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Abstract

Tumor associated angiogenesis is the development of new blood vessels in response to

proteins secreted by tumor cells. These new blood vessels allow tumors to continue to grow

beyond what the pre-existing vasculature could support. Here, we construct a mathematical

model to simulate tumor angiogenesis by considering each endothelial cell as an agent, and

allowing the vascular endothelial growth factor (VEGF) and nutrient fields to impact the

dynamics and phenotypic transitions of each tumor and endothelial cell. The phenotypes of

the endothelial cells (i.e., tip, stalk, and phalanx cells) are selected by the local VEGF field,

and govern the migration and growth of vessel sprouts at the cellular level. Over time, these

vessels grow and migrate to the tumor, forming anastomotic loops to supply nutrients, while

interacting with the tumor through mechanical forces and the consumption of VEGF. The

model is able to capture collapsing and breaking of vessels caused by tumor-endothelial cell

interactions. This is accomplished through modeling the physical interaction between the

vasculature and the tumor, resulting in vessel occlusion and tumor heterogeneity over time

due to the stages of response in angiogenesis. Key parameters are identified through a sen-

sitivity analysis based on the Sobol method, establishing which parameters should be the

focus of subsequent experimental efforts. During the avascular phase (i.e., before angio-

genesis is triggered), the nutrient consumption rate, followed by the rate of nutrient diffusion,

yield the greatest influence on the number and distribution of tumor cells. Similarly, the con-

sumption and diffusion of VEGF yield the greatest influence on the endothelial and tumor

cell numbers during angiogenesis. In summary, we present a hybrid mathematical approach

that characterizes vascular changes via an agent-based model, while treating nutrient and

VEGF changes through a continuum model. The model describes the physical interaction

between a tumor and the surrounding blood vessels, explicitly allowing the forces of the

growing tumor to influence the nutrient delivery of the vasculature.
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Introduction

Tumor growth and development is dictated by the interaction of a myriad of events occurring

at dramatically different spatial and temporal scales. At the intracellular scale, cell signaling

results in gene and protein expression that promote cell events such as proliferation or migra-

tion. Cellular events are also governed by the availability of nutrients and interactions with

specific proteins. Furthermore, the production and consumption of nutrients and proteins are

based on the heterogeneity of the tumor and the surrounding vasculature at the tissue scale.

Due to this complex, multiscale system, mathematical and computational models have been

designed to describe the biological mechanisms that underlay tumor growth and treatment

response. These models have aided in understanding the intricate interplay between phenom-

ena at the cell [1–3], microenvironmental [4–6], and tissue scales [7–9]. Additionally, key

features in tumor development such as tumor proliferation and apoptosis [10], nutrient avail-

ability [11], mechanical pressures [12, 13], and therapies [14–16] have been investigated and

modeled, aspiring to marry experimental biology and mathematical methods to establish a

data-informed, mathematical theory of tumor initiation and growth. The ultimate goal of

these models is to uncover fundamental biology as well as provide predictions of tumor growth

and treatment options that can be made specific for each individual patient [17, 18].

The dependence of events on different scales has motivated the development of mathemati-

cal models of tumor growth designed to capture the relationship between the subcellular,

cellular, and tissue scales [19]. For example, Macklin et al. [20] developed a hybrid multiscale

approach where the cellular dynamics and the macroscopic environment impact both the

growth and development of the tumor. In particular, both nutrient availability at the macro-

scopic level and patient-specific measurements (based on histology data) at the subcellular

scale govern the proliferation of tumor cells. The cellular scale is governed by an agent-based

model (ABM) wherein cancer cells may divide, migrate, or die due to the local conditions of

the environment, while the nutrient dynamics at the macroscopic scale are governed by a con-

tinuum (partial differential equation) model. By using a hybrid model, the macroscopic envi-

ronment influences the decision-making process of individual cells, which are modeled as

agents. Using this approach, the authors were able to match the tumor growth and calcification

trends of the patient mammographic data, verifying both the ABM and its ability to recapitu-

late tumor heterogeneity. Rocha et al. [21] extended this multiscale approach to the subcellular

scale, guiding tumor cell proliferation by both nutrient availability at the macroscopic scale

and extracellular signal-regulated kinases at the subcellular scale. The main morphological fea-

tures of solid tumors (e.g., the proliferative ring, the hypoxic region, and the necrotic core) are

preserved in this avascular model. In Jiang et al. [8], reaction-diffusion equations govern the

tissue scale and inform the protein expression of each cell, causing the cell to either proliferate,

stay quiescent, or die. The model effectively predicts in vitro growth curves of tumor spheroids.

Importantly, all of the above efforts characterized avascular tumor growth. Of course, once a

tumor grows beyond a diameter of 0.2–1 mm [22, 23], the continued expansion of the tumor

cannot be supported by only the diffusion of metabolites. Continued growth requires the deliv-

ery of oxygen and nutrients through new vasculature. Thus, for avascular models to remain

informative past the initial stages of tumor development, they must be extended to incorporate

the formation of new blood vessels, a process called angiogenesis.

Tumor angiogenesis is induced by growth factors released by hypoxic tumor cells, most

notably the vascular endothelial growth factors (VEGF) [24, 25]. VEGF diffuses through the

interstitial fluid and binds to the vascular endothelial growth factor receptors of pre-existing

endothelial cells which then become activated, and migrate up the concentration gradient of

VEGF, toward the tumor cells. These migratory cells, called tip cells [25, 26], guide the
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endothelial cells immediately adjacent them toward the tumor. The resulting, newly formed,

blood vessels grow and mature and are characterized by branching, lumen formation, anasto-

mosis formation, and establishment of blood flow [22, 23]. Once a vessel network is formed,

the growth of the tumor can be accelerated by the newly available nutrients and may continue

to proliferate and expand.

Computational models have been developed that incorporate angiogenesis using an agent-

based approach. Sun et al. [27] developed a 2D multiscale ABM of brain cancer. At the subcel-

lular scale, a system of ordinary differential equations (ODEs) govern the epidermal growth

factor receptor pathway which, together with the availability of nutrients, govern the pheno-

typic transitions of the tumor cells at the cellular scale. At the tissue scale the growth of new

blood vessels is based on a single endothelial tip cell, and the migration probabilities are based

on the local VEGF and fibronectin concentrations. Olsen et al. [28] modeled tumor angiogene-

sis on a grid-based system, with new vessels sprouting and moving based on the local VEGF

concentration. Endothelial cells are added to grid spaces at the end of the vessel to model

growth and, after forming a closed loop, these vessels can deliver nutrients to the hypoxic

tumor. At the cellular scale, each tumor cell is treated as an agent undergoing a decision-mak-

ing process; for example, changing phenotypes based on the available nutrients, or migrating

based on VEGF and available space. Other efforts in modeling angiogenesis include Cellular

Potts models [29, 30], rule-based models of angiogenesis [31–35], agent-based approaches

without tumor growth [36–38], and hybrid models that combine continuum and discrete

approaches [31, 39–43].

We seek to build on these earlier efforts, that capture the effects of nutrient delivery from

newly formed blood vessels, by including a physical mechanism guiding the interaction

between the vasculature and the tumor. This physical mechanism allows for the modeling of

vessel occlusion and collapse due to the proliferation of newly vascularized tumor regions.

More specifically, the tumor angiogenic sprouting dynamics are modeled at the cellular scale

by a discrete model, treating every cell as an individual agent that moves according to physical

forces and chemical gradients, and allowing transitions between tip, stalk, and quiescent endo-

thelial cells. Computing the physical forces between the tumor and endothelial cells provides a

novel way to model vessel occlusion and collapse. The delivery and dispersion of nutrient and

VEGF are modeled at the tissue scale by a continuum model, which is coupled with the ABM

at the cell scale. The avascular component of the model is based on the work developed in [20].

To motivate the extension to this model, we begin with a brief biological background covering

the main features of angiogenesis. This includes a discussion of VEGF secretion, tip cell selec-

tion, sprout and lumen formation, and branching of the newly formed blood vessels. We fol-

low the biological background with the development of the ABM and the reaction-diffusion

equations characterizing the cellular and tissue scales, respectively, as well as how they are

coupled. Finally, results of several simulations are presented, and the major conclusions of the

study are summarized.

Biological background

Angiogenesis is the process by which new blood vessels sprout and develop from pre-existing

blood vessels. Physiological angiogenesis is a tightly regulated process that is a critical part of

maintaining nutrient delivery by creating new vessels during embryogenesis [44], wound heal-

ing [45], and bypassing blocked vessels [46]. Tumor-associated angiogenesis was first system-

atically investigated by Ide [47], and is now widely acknowledged as one of the fundamental

hallmarks of cancer [48, 49]. The angiogenic response of endothelial cells is induced by VEGF

and begins by the selection of a tip cell which guides the nascent vessel toward the tumor cells.
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Tip cells are the tip of the growing vessel and use long filopedia to navigate the surrounding

environment. Behind tip cells, stalk cells proliferate to allow the developing vessel to lengthen

and are essential in the formation of the lumen. Following the stalk cells, phalanx [50] cells

provide rigidity and stability to the growing vessel. This tip-stalk-phalanx concept will be used

to simulate vessel initiation, growth, and development. For more on these topics, the interested

reader is referred to [26].

VEGF released by hypoxic tumor cells

During the initial stages of tumor development, cancer cells proliferate rapidly and consume

nutrients at an unsustainable rate [49]. Once the supply of glucose and oxygen is depleted, the

cancer cells begin to become hypoxic and require a new supply of nutrients to continue prolif-

erating. Hypoxic tumor cells then release VEGF into the surrounding areas which binds to the

VEGF receptors on the cell membrane of endothelial cells lining the blood vessel walls [51].

This process induces an intracellular signaling event that initiates proliferation and migration

of endothelial cells up the VEGF concentration gradient and ultimately leads to the develop-

ment of new blood vessels. Endothelial cells that make up the pre-existing vasculature proxi-

mal to the tumor become activated due to the cell response to VEGF; however, not all

activation of the epithelium leads to an endothelial cell expressing the tip cell phenotype [52].

Activation refers to the cell response to VEGF binding to the receptors causing the cell to

express tip cell characteristics (filopedia, migratory, etc.).

Lumen formation

As the stalk cells continue to proliferate and the vascular sprout [53, 54] elongates, a lumen

forms, allowing blood flow through the vessel [55]. The most common mechanisms behind

this are believed to be intercellular methods such as vacuolation and extracellular methods

such as cell-cell repulsion [52, 56–59]. Vacuolation suggests that the lumen forms through

intracellular vacuole coalescence or intercellular vacuole exocytosis. In cell-cell repulsion, dur-

ing sprout growth the endothelial cells on opposite sides of the vessels begin to adhere to one

another along the apical basal membrane, the side of the membrane of the cell facing the

lumen [52, 60]. As the vascular sprout continues to grow, proteins polarize the apical mem-

brane of the adhered endothelial cells, causing a repulsion between them [60]. This repulsion

allows blood to flow through the newly-formed lumen, enabling the delivery of (for example)

glucose and oxygen to the tumor [48, 49]. More detailed reviews of vascular lumen formation

can be found in [52].

Branching

Once a daughter vessel has completely matured, the epithelium may again be activated by

VEGF and new sprouts can form. Sprouts are formed from the daughter vessel in the same

way as they are formed from the parent vessel. The process of newly formed sprouts originat-

ing from a vessel that did not exist before tumor angiogenesis began is called branching [61,

62]. As the concentration of VEGF increases, specifically in regions in proximity to the tumor,

the number of branches increases substantially due to the greater magnitude of the spatial gra-

dient in VEGF concentration [63]. This complex network of vasculature, while leaky and tor-

tuous [64], supplies nutrients to the tumor cells, frequently rekindling the intense proliferation

that was halted by the hypoxia that initiated the entire process of angiogenesis [65].
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Anastomosis

As the branching vessels develop and migrate through the microenvironment, they anasto-

mose with each other to establish a capillary-like network in the tumor [66]. This network, and

therefore anastomosis, is paramount in delivering nutrients to the tumor microenvironment

[67]. The anastomosis between tumor capillaries and the host arterioles seem random and

leaves the network irregular and chaotic [64, 68], in many cases it is impossible to differentiate

venules, capillaries, and arterioles [67]. Despite these abnyormalities, this network establishes

blood flow and is essential for the delivery of nutrients to the tumor. Capillaries that do not

form anastomosis are essentially dead ends and cannot sustain blood flow and therefore can-

not effectively deliver nutrient to the tumor microenvironment [69].

Model development

We incorporate angiogenesis into an avascular, multiscale model we have previously devel-

oped [21]. At the cellular scale, an ABM describes cell division and growth, the phenotypic

transitions of tumor and endothelial cells, and the movements of cells based on the balance of

forces according to Newton’s second law. At the tissue scale, the reaction-diffusion equations

are integrated into a continuum model that governs the VEGF and nutrient fields. Cellular

actions impact the continuum model by consuming or releasing nutrients and VEGF, while

the local concentration of VEGF and nutrient influence the phenotypic changes in the ABM

(e.g., in favorable conditions a quiescent tumor cell will become proliferative, or a phalanx cell

will become activated due to the concentration of VEGF). Phenotypic transitions according to

the concentrations of VEGF and nutrient couple the agent-based and continuum models,

allowing cell-to-cell interactions to compute macromolecule fields at the tissue level via finite

element methods. An illustrative schematic of this model is shown in Fig 1.

Agent-based model

We take an object-oriented approach to model each cell (both tumor and endothelial) in a

data structure. This structure stores the position (x), velocity (υ) and the forces acting on each

Fig 1. Model overview. The nutrient and VEGF dispersions that occur at the tissue scale are modeled by partial

differential equations (PDEs). At the cell scale, endothelial and cancer cells are described using an agent-based model

(ABM). The release and uptake of nutrient and VEGF link the PDEs and the ABM. For example, tumor cells consume

nutrients and, when hypoxic conditions arise, release VEGF causing the endothelial cells to migrate up the VEGF

gradient to deliver nutrients to the tumor.

https://doi.org/10.1371/journal.pone.0231137.g001
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cell (e.g., drag, cell-cell, and cell-boundary forces). Additionally, the nuclear (RN), cytoplasmic

(R), and the action (RA) radii are all stored, enabling tracking cell growth and allowing cell size

variability during the simulation. As cells are not necessarily circular (in particular, endothelial

cells elongate in the axial direction of the vessel [70]), a fundamental limitation of the proposed

approach is that inability to capture the morphology of each individual cell. The action radius

serves to partially address this limitation by allowing cell deformation within a region RA to

maintain adhesion bonds, where RA> R [20]. Cells are free to move throughout the domain

unrestrained by a grid or lattice system.

Cell movement. The movement of each cell is guided by the balance of the forces between

the cells. This depends on cell position, time, and the characteristics of the microenvironment

(e.g., the tip cell is guided by the gradient of VEGF). We assume the following forces are acting

on every cell:

1. drag force (Fd),

2. cell-cell adhesive (Fcca) and repulsive (Fccr) forces,

3. compression (Fct) and resistance to compression (Frct) forces from the boundary.

The drag force is given by Fd = −ηυ, where the constant η depends on the fluid viscosity

[21]. The other forces acting on the cells are proportional to the adhesion (φ) and repulsion

(ψ) potentials [20, 21], respectively, given by:

rφ ¼

jdj
RA
� 1

� �2 d
jdj
; 0 � jdj � RA;

0; otherwise;

8
>>>><

>>>>:

ð1Þ

rc ¼

�
RN jdj
R2
�

2jdj
R
þ 1

� �
d
jdj
; 0 � jdj � RN ;

�
jdj2

R2
�

2jdj
R
þ 1

� �
d
jdj
; RN � jdj � R;

0; otherwise;

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð2Þ

where d is the distance between the center of the two cells, or the distance between the center

of the cell and the boundary of the domain. Within the nuclear region, ψ is linear to model the

increased cell stiffness in the nucleus [20]. The forces acting on ith cell due to the jth cell and

the boundary are given as:

Fij
cca ¼ � cccarφðd

ij
;Ri

A þ Rj
AÞ;

Fij
ccr ¼ � cccrrcðd

ij
;Ri

N þ Rj
N ;Ri þ RjÞ;

Fi
ct ¼ � cctKðNout; tÞrφðd

i
n;R

i
AÞ;

Fi
rct ¼ � crctKðNout; tÞrcðd

i
n;R

i
N ;R

iÞ;

8
>>>>>>><

>>>>>>>:

ð3Þ

where the positive constants ccca, cccr, cct, and crct are scaling parameters, Nout is the number of

cells that left the domain through the boundary, and K(Nout, t) models the stiffness of the
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boundary. This function is bounded between zero and one and the two limiting cases can be

interpreted as: 1) K(Nout, t) = 0, there is no stress accumulation and the tumor cells can leave

the domain, and 2) K(Nout, t) = 1, the boundary behaves like a non-permeable incompressible

membrane, so the tumor is compressed.

Assuming that the forces acting on the ith cell equilibrate quickly, Newton’s second law

yields the movement of the cell as:

0 � mi _υ i ¼
XNðtÞ

j ¼ 1

j 6¼ i

Fij
cca þ Fij

ccr

� �
þ Fi

ct þ Fi
rct þ Fi

d;
ð4Þ

where N(t) is the number of cells, and m the mass of the cell. Replacing the drag force (Fd) on

Eq (4), leads to

υi ¼
1

Z

XNðtÞ

j ¼ 1

j 6¼ i

ðFij
cca þ Fij

ccrÞ þ Fi
ct þ Fi

rct

0

B
B
B
B
B
@

1

C
C
C
C
C
A

: ð5Þ

Knowing the velocity of the cell from Eq (5), the position of the ith cell at time t is given as:

xiðtÞ ¼ xiðt � 1Þ þ υiDt; ð6Þ

where Δt is the time interval between t − 1 and t.
Tumor cells. The adhesive and repulsive forces, movements, and phenotypic transitions

of tumor cells are similar to those described in [21]. In Fig 2, we present a diagram of the phe-

notypic transitions of the tumor cells. Quiescent tumor cells (Q), may become proliferative (P)

accordingly to a stochastic process that depends upon the proliferation function αP. The prolif-

erative cell type divides after time τp − τG1 has passed, generating two daughter cells with half

of its volume (i.e., the radius of the daughter cell is the radius of the original cell divided by
ffiffiffi
2
p

). These time values are related to the total cell cycle time (τP), and the time a cell is in the

G1 phase of the cell cycle (τG1), the gap between mitosis and DNA replication [71]. The growth

of the radius of these daughter cells is given by

Ri
a
¼

�Raffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
tG1 þ t � tP

tG1

s

; ð7Þ

where Ri
a

is the radius of the ith cell (i.e., R, RN and RA), �Ra is the average cell radius (e.g., �RN is

the average nuclear radius of a tumor cell population), and τ is the time of the cell in the cur-

rent state. Eq (7) is a linear interpolation of the cell radii from the time that the cell begins

growth, τ = τP − τG1, to the time that it is fully grown, τ = τP, where Ri
a
¼ �Ra. Once the radius

of the daughter cell reaches the size of the average cell radius, the daughter cell becomes quies-

cent. The quiescent cells can go through programmed cell death and become apoptotic, at a

rate, αA. Apoptotic cells are removed from the simulation after a time τA. The transitions to

the proliferative and apoptotic states are stochastic and, given that the cell is in a quiescent
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state Q, the probability to change to the state (P) or (A) is:

PðPjQÞ ¼ 1 � expð� aPDtÞ; where aPðtÞ ¼ �aP
s � sH

1 � sH

� �

; ð8Þ

PðAjQÞ ¼ 1 � expð� aADtÞ; where aA ¼ constant; ð9Þ

where the constant �ap is the maximum probability of a cell to transition from quiescent to pro-

liferative (when σ = 1, α = αP), σ is the normalized concentration of nutrient, and σH is the

threshold for a cell to transition to hypoxic [20, 21].

During the maintenance of cellular function, nutrients are consumed by proliferative, qui-

escent, and hypoxic tumor cells. The rate of consumption is determined by the continuum

model description (see Continuum Model section). After substantial depletion of nutrients,

quiescent cells become hypoxic when the local value of nutrients is not sufficient to allow

tumor cells to maintain proper cellular function. This threshold is noted as σH. Hypoxic cells

are crucial for the process of angiogenesis; in particular, it has been shown that hypoxic cells

are primarily responsible for the release of VEGF [72]. If the local nutrient becomes less than

σN, the cell becomes necrotic. The nutrient concentration can increase due to the new vascula-

ture and, if the nutrient level becomes favorable for tumor growth (i.e., σ� σH), hypoxic cells

can return to the quiescent state. Necrotic, or dead cells, can no longer be revived by new

nutrients supplied to the tumor.

Endothelial cells. Our ABM approach to modeling angiogenesis incorporates the “tip-

stalk-phalanx” concept, described in the Biological Background section. We assume that the

VEGF released by the tumor cells is the dominating factor in promoting angiogenesis. To

Fig 2. Schematic illustration of tumor cell transitions. The arrows show the potential transitions a tumor cell may

undergo from each phenotype. For example, a quiescent cell (Q) may transition to a proliferative cell (P) if the local

nutrients exceed a threshold σp, to a hypoxic cell (H) if the nutrients are below a threshold αH, or to an apoptotic cell (A)

if a probability αA is met.

https://doi.org/10.1371/journal.pone.0231137.g002
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capture the heterogeneity of the endothelial cells during angiogenesis, we have identified rules

to govern phenotypic transitions. The phenotypes selected to model sprouting are the migra-

tory tip cell (T), a proliferative stalk cell (S), and a phalanx cell (E) [50, 52], as shown in Fig 3.

Activation of phalanx cells occurs when the normalized concentration of VEGF becomes

greater than the threshold, αV. However, due to competition between activated endothelial

cells, a distance parameter (dtip) is imposed upon the selection of new tip cells. The formula-

tion for competition is implemented as follows: if a phalanx cell Ei is activated due to the con-

centration of VEGF, [VEGF], rising above a threshold, but there remains a tip cell Tj such that

the distance between Ei and Tj, (dtip), is less than a minimum distance, (dmin), then Ei remains

a phalanx cell. However, if [V E G F]> αV and dtip(Ei, Tj}) > dmin, Ei becomes an activated tip

cell Ti. A limitation of this formulation is that only phalanx cells can transition to tip cells,

though it is known that stalk cells compete for the tip cell phenotype and may transition to a

tip cell [73]. Incorporating this would add more rules governing phenotypic transitions and

computational complexity, which we aim to minimize, and would have a negligible effect on

the vessels produced in simulations (the characteristic length scale between tip and stalk cells

is on the order of 10μm while the length of the vessels is an order of magnitude greater).

Newly activated tip cells search the nearby area and change phalanx cells into stalk cells. To

become a stalk cell, the distance between the phalanx cell and the new tip cell, dtip, must be less

than a minimum distance, dES. However, a stalk cell can return to its previous state, a phalanx

cell, if dtip becomes greater than dES. After the phenotypic transition from phalanx to stalk, the

activated tip cell will no longer change the phenotypes of nearby phalanx cells. New stalk cells

are only developed afterward by mitosis.

Tip cell dynamics. The movement and guidance of sprouting blood vessels is controlled

by the tip cell. To mimic the movement of the tip cell due to chemical signaling, we introduce

a force FVEGF. The directionality of the force is according to the gradient of VEGF, given as

Fij
VEGF ¼ � ctmr�cðdij

;Ri
N þ Rj

N ;Ri þ Rj; ½VEGF�Þ; ð10Þ

where ctm is the scaling parameter with units of kg �m � μm/s2, dij is the distance between the

Fig 3. Schematic illustration of endothelial cell transitions. The arrows show the transitions that each endothelial cell

phenotype may experience. Phalanx cells (E) may transition to tip cells if the concentration of VEGF is greater than a

threshold αV and is greater than dES away from the closest tip cell (T) or to a stalk cell (S) if the distance to an activated

tip cell is less than dSE. Stalk cells may divide after time τSP and then have a growing period τgs.

https://doi.org/10.1371/journal.pone.0231137.g003
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tip cell i and stalk cell j, and the VEGF potential [20, 21], �c, is given as

r�cðd;RN ;R; ½VEGF�Þ ¼

�
RN jdj
R2
�

2jdj
R
þ 1

� �
r½VEGF�
jr½VEGF�jjdj

; 0 � jdj � RN ;

�
jdj2

R2
�

2jdj
R
þ 1

� �
r½VEGF�
jr½VEGF�jjdj

; RN � jdj � R;

0; otherwise:

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð11Þ

This new force is added to the balance of the forces (Eq (4)) acting on the tip cells. While

the tip cell is moving along the gradient of VEGF, due to the balance of this force and the adhe-

sion and repulsion forces between tip and stalk cells, it is responsible for slight remodeling of

the new sprout. To safeguard the sprout from breaking due to high gradients in the VEGF

field (i.e., tip cells moving freely without being connected to the sprout), the potential function

defined by Eq (11) is proportional to the distance to the stalk cells surrounding the tip cells.

This function, regardless of the gradient of VEGF, acts to scale the force so that it does not

dominate the adhesion forces of the tip and stalk cells. A diagram of a sprout is shown in Fig 4.

A delicate balance of forces is required for modeling the development of vessel sprouts. The

interplay between the adhesion and repulsion forces and the VEGF force results in the overall

geometry of the vessel. If FVEGF is the dominant factor, the vessel is guided by the tip cell “drag-

ging” the vessel from the front. Similarly, if the adhesion force between the tip and stalk cells is

the dominant factor, the vessel is guided primarily by the proliferation of the stalk cells. The

velocity of the tip cell is obtained similarly as presented in Eq (5), with the inclusion of the

FVEGF force.

In addition to these forces, we also include a force that promotes vessel anastomosis. Tip

cells will search in the direction of the gradient of VEGF to see if another vessel intersects its

path. If the tip cell finds another vessel it will continue to migrate in the direction of this VEGF

gradient, and will no longer sample the microenvironment for an updated VEGF gradient. Tip

cells fuse with another vessel if the distance requirement of the intersecting vessel is less than

Fig 4. Endothelial cell forces. FVEGF is the chemotactic force due to the gradient of VEGF. Fcca and Fccr are the cell-cell

adhesive and repulsive forces, respectively. Fd is the drag force associated with the extracellular matrix. The balance

between adhesion and repulsion forces acting on the cells is responsible for maintaining the vessel integrity. The

chemotactic force acting on the tip cell drives the movement of the tip, which, by the interaction with other cells,

guides the remodeling of the vessel. (E = phalanx cell, S = stalk cell, and T = tip cell).

https://doi.org/10.1371/journal.pone.0231137.g004
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or equal to dths, given in Eq (12) as:

dths ¼ 2:25 �minðcella:R; cellb:RÞ ð12Þ

where dths is the distance threshold between the anastomosing tip cell and the endothelial cells

of the vessel wall and celli.R is the cytoplasm radius of cell i. This threshold is chosen so that

the stalk cells behind the tip cell do not interact with the anastomosing vessel, as they could

repel each other and inhibit anastomosis (see Lumen Formation section).

Lumen formation. To accurately model angiogenesis and the shape of the vascular net-

work, the diameter of the involved blood vessels is a crucial parameter [74]. Here, the lumen

formation is modeled by a repulsive force between endothelial cells on opposite sides of the

blood vessel wall (based on the cell-cell repulsion method described in Lumen Formation sec-

tion). To distinguish between sides of the blood vessel wall, we introduce a cell characteristic

termed previous state. To form the lumen, both sides of the wall are taken to be polarized and

are, therefore, repelling one another. The repulsion force acting on the lumen is proportional

to Eq (2), and given as:

Fij
rep ¼ � creprcðd

ij
;Ri

N þ Rj
N ;Ri

rep þ Rj
repÞ; ð13Þ

where the positive constant crep is a scaling parameter, the ith and jth cells are in opposite side

of the vessel, and Rrep is the repulsion distance. The distance Rrep governs the diameter of the

lumen directly behind the tip cell; thus, it is constrained by the action radius of the tip and

stalk cells. If chosen too large (i.e., Rrep >> RA), the stalk cells would not be within the adhe-

sion distance from the tip cell and the vessel would break. Here, we take the coefficient of

repulsion, crep, such that Frep is greater the adhesion forces acting on the lumen. These con-

straints, Frep > Fcca, and the choice of Rrep, maintain the aesthetics of the lumen and avoid the

collapse of the vessel without external forces (note the vessel can still collapse when com-

pressed by the tumor). The lumen repulsion dynamics are shown in Fig 5.

Stalk cell dynamics. Once a tip cell is selected and local phalanx cells transition into stalk

cells, the sprout is guided according to the adhesion and repulsion on the tip cell and the gradi-

ent of VEGF. However, the elongation of the forming sprout is due to the continued prolifera-

tion of the stalk cells directly behind the tip cell. Stalk cell division occurs deterministically

after time, tsp, has passed since the stalk cell reached its full size. After stalk cell division, two

Fig 5. Time evolution of lumen formation. Blood vessel walls are polarized (shown as a negative charge (-) on the

apical membrane of the endothelial cells), leading to a repulsive force that separates the vessel. On the left, the phalanx

(E) and stalk (S) cells are close together, causing a large repulsion force to expand the lumen. In the middle, the

phalanx cells are now in equilibrium; however, the stalk cells still repel each other. On the right, the blood vessel is in

equilibrium and there is no longer any repulsion acting on the cells.

https://doi.org/10.1371/journal.pone.0231137.g005
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daughter stalk cells are produced. The radii of the daughter cells are such that the area of each

cell is half of the parent cell. The new location of the daughter cells (xd1 and xd2) are aligned

with the locations of the tip cell (xt) and the parent stalk cell (xs), such that

xd1 ¼ xs þ 0:25ðxt � xsÞ; ð14Þ

xd2 ¼ xs � 0:25ðxt � xsÞ: ð15Þ

Once proliferation occurs, the nucleus and cytoplasmic radius of daughter cells begin to grow

according to:

Ri
a
¼

�Re
affiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
teG1
þ t � teP
teG1

s

; ð16Þ

where teP is the total cell cycle time for endothelial cells, teG1
is the time an endothelial cell is in

the G1 phase of the cell cycle, Ri
a

is the radius of the ith cell (i.e., nucleus and cytoplasm radius),

�Re
a

is the average endothelial cell radius, and τ is the time of the cell in the current state. How-

ever, the action radius of the stalk cell does not change after proliferation or during growth.

We assume that the small difference in size between the daughter and parent cell does not

influence the maximum adhesion distance between cells. A graphic of stalk cell proliferation is

shown in Fig 6.

Branching. The criteria for tip cell selection during branching remains the same as in the

Endothelial Cell section (i.e. [VEGF] is greater than a threshold and the distance to another tip

cell is above a threshold). However, due to repulsion between endothelial cells with different

previous states, adjustments to the process must be made. For a 2D example, shown in Fig 7A,

consider two sides of the blood vessel wall, X (comprised of cells EA) and Y (comprised of cells

EB), where subscripts A and B are the cells previous state. Repulsion between these two walls

remains, even if a phalanx cell EA on wall X transitions into a tip cell. However, upon becom-

ing a tip cell, cell EA (now labelled as TA, as it is now a tip cell) changes adjacent phalanx cells

to stalk cells SA and SB (see Fig 7B). The previous state (which distinguishes repulsion between

cells) of these new stalk cells become A and B. Since all the cells on wall X have previous state

A, except for stalk cell SB (which is now previous state B), the repulsion between SB and all

Fig 6. Stalk cell division. Panel A depicts initial sprouting with both stalk (S) cells fully matured, while Panel B shows

the initial placement of the daughter cells. Panel C depicts how the combination of continued stalk cell proliferation

and migration of the tip cell due to the VEGF gradient leads to elongation of the sprout. The stalk cell phenotype is

governed by complex signaling pathways and local variations in the VEGF field [52]. Since these pathways (primarily

the notch signaling pathway) are contact dependent, the stalk cell phenotype is fundamentally limited by its distance to

a tip cell. We simplify this process by implementing a distance threshold dSE, the distance from a tip cell where a stalk

cell will transition to a phalanx cell. Finally, Panel D displays that the growing stalk and phalanx cells are fully matured,

and the process restarts again from Panel A. This process is continued repeatedly to allow sprout elongation in the

direction of the gradient of VEGF.

https://doi.org/10.1371/journal.pone.0231137.g006
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other endothelial cells (EA), would break the vessel. To allow for branching, we implement a

“previous state reset”. While changing the phalanx cells on each side of the tip cell to stalk cells,

the activated tip cell also resets the previous state of the phalanx cell on the other side of the

new stalk cell to previous state C, which adheres to both previous state A and B cells, depicted

in Fig 7C.

If the distance between two tip cells becomes less than a threshold dTT (i.e., the two tip cells

have fused together and formed an anastomosis), both cells transition back to phalanx cells

and reset their previous state, allowing for tip cell selection to repeat based on local concentra-

tions of VEGF. This mechanism allows for sprouting vessels to form an anastomosis through

tip cell fusion and new competition among the surrounding endothelial cells. After the initial

period Ttip-p, the interaction between the tip and phalanx cells is governed by the balance of

adhesion and repulsion forces, Fcca and Fccr, respectively. If the tip is in close proximity to

another sprout or parent vessel, the adhesion between tip and phalanx cells promotes anasto-

mosis within the model and the tip cell transitions back into a phalanx cell. After daughter ves-

sels anastomose together, they begin to mature and establish blood flow through the vascular

network. Since we do not explicitly model blood flow and use endothelial cells as a surrogate

to deliver nutrients, we impose the restriction that endothelial cells must be part of a looped

vessel to release nutrient. This is accomplished by flagging cells that spearhead the anastomosis

between two vessels and iterate through all cells along the vessel wall in between them. If all

these cells are connected (they may become disconnected by proliferating tumor cells), they

begin to release nutrient. If the vessel is sectioned off and any cells between the two flagged

cells become deactivated, the vessel loop is broken and all of these cells stop releasing nutrient.

During vascular tumor growth, the newly formed vascular network increases the nutrient

availability around the tumor. At this stage, the tumor continues to grow, which may lead it to

surround the vessels. With the increasing number of tumor cells around the vessel, the forces

Fcca and Fccr acting on the phalanx cells can overcome the repulsion force, Frep, responsible for

lumen integrity. If the compression acting on the vessel is higher than Frep, the vessel collapses

its walls, breaking the adhesion between neighboring cells and is sectioned off from the parent

vessel. In cases where the vessel is sectioned off from the parent vessel, the cells making up the

sectioned vessel are deactivated. These deactivated cells are flagged so that they cannot be

selected to be a tip cell again.

Continuum model

As described above, the transitions between different phenotypes (e.g., proliferative, hypoxic

and necrotic tumor cells, and tip-stalk-phalanx endothelial cells) are dependent on the nutrient

Fig 7. Schematic of vessel branching. Panel A depicts the initial blood vessel made up of wall X (comprised of cells

EA) and wall Y (comprised of cells EB). In Panel B, a tip cell (TA) is selected on vessel wall X; however, applying the

basic rules for a new tip cell selection, stalk cell SB would repel against adjacent phalanx cell EA causing the vessel to

break. For this reason, we implement a previous state C which acts as a reset and allows the newly transitioned cell SB
to adhere to other cells in wall X, shown in Panel C.

https://doi.org/10.1371/journal.pone.0231137.g007
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and VEGF concentrations available in the microenvironment, σ and [VEGF], respectively. The

dispersion of these two concentrations are modeled at the tissue scale, as they are taken to be

heterogeneous fields that can freely diffuse throughout the domain. The models are derived

from continuum physics assuming conservation of mass. The mass balance principle yields

models based on reaction-diffusion equations, where the bridge between tissue and cell scales

happens through the source and reaction terms.

We consider the endothelial cells as a surrogate for blood flow as they are responsible for

the delivery of nutrients. To avoid the delivery of nutrients by endothelial cells that are part of

vessels severed from the parent vessel, only endothelial cells that are part of anastomotic loops

(as described in the Biological Background) “deliver” nutrients. The nutrients are consumed

by tumor cells, with the exception of non-viable cells (i.e., dying and necrotic cells). When the

local nutrient level falls below the threshold σH, tumor cells become hypoxic and release VEGF

to trigger the growth of new blood vessels. During this process, VEGF is consumed, decreasing

the available concentration in the environment. With these assumptions, the nutrient and

VEGF concentrations, (σ(x, t)) and ([VEGF](x, t)), respectively, are governed by the following

reaction-diffusion equations:

@s

@t
¼ r � ðDnrsÞ � Lnðx; tÞsþ Gnðx; tÞsð1 � sÞ;

@½VEGF�
@t

¼ r � ðDvr½VEGF�Þ � Lvðx; tÞ½VEGF�

þ Gvðx; tÞ½VEGF�ð1 � ½VEGF�Þ;

9
>>>>>>>>>=

>>>>>>>>>;

in O� ð0;TtissueÞ; ð17Þ

where Dn and Dv are the nutrient and VEGF diffusion coefficients, respectively, Λn(x, t) is the

nutrient uptake rate of the cancer cells, Λv(x, t) is the VEGF uptake rate of the endothelial cells,

Γn(x, t) is the nutrient delivery rate of looped endothelial cells, and Γv(x, t) is the VEGF release

rate of hypoxic cells. The release of nutrient and VEGF are modeled by a logistic production

term, so their concentration is bounded between zero and one. The system is assumed to be

isolated; i.e., no flux through the boundary, leading to the application of the following Neu-

mann boundary condition:

rs � n ¼ r½VEGF� � n ¼ 0; on @O� ð0;TtissueÞ; ð18Þ

where n is a unit exterior normal vector on the boundary @O.

In Eq (17), the functions Λn, Γn, Λv, and Γv, are the nutrient uptake by tumor cells, nutrient

delivery by looped endothelial cells, VEGF uptake by endothelial cells, and VEGF release by

hypoxic tumor cells, respectively. These functions serve to bridge the tissue and cell scales by

capturing the production and consumption of VEGF and nutrient by the cells, and act as a

source or sink term in the continuum model that governs the tissue scale. The functions aver-

age the cell scale volume fractions of cells in each element of the finite element mesh and pro-

duce or consume VEGF and nutrient at the element nodes. These functions are defined as:

Lnðx; tÞ ¼ l
c
pq�pqðx; tÞ þ l

c
h�hðx; tÞ þ l

s

decayð1 � �cðx; tÞÞ;

Gnðx; tÞ ¼ ge�eðx; tÞ;

Lvðx; tÞ ¼ l
c
t�tðx; tÞ þ l

c
s�sðx; tÞ þ l

c
p�pðx; tÞ þ l

VEGF
decay ð1 � �cðx; tÞÞ;

Gvðx; tÞ ¼ gh�hðx; tÞ;

9
>>>>>>>=

>>>>>>>;

ð19Þ
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where the subscripts pq, h, e, t, s, p, and c indicate proliferative plus quiescent tumor cells, hyp-

oxic cells, looped endothelial cells, tip cells, stalk cells, phalanx cells, and all (tumor and endo-

thelial) cells, respectively. In Eq (19), ϕα(x, t) is the volume fraction of the cell α, α 2 {pq, h, e, t,
s, p, c}, at position x and time t, lc

a
is the consumption rate by the α cell, γα is the production

rate of the α cell, and l
s

decay and l
VEGF
decay are the natural decay of the nutrient and VEGF, respec-

tively. See Table 1 below for a complete listing of all model parameters and their definitions.

Table 1. Baseline set of model parameter values.

Parameter Meaning Value Ref.

R tumor cell radius 9.953 [20]

RN tumor cell nuclear radius 5.295 [20, 82]

RA tumor action radius 1.214R [20, 21]

Re endothelial cell radius 0.5R estimated

Re
N endothelial cell nuclear radius 0.5RN estimated

Re
A endothelial action radius 0.5RA estimated

ccca tumor cell-cell adhesion coefficient 0 estimated

ccca endothelial-endothelial cell adhesion coefficient 0.488836 [20]

cccr tumor cell-cell repulsion coefficient 10 [21]

cct cell-boundary adhesion coefficient 10 estimated

crct cell-boundary repulsion coefficient 0 estimated

τP total cell cycle time 18h [20, 21]

τG1 G1 phase time 9h [83]

τA apoptosis time 8.6h [20, 21]

τNL lysing time 6h [20, 21]

τC necrosis time 360h [20, 21]

�aP proliferation intensity 0.27067 h−1 estimated

αA Q! A transition intensity 0.0012728 h−1 [20, 21]

σH hypoxic threshold 0.3 estimated

σN necrotic threshold 0.25σH estimated

αV VEGF threshold 0.1 estimated

dmin minimum distance from tip cell for new tip cell selection 8RA estimated

dSE minimum distance from tip cell for S! E transition 1.55R estimated

dES maximum distance from tip cell for E! S transition 1.55R estimated

τgrow stalk cell growth time 38h estimated

ctm VEGF coefficient 0.6 estimated

crep lumen repulsion coefficient 1.0 estimated

dTT maximum distance for tip cells to deactivate 3Re
A estimated

Dn nutrient diffusion coefficient 1000 μm2/h [20, 21]

DV VEGF diffusion coefficient 8000 μm2/h estimated

l
c
pq; l

c
h nutrient consumption rate of proliferative/quiescent, hypoxic cells 0.8 h−1 [20, 21]

γe nutrient production rate of endothelial cells 300 h−1 estimated

l
c
t ; l

c
s ; l

c
p VEGF consumption rate of tip, stalk, and phalanx cells 10 h−1 estimated

γh VEGF production rate of hypoxic cells 300 h−1 estimated

l
VEGF
decay

natural decay rate of VEGF 0.0 h−1 estimated

l
s

decay natural decay rate of nutrient 0.0 h−1 estimated

https://doi.org/10.1371/journal.pone.0231137.t001
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Sensitivity analysis

The objective of a sensitivity analysis is to quantify the contributions of model parameters to

the uncertainty in the model output [75]. In this work, we employ a variance-based global sen-

sitivity analysis method to quantify the contributions of the parameters given in Eq (17). The

variance-based method, also known as the Sobol method [76, 77], is a rigorous global method

that takes into account both first order parameter effects (i.e., single parameter effect on the

model output), and higher order effects (i.e., the effect of parameter to parameter interactions

on the model output). Here, we employ the sampling strategy and estimator recommended in

[78]. The computational cost of the analysis is dependent on the number of parameters, k, and

the sample size, N, with the total number of model evaluations given as NT = N(k + 1).

We utilize the radial sampling algorithm, which consists of generating two matrices, A and

B, with size N × k. The next step is to generate k matrices AðkÞB , where the column k comes from

B and all other columns are from A. To illustrate the generation of these matrices, we present

the matrices for the case where N = 1:

A ¼ ½a1;1 a1;2 . . . a1;k �;

B ¼ ½b1;1 b1;2 . . . b1;k �;

Að1ÞB ¼ ½b1;1 a1;2 . . . a1;k �;

Að2ÞB ¼ ½a1;1 b1;2 . . . a1;k �;

..

.

AðkÞB ¼ ½a1;1 a1;2 . . . b1;k �:

For each row of each matrix (i.e., A and Ak
B), which represents one set of values for the vec-

tor of parameters, we compute the output of the model (the number of each cell phenotype).

These outputs are stored as vectors YA and Yk
AB. With these vectors, we compute the total effect

index (TEI), STi , for each parameter i [79]. For non-additive models (i.e., when it is impossible

to isolate the effects of its parameters in a variance decomposition framework; e.g, Y = πiZi
[77]), the total effect index takes into account both the first-order effects and the contribution

of higher-order effects due to interactions between the model parameters. We compute STi as:

STi ¼
1

2N

XN

j¼1

ððYAÞj � ðY
ðiÞ
ABÞjÞ

2
: ð20Þ

A necessary and sufficient condition for the parameter to be considered noninfluential is that

Eq (20) is equal to zero [77]. Thus, if STi < � (where � is small relative to other STj and is prob-

lem dependent) then the parameter can be fixed to any value within the uncertainty range

[77]. According to [77], the approximation error affecting the output of the model when the

parameter i is fixed depends on the value of STj .

Numerical experiments

The ABM is implemented in C++ using an object-oriented approach (https://github.com/

CalebPhillips5/ABM_Ang). The continuum model is solved using libMesh [80], a general-

purpose C++ finite-element library. The graphics displaying the ABM are generated in

MATLAB (The MathWorks, Natick, MA, USA) while the continuum model graphics are gen-

erated in ParaView [81]. The ABM results are generated in MATLAB due to the speed of

image generation and compatibility with a variety of operating systems. ParaView is used for
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the continuum model because the software is compatible with supercomputing platforms and

enables visualization of finite element domains.

The parameter values for the ABM are given in Table 1, and are used throughout all simula-

tions (unless otherwise specified for the sensitivity analysis). The computational domain is cir-

cular and measures 1000 microns in diameter. A wall of endothelial cells on the left of the

domain simulate an existing blood vessel before tumor formation (see Fig 8). The tumor is

comprised of 25 cells at the initial time point of each simulation, with 13 being proliferative

and 12 being quiescent. The nutrient and VEGF fields are modeled as normalized concentra-

tions, and we assume a uniform initial condition given as σ(x, 0) = 0.6 and [VEGF](x, 0) = 0.0

inO.

ABM simulations

As the tumor cells rapidly grow, they deplete the surrounding nutrients and become hypoxic.

These hypoxic tumor cells release VEGF (according to Eq (17)), and trigger angiogenic sprout-

ing on the parent vessel. As the hypoxic tumor cells continue signaling, the vessel’s branching

increases, and the vascular structure becomes a complex network. The early stages of this sim-

ulated network are shown in Fig 9.

In Fig 9, Panel A depicts newly branched vessels in the presence of high concentrations of

VEGF (Panel C). These vessels deplete the VEGF supply, shown in the dark blue regions of

Panel C, and do not allow the formation of other new sprouts from the parent vessel. As these

vessels migrate toward the tumor, depicted in Panel D, they enter a region with high concen-

trations of VEGF and more sprouting occurs (Panel G). Proximal to the tumor, the main

driver of branching becomes the distance threshold between tip cells, since the concentration

of VEGF is high enough to activate many endothelial cells. The oxygen fields (Panels B, E, and

H) are relatively static because the vascular structure has not yet created loops capable of sus-

taining blood flow and delivering nutrients.

In Fig 10, we present the evolution of the ABM after the anastomosis occurs. Over time the

vessel network matures (Panels A, D, and G), grows toward the tumor directed by the concen-

tration of VEGF (Panels C, F, and I), forms complex networks and anastomotic loops, and ulti-

mately delivers nutrients to the tumor (Panels B, E, and H). In Panels A-C, we show the ability

of the mathematical model to recapitulate the progression of tumor angiogenesis. Panel A

depicts the first anastomosis loop, which allows the vasculature to release nutrients (Panel B).

This vasculature grows and forms a network capable of sustaining blood flow through

Fig 8. Initial conditions. Panel A displays the ABM with the parent blood vessel in red and tumor cells divided into

quiescent (blue) and proliferative (green) cells. In Panels B and C, a uniform nutrient field with a normalized

concentration of 0.6, and a uniform VEGF field set to zero (as the model starts without hypoxic cells), respectively.

This initial condition represents a single vessel as a source of nutrients.

https://doi.org/10.1371/journal.pone.0231137.g008
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anastomotic loops (Panel D) and delivering nutrients to the tumor (Panel E). The increase of

nutrient supply restarts the tumor growth (Panel D). With the rapid tumor growth, the vessels

are occluded (Panel G), leading to a decrease of nutrient concentration (Panel H). Moreover,

the lack of nutrients increases the number of hypoxic cells, which release VEGF (Panel I).

Sensitivity analysis of the reaction-diffusion equations

To better understand how the parameters of the continuous model contribute to the number

of each cell phenotype, we perform a sensitivity analysis on the diffusion, consumption, and

production rates for the nutrient and VEGF equations as described by Eq (17), respectively.

Fig 9. Initial angiogenic sprouting. Angiogenic sprouting occurs at hours 1500 (Panels A-C), 2000 (Panels D-F), and 2500 (Panels

G-I). The left column shows the ABM with tumor cells on the right (orange = hypoxic, grey = necrotic). The blood vessels are

dynamic and evolve over time with tip cells guiding each branch (green), necrotic cells just behind the tip cells (cyan), and phalanx

cells establishing the lumen and maintaining the structure of the vessel (red). The arrows point in the direction of gradient of VEGF

and the size of the arrow corresponds to the magnitude of the gradient. The middle column shows a relatively constant nutrient field,

since vessels must form anastomotic loops in order to establish blood flow and ultimately deliver nutrients to the tumor. The final

column shows the VEGF field; outlines of the vessels can be seen in shaded blue, since this region of lowest concentration of VEGF

corresponds to where phalanx cells uptake VEGF released by hypoxic tumor cells.

https://doi.org/10.1371/journal.pone.0231137.g009
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The sample size considered is N = 1000 and the number of parameters is k = 6, which are {Nd

= nutrient diffusion, Np = nutrient production, Nc = nutrient consumption, Vd = VEGF diffu-

sion, Vp = VEGF production, Vc = VEGF consumption}. Thus, the number of model evalua-

tion required to obtain the total effect index is NT = 8000.

In Fig 11, the total effect index for each parameter, and for each cell phenotype, is presented

every 100 hours from hour 100 to 4000. The number of time steps has been defined to ensure

that angiogenesis can occur and that tumor cells are affected by the new source of nutrients.

Fig 10. Anastomotic loop formation. The first anastomotic loop is formed at hour 3100 (Panels A-C). Panel A depicts a newly

anastomosed vessel and Panel B the subsequent influx of nutrient delivered by the vessel. The tip cell of the top anastomosed vessel

fused into the cells on the wall of the bottom anastomosed vessel (as dictated by the process described in the Model Development

Branching subsection). At hour 3800 (Panels D-F), the tumor has become proliferative because of the supplied nutrients from the

vessels (Panel E). The complexity of this vascular system is depicted in Panel E, with numerous junctures of vessels and the

corresponding nutrients supplied by these vessels. With the decreasing number of hypoxic cells and the increase in vasculature, the

concentration of VEGF, shown in Panel F, is quite depleted. Panel G (hour 4000) shows the resulting tumor and vasculature after the

tumor has rapidly proliferated due to the influx of nutrients. The stresses imparted on the vasculature by the proliferating tumor cells

has severed most of the vessels proximal to the tumor. The resulting nutrient field (Panel H) has no vessels releasing nutrients, as all

anastomosed loops have been severed. With the reduction of supplied nutrients, the tumor becomes hypoxic and the production of

VEGF increases again (Panel I).

https://doi.org/10.1371/journal.pone.0231137.g010
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Fig 11. Sensitivity analysis for different tumor cell phenotypes and parameters (black = nutrient diffusion, purple = nutrient production,

green = nutrient consumption, blue = VEGF diffusion, cyan = VEGF production, red = VEGF consumption). Panels A-G show the total effect index

over time of cell phenotypes with Panels A-D depicting tumor cell phenotypes and Panels E-G depicting endothelial cell phenotypes. The gaps in the total

effect index (TEI), most predominantly shown in Panels A and B, occur because TEI is calculated when changes in cell number occur through time (e.g.,

the number of proliferative tumor cells in Panel B is constant from hour 0 to hour 2900, so there is no TEI). In the beginning stages of tumor growth
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During the initial stages of tumor growth (from 0 to 2400 hours), the most important parame-

ters for the tumor cell phenotypes are nutrient diffusion and consumption (TEI shown in

green and black, respectively, in Fig 11, Panels A-D). Once angiogenesis is activated and the

new vessels reach the tumor (hour 2400 to hour 4000), the two most influential parameters to

tumor cell outcomes are VEGF diffusion and nutrient consumption. In Panels E-G, the

parameters with the greatest TEI throughout the entire simulation are VEGF diffusion and

consumption. All other parameters have TEI< 0.2 throughout the simulations.

Discussion

In this contribution, we have developed a novel mechanism-based mathematical model to

quantitatively characterize angiogenesis by explicitly incorporating vessel occlusion and sever-

ing due to the physical interaction between the tumor and endothelial cells. In this new

approach, the model computes the physical forces acting on the vessels and the resulting varia-

tion in nutrient delivery, growth and composition of the tumor. Furthermore, the model is

able to describe the following characteristics of angiogenesis. First, the model recapitulates tip

cell activation and angiogenic sprouting due to local tumor hypoxia (Fig 9). Panels B, E, and H

depict hypoxia in the tumor region (blue corresponds to a depletion of nutrients) while Panels

A, D, and G depict the progression of sprouting in the ABM in response to the VEGF field,

shown in Panels C, F, and I. Second, the transition from avascular to vascular tumor growth is

captured by characterizing the depletion of nutrients in the tumor microenvironment and the

delivery of nutrients by vessels that have anastomosed and the corresponding increase in

tumor cell proliferation. The transition of proliferative/quiescent tumor cells to hypoxic tumor

cells is shown in Figs 8 and 9, where Fig 8 depicts a proliferative and quiescent tumor (green

and blue cells, respectively), while Fig 9 shows a hypoxic and necrotic (orange and gray tumor

cells, respectively) tumor. Fig 10 depicts vessel anastomosis and the associated nutrient deliv-

ery, and the transition from avascular to vascular tumor growth due to anastomosing vessels.

Finally, the model characterizes vessel occlusion/collapse due to the rapid proliferation of

newly vascularized tumor regions. Fig 10 depicts the occlusion and collapse of vessels due to

the increased forces acting on the vessels from tumor cell proliferation. Panels A, D, and G

depict the complex vascular network where vessel sprouts have anastomosed (Panel D) and

delivered new nutrients to the tumor (Panel E). This influx of nutrients causes tumor cell pro-

liferation which imparts mechanical forces on the vessels, causing the occlusion and collapse

depicted in Panel G. Thus, this approach to modeling angiogenesis is a novel and quantitative

characterization of the physical mechanism between angiogenic sprouting and a growing

tumor, as well as the resulting effects on tumor growth and composition.

Other efforts have incorporated angiogenesis into mathematical models of tumor growth

by treating the tip cell as an agent which guides the vessel based on the gradient of VEGF [31,

84], or by modeling endothelial cells as a continuous field with chemotactic forces based on

tumor angiogenic factors guiding the vessels towards the tumor to deliver nutrients [85–87].

Xu et al. applies a phase-field approach to modeling tumor, nutrient, and angiogenic factor

dynamics. The model recapitulates not only avascular tumor growth with an inability to

induce angiogenesis, leading to a dormant tumor, and vascular tumor growth after induced

angiogenesis, but also the angiogenic switch between these two stages. The computational

(hours 0-2500), the nutrient diffusion and nutrient consumption are the most important parameters in tumor composition (i.e., small changes in these

parameters would yield large changes in tumor composition). However, after the initiation of angiogenesis and the formation of anastomotic loops,

nutrient consumption and VEGF diffusion are the main drivers of tumor composition. Throughout the entire simulations, the most important parameters

for angiogenesis and vessel maturation (i.e., vessel growth and anastomosis formation) are VEGF diffusion and consumption.

https://doi.org/10.1371/journal.pone.0231137.g011
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study of DLL4 blockage, coupled mathematically with tip cell activation and inversely with the

amount of nutrient delivered by vessel, compares well with experimental studies [31]. Soltani

et al. utilize a reaction-diffusion model for endothelial cells and incorporate the chemotaxis

and haptotaxis forces. Blood flow is modeled using a Poiseuille-like flow and vessels dynami-

cally adapt depending on vessel wall shear stress and intravascular pressure [88]. While these

tumor growth models inform nutrient delivery from new vessels formed during tumor angio-

genesis, they do not explicitly incorporate the physical interactions between the growing

tumor and surrounding vasculature. This physical interaction is a key component in correctly

modeling the nutrient delivery as mechanical forces lead to variations in nutrient delivery [13].

Compressing forces induce stresses on the blood and lymphatic vessels, effectively reducing

the flow cross-section, increasing the resistance to blood flow, and inhibiting the drainage of

interstitial fluid in certain regions of the tumor. This fluid accumulates and increases the inter-

stitial pressure, further decreasing local tumor perfusion through the leaky angiogenic vascula-

ture [13]. While we do not explicitly describe nutrient delivery, the present model could be

used to characterize dynamic changes in nutrient delivery as follows. Our model incorporates

adhesion forces of the endothelial cells on the blood vessels walls, as well as the repulsion forces

of the tumor cells as they increase in number. The repulsive forces of the growing tumor subse-

quently compresses the vessels. Thus, the degree to which the vessels are compressed deter-

mines the vessels’ ability to delivery nutrients to the tumor.

Through a sensitivity analysis, we are able to rank the contribution of the model parameters,

particularly the parameters from the reaction-diffusion equations for the nutrient and VEGF,

to the number of different phenotypes of tumor and endothelial cells. As we compute the sensi-

tivity analysis every 100 hours, we are able to determine how these contributions change over

time. Before angiogenesis is initiated, the number of tumor cells is only affected by the proper-

ties directly related to the nutrient (i.e., nutrient diffusion and consumption). Since the pheno-

typic transitions of tumor cells are dictated by the availability of nutrients at the tumor cell

position, the parameters governing the nutrient fields are the main drivers of tumor composi-

tion during the avascular stage. After vessels begin to anastomose and supply nutrient to the

tumor (2400 to 4000 hours), the contribution of the other parameters increases, with the nutri-

ent consumption and VEGF diffusion becoming the highest contributing parameters to the

number of tumor cells with TEI above 0.4 from hours 3000 to 4000. Regarding the number of

endothelial cells, the parameters that drive and sustain angiogenesis throughout the entire sim-

ulation are VEGF diffusion and consumption. In future experimental studies, it will be critical

to accurately measure or calibrate VEGF and nutrient diffusion and consumption rates.

While the model is able to represent the effects of physical interactions on tumor growth,

the branching of new vessels, lumen formation, and nutrient delivery, there remain several

areas which require future study. For example, the heterogeneity of neither the extracellular

matrix (ECM) nor vessel permeability are currently not represented. A more realistic charac-

terization of the ECM can have a significant effect on the geometry and function of the grow-

ing vasculature; for example, regions of high ECM density can change the drag force acting on

the cells resulting in varying sprout growth rates and densities of vasculature [89]. In the cur-

rent effort, the homogeneous ECM allows us to directly characterize the effects of the VEGF

gradient on the direction of new vessel proliferation and migration. Another limitation of our

model is that it is currently implemented only in 2D. In 2D, as vessels sprout, form anastomo-

sis, and establish a complex network, they could completely surround regions of tumor cells

and restrict the area in which tumor cells may grow. After receiving a new supply of nutrients,

these tumor cells will proliferate and eventually occlude or sever the surrounding vessels. In

reality, however, tumor cells may proliferate into the 3rd dimension and have little effect on the

encapsulating vessels. Thus, the 2D realization of our proposed model may be over-predicting
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the frequency of vessel occlusion and collapse. Also, extending it to 3D is not straightforward

as the lumen formation is driven by repulsion forces between different sides of the vessel wall,

with cells on wall X repelling cells on wall Y. In 3D, defining vessel walls for repulsion is not so

clear. One possible way forward is to parametrize vessels by a list of nodes and splines, as

described in [90], and evolving the vessel structure based on the local VEGF. However, our

immediate application for this model is to calibrate it with time resolved, confocal microscopy

measurements of tumor and endothelial cell proliferation and migration obtained in pseudo-

2D microfluidic chambers [91] and to make predictions in varying conditions (e.g., anti-

angiogenic drugs [92], radiation therapies [93], etc.); thus, we are well positioned for modeling

this experimental system.

Conclusion

We have extended the hybrid multiscale avascular tumor growth model presented in [21] to

account for angiogenesis by treating each endothelial cell as an individual agent. We used reac-

tion-diffusion equations to model the nutrient and vascular endothelial growth factor fields

which inform the decision-making processes in the ABM that governs the development and

migration of new blood vessels. Through numerical experiments, we analyzed the sensitivity

of the model parameters and their effects on the number of cells in each tumor and endothelial

cell phenotype. In summary, we have contributed a hybrid model rigorously characterizing the

physical interaction between a tumor and the surrounding blood vessels, allowing the forces of

the growing tumor to influence the nutrient delivery of the vasculature.
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