced neurons exhibited greater overlap in shared gene ex-

pression alterations than in altered splicing events. In addition, a

considerable number of GO terms from gene expression data were

common to both types of neurons, whereas distinct GO terms were

obtained from alternative splicing events in the two types of neurons.

These results suggest that TDP-43 and FUS do not share many splic-

ing targets but instead may associate with each other during mRNA

maturation and / or transportation, resulting in altered gene expres-

sion. Another possibility is that TDP-43 and FUS may share common

molecular pathways that lead to neuronal cell death after multiple

transcriptome disturbances. 

In summary, the comparative analysis of the transcriptome pro-

files in primary cortical neurons revealed common downstream RNA

targets of TDP-43 and FUS. These targets may be linked to a common

pathway in the neurodegenerative processes of ALS / FTLD. 
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