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Abstract: In intensive care units (ICUs), after endotracheal intubation, the position of the endotra-
cheal tube (ETT) should be checked to avoid complications. The malposition can be detected by the
distance between the ETT tip and the Carina (ETT–Carina distance). However, it struggles with a
limited performance for two major problems, i.e., occlusion by external machine, and the posture
and machine of taking chest radiographs. While previous studies addressed these problems, they
always suffered from the requirements of manual intervention. Therefore, the purpose of this paper
is to locate the ETT tip and the Carina more accurately for detecting the malposition without manual
intervention. The proposed architecture is composed of FCOS: Fully Convolutional One-Stage Object
Detection, an attention mechanism named Coarse-to-Fine Attention (CTFA), and a segmentation
branch. Moreover, a post-process algorithm is adopted to select the final location of the ETT tip and
the Carina. Three metrics were used to evaluate the performance of the proposed method. With
the dataset provided by National Cheng Kung University Hospital, the accuracy of the malposition
detected by the proposed method achieves 88.82% and the ETT–Carina distance errors are less than
5.333± 6.240 mm.

Keywords: endotracheal intubation; object detection; coarse-to-fine attention; deep learning

1. Introduction

In intensive care units (ICUs), endotracheal intubation is a common medical proce-
dure when a patient cannot spontaneously breathe. When intubating, the position of an
endotracheal tube (ETT) needs to be taken into account because some complications can be
caused by its malposition. A deep position can cause tachycardia, hypertension, and/or
bronchospasm. On the other hand, a shallow position can cause inadvertent extubation or
larynx damage [1]. Extensive research has shown that the appropriate depth of an ETT can
be determined by the distance between the ETT and Carina [2]. Therefore, to reduce the
likelihood of serious complications, it is essential to develop a method to accurately detect
the distance between ETT and Carina.

Recent evidence [3] suggests that chest radiography should be performed after endo-
tracheal intubation. However, in ICUs, chest radiographs (CXRs) are usually obtained in
supine anteroposterior (AP) view by a portable X-ray machine. In this situation, several
challenges limit the detection accuracy; for example, external monitoring devices, tubes,
or catheters can cause ambiguity in the position of an ETT and Carina. Additionally,
the image quality of CXR obtained in the supine AP view is lower than the standard pos-
teroanterior (PA) view. Therefore, over the past decade, researchers pay increased attention
to computer-aided detection (CAD) methods in an attempt to improve the detection of
unsuitable endotracheal intubation and reduce the burden on doctors.
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Previous automatic CAD methods for ETTs detection [4–6] have a similar procedure,
which can be simplified into four steps, i.e., preprocessing, finding neck, seed generation,
and region growing. These methods use feature extraction to detect the ETT and have
achieved acceptable results. However, such approaches have failed to address the problem
that the manual templates and hyperparameters should be determined based on experience
or morphology in the procedure. These shortages may limit the ability of generalization
and increase the responsibility of researchers.

During the same period, the success of deep convolutional neural networks (CNN)
in image classification catch researchers’ attention. Therefore, some studies apply CNN
to detect the malposition, trying to simplify the feature extraction process. Lakhani [7]
used a CNN-based classifier to identify the presence or absence and the low or normal
positioning of the ETT. Frid-Adar et al. [8] used the physical properties of ETTs and a
public dataset of chest radiographs to synthesize an ETT over real X-ray images. After that,
they used a U-Net shaped CNN to detect and segment ETTs. Lakhani et al. [9] used
Inception V3 [10] to classify CXRs into 12 categories with the distance between ETT tip and
Carina, including bronchial insertion, the distance range from 0 cm to 10 cm (0.0–0.9 cm,
1.0–1.9 cm, etc.) and over 10 cm. Chen et al. [11] used Mask R-CNN [12] to predict
an ETT and a tracheal bifurcation for each image at first, and then found the ETT tip
and Carina by a feature extraction post-process. Their method achieves a state-of-the-art
performance. Although these CNN-based methods eased the feature extraction process,
the context and semantic feature representation ability of these methods are still not enough.
Therefore, to further lessen the burden on researchers and doctors, we need to improve
these exciting methods.

Considering the efficiency and the flexibility of a model, in this paper, an end-to-end
architecture was proposed, which was composed of FCOS: Fully Convolutional One-Stage
Object Detection [13] and an attention mechanism called Coarse-to-Fine Attention (CTFA).
FCOS was a one-stage anchor-free object detection method based on four distance values
between the predicted center point and four sides of a bounding box. Furthermore, CTFA
was applied to the deepest layer of backbone in FCOS, which consisted of global-modelling
attention and scale attention. CTFA captured the long-range relationships between features
by global-modelling attention based on [14] and rescaled the feature values with local
relationships by scale attention based on [15]. Moreover, a mask prediction branch was
attached during training, keeping more useful information. After finding the candidates of
ETT tips and Carinas, a post-process algorithm was utilized to decide the best feature point
of the ETT tip and Carina. The experiments on the chest radiographs datasets provided
by ICU in National Cheng Kung University Hospital and Tainan Hospital showed that
our method outperformed the existing state-of-the-art models. In summary, the main
contributions of this paper are summarized as follows:

1. A new spatial attention (SA) module was proposed, which noticed the feature dis-
tribution in spatial and channel domains simultaneously. Different from previous
studies, the SA employed the weight of channel attention to refine the weight of spatial
attention, which also solved the problem from [15] where it overlooked the synergies
between the channel and spatial attention. Moreover, the performance of SA was
better than other attention modules.

2. A new merge method of attention modules was proposed, which fused global mod-
elling attention and scale attention. Instead of stacking the same type of attention
together, this method enlarged the ability of feature extraction in a coarse-to-fine way
and received better results.

3. The architecture proposed by this paper improved the outcomes of object detection
tasks by adding a segmentation branch. With the segmentation branch, the architecture
kept more useful information during the feature extraction.

4. The experimental result demonstrated that the proposed architecture in this paper
achieves outstanding performance on the chest radiograph datasets provided by the
ICU in National Cheng Kung University Hospital and Tainan Hospital.
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The rest of this paper is organized as follows. Section 2 introduces previous research
about object detection and attention module. Section 3 explains the proposed method
for detecting endotracheal intubation malposition. Section 4 shows and discusses the
experimental results. Section 5 summarizes this paper.

2. Related Works
2.1. Object Detection

Object detection is a subfield of computer vision. The purpose of object detection is
to localize and recognize objects with bounding boxes; this is different from classification,
which is aimed at classifying a view into a class. Generally, it can be separated into one-
stage detectors and two-stage detectors, based on whether the region proposal is adopted
or not. Moreover, object detection can also be separated into anchor-based detectors and
anchor-free detectors based on whether predefined anchors are employed or not. This
paper used a one-stage anchor-free architecture named FCOS [13] as the base.

2.1.1. Anchor-Based Approach

Anchor-based detectors set anchor boxes in each position on the feature map and
predict the probability of having objects in each anchor box. This approach can be separated
into two classes by whether it uses region proposals or not, i.e., two-stage detector and
one-stage detector. Two-stage detectors generate region proposals and then classify and
refine them. For instance, Ren et al. [16] improved Fast R-CNN [17] by proposing a
region proposal network (RPN), which generated high-quality region proposals with more
efficiency than the Selective Search applied in Fast R-CNN. After finding the proposals,
they used the region of interest (ROI) pooling to produce feature maps with the same
resolution for further refinement. Cai et al. [18] noticed the impact of intersection over
union (IoU) threshold when training object detector. Therefore, they proposed Cascade
R-CNN, which consists of a sequence of detectors trained with an increasing IoU threshold.
He et al. proposed Mask R-CNN [12] which is based on Faster R-CNN [16] and Feature
Pyramid Network (FPN) [19], trying to perform object detection and segmentation at the
same time.

One-stage detectors classify and regress the location directly. These detectors are more
efficient and lightweight but have lower performance compared to two-stage detectors.
For instance, SSD [20] detects objects of different scales by different layers in VGG-16 [21],
i.e., small objects are detected on high-resolution feature maps, and large objects are
detected on low-resolution feature maps. Liu et al. [22] proposed RFBNet to strengthen
the receptive fields (RFs) based on SSD and the structure of the RFs in the human visual
system. The RF Block (RFB) in RFBNet is similar to a mix of the inception block [10,23]
and the atrous spatial pyramid pooling (ASPP) [24]. Lin et al. proposed Focal Loss to
solve the extreme imbalance between positive and negative samples during training [25].
The Focal Loss which is similar to weighted cross entropy (CE) loss provided larger weights
for positive samples and lower weights for negative samples. Based on this loss function,
Lin et al. also proposed a one-stage detector named RetinaNet which used ResNet [26] and
FPN [19] as a backbone to demonstrate the capability of Focal Loss.

2.1.2. Anchor-Free Approach

Anchor-free detectors do not need to design anchor boxes, avoiding the complicated
computations related to anchor boxes. FCOS [13,27] transformed object detection tasks into
per-pixel prediction tasks and used multi-level prediction to improve the recall. Based on
their approach, they regressed the distance between the location and the four sides of the
bounding box. Furthermore, they also proposed the center-ness branch to suppress the
low-quality detected bounding boxes. FoveaBox [28] is similar to FCOS. FoveaBox also
applied FPN to solve the intractable ambiguity which is caused by the overlaps in ground
truth boxes. Additionally, they also regressed the offset between the location and the four
sides of the bounding box. However, the definition of the positive samples in FoveaBox
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is different from FCOS. They used a formula with a shrunk factor to form shrunk ground
truth boxes. If a sample falls into the shrunk ground truth boxes, the sample is positive,
otherwise, it is negative. Moreover, the formula for offset computation is also different
from FCOS.

CornerNet [29] detected an object as a pair of the top-left corner and bottom-right
corner of a bounding box with heatmaps and then grouped the pairs of corners belonging
to the same instance with embedding vectors. Furthermore, to solve the problem that the
corner outside the object cannot be localized based on local evidence, they proposed corner
pooling which took in two feature maps to encode the locations of the corner. During
training, they used unnormalized 2D Gaussian to ease the difficulty of detecting the exact
position of a corner. Duan et al. noticed that the CornerNet had a high false-positive rate.
They intuited that the higher IoU of bounding boxes, the higher probability of the center
key points in the central region will be predicted as the same class [30]. Therefore, they
improved CornerNet with two strategies named center pooling and cascade corner pooling
and represented each object using a center point and a pair of corners. They defined a
scale-aware central region for each bounding box, and the bounding box will be preserved
if the center key point had the same class as the bounding box that was detected in its
central region.

2.2. Attention Mechanism

Attention mechanisms that come from Natural Language Processing (NLP) make a
huge impact on vision tasks. Generally, attention mechanisms are adopted to determine
where to focus. They take feature maps as input and produce weights for each value on
the feature maps. The weights could be formed by the relationships between two pixels,
the relationships between channels, spatial relationships, or unmentioned relationships.
Attention mechanisms can be separated into dot-product attention, channel attention, spa-
tial attention, level attention, and some variants by the relationships they adopt. Moreover,
attention mechanisms can also be separated into global modelling attention and scale
attention by their purpose [31,32]. Therefore, this paper classifies the attention mechanisms
from this point of view.

2.2.1. Global Modelling Attention

Global modelling attention is effective for modelling the long-range global contextual
information. Wang et al. proposed a non-local module to capture long-range dependencies
with deep neural networks in computer vision [33]. Fu et al. proposed a Dual Attention
Network (DANet) to capture feature dependencies in the spatial and channel dimensions
with two parallel attention modules [34]. One is a position attention module and the other
is a channel attention module. Both of these modules are similar to the non-local module.
Miao et al. proposed CCAGNet [14] that considered multi-region context information
simultaneously by combining Cross-context Attention Mechanism (CCAM), Receptive
Field Attention Mechanism (RFAM), and Semantic Fusion Attention Mechanism (SFAM).
The CCAM modeled the long-range and adjacent relationships among the feature values
by two parallel non-linear functions. Moreover, the RFAM was proposed to improve the
RFB in RFBNet [22] by inserting channel attention and spatial attention implemented with
CCAM. Finally, SFAM was proposed to improve traditional up-sampling by Sub-Pixel
convolution up-sampling [35] followed by CCAM.

2.2.2. Scale Attention

Scale attention is adopted to determine where to focus and suppress uninformative
features. This attention mechanism is widely used in computer vision. Hu et al. proposed
Squeeze-and-Excitation Networks (SENet) [36] which consist of a squeezing process and
an excitation process. The squeezing process used global average pooling to generate the
relationships between channels. Then, in the excitation process, the relationships mentioned
above pass through a bottleneck with two fully connected layers to fully capture channel-
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wise dependencies. Woo et al. proposed CBAM to capture channel-wise relationships
and spatial-wise relationships in order [15]. Their channel attention module included two
parallel SE blocks with max pooling and average pooling. Their spatial attention module
also used max pooling and average pooling to grab the relationships in spatial domains.
Gu et al. aggregated spatial attention, channel attention, and level attention together and
proposed Comprehensive Attention Neural Networks (CA-Net) [37]. Their spatial attention
included a non-local block and the two-pathway attention blocks which refined the deep
feature maps with the shallow ones. Moreover, their level attention consisted of channel
attention and refinement process, which integrated each scale output in the decoder.

3. Materials and Methods
3.1. Overview

The proposed overall architecture is shown in Figure 1. In general, the proposed
method embedded CTFA and a mask branch into FCOS [13] and employed the ResNet50 [26]
as a backbone. This architecture aimed to take chest radiographs as input and located the
ETT tip and the Carina. After finding the candidates of ETT tips and Carinas, a post-process
algorithm was applied to refine the best ETT tip and Carina. ResNet50 [26] without the
last down-sampling operations was applied to extract semantic features and the feature
maps from high resolution to low resolution are denoted as {C2−5}, respectively. Followed
by C5, CTFA was applied to refine the feature representation and then passed into the
neck. The neck was implemented by FPN [19] which up-sampled the low-resolution
feature maps and merged them with the high-resolution feature maps by element-wise
summation. The feature maps produced by FPN are defined as {P2−5} from high resolution
to low resolution. Additionally, the P5 would pass through a series of convolutions with
strides of 2 and kernel sizes of 3× 3 to form P6 and P7. Afterwards, {P3−7} were fed into
the FCOS detection head, and {P3−5} were also fed into a segmentation head with {P2}.
After detecting where the ETT tip and Carina might be, the post-process algorithm would
choose the best ETT tip and Carina feature point through Gaussian masks generated from
the center of the predicted bounding boxes of ETT and tracheal bifurcation.

P5

P4

+

+

CTFA

Detect Head

Detect Head

Detect Head

Detect Head

Detect Head

+

Input image

C2

C3

C4

C5 P5

P4

P3

P2

P7

P6

P5

P4

P3

P7

P6

+ Seg Head

max-pooling 

Up-sampling with nearest interpolation

Backbone Neck Head

+ Element-wise Addition
Magnification

Pass through
Conv

Conv, stride=2

Figure 1. An overview of the proposed architecture for detecting the malposition. It consists of a
ResNet-based backbone, Coarse-to-Fine Attention (CTFA), FPN-based neck, FCOS-based detection
head, and segmentation head. The legends below demonstrate the operations above.
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3.2. Coarse-to-Fine Attention (CTFA)

CTFA fused global-modelling attention (GA) and scale attention (SA) with a point-wise
convolution as shown in Figure 2. Concretely, the feature map produced by GA would pass
through a point-wise convolution to smooth the features. Then, these smoothed feature
maps were fed into SA to rescale features. We found that the Cross-context Attention
Mechanism (CCAM) in [14] can grab long-range relationships and its performance was
good as shown in the Section 4.5.3 of the ablation study. Therefore, we adopted CCAM as
our GA in this paper. Moreover, we noticed that the CBAM can grab local relationships.
However, some shortages limit the performance of CBAM. Therefore, we addressed these
shortages and propose a new SA based on the CBAM.

GA SA

C5 P5

CTFA

Pass throughConv Conv, BN, ReLU

Figure 2. An illustration of coarse-to-fine attention (CTFA). CTFA consisted of a global-modelling
attention (GA) and a scale attention (SA). GA was aimed at capturing long-range relationships and
SA was aimed at reweighting with local relationships.

3.2.1. Global-Modelling Attention (GA)

The CCAM in [14] encoded the cross-region relationship and adjacent-region relation-
ships by two branch. Then, it fused the relationships by concatenation and adopted a series
of convolutions followed by a softmax activation function to grab the attention weight.
However, we noticed that the performance of CCAM without employing a softmax activa-
tion function was better than the performance of CCAM with a softmax activation function
in this paper as shown in the Section 4.5.1 of the ablation study. Therefore, GA did not adopt
the softmax activation function and the following steps in the CCAM. The architecture of
GA is shown in Figure 3 and it can be summarized as:

Fcr = Conv1×1(DiConv3×3,3(Fin)),

Far = DiConv3×3,3(Conv1×1(Fin)),
(1)

FGA = DiConv3×3,2(Conv1×1(Fcr ‖ Far)), (2)

where the ReLu and batch normalization are neglected, Fin ∈ RC×H×W denotes the input
feature map, DiConv denotes the dilated convolution and the parameters are the kernel
size and the dilation rate, respectively, Conv denotes the traditional convolution and the
parameter is the kernel size, Fcr and Far denote the feature maps generated from the cross-
region branch and the adjacent-region branch, ‖ denotes the concatenate operation, FGA
represents the output of the GA module.
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C

c
Pass through

Concatenation

Conv, dilated rate=3, BN, ReLU

Conv, BN, ReLU

Conv, dilated rate=2, BN, ReLU

Figure 3. An illustration of global-modelling attention (GA). GA generated long-range relationships
through two branches. The upper branch was aimed at capturing long-range context information
and the lower branch was aimed at grabbing local context information. Then, this information is
integrated by a series of operations.

Specifically, GA generated long-range relationships through two branches. The upper
branch Fcr captured long-range context information by a dilated convolution whose kernel
size was 3 × 3 and the dilation rate was 3, and smooths the features by a point-wise
convolution (Equation (1)). The lower branch Far grabbed local context information by a
point-wise convolution and expands the influence of the features by a dilated convolution
whose kernel size was 3× 3 and the dilation rate was 3 (Equation (1)). These two feature
maps concatenated to form the feature maps Fga = Fcr ‖ Far ∈ R2C×H×W . Then, Fga
passed through a point-wise convolution and a dilated convolution whose kernel size was
3× 3 and the dilation rate was 2 to produce the final output of GA, FGA (Equation (2)).
The point-wise convolution here was used to decrease the channel numbers and the dilated
convolution was used to expand the influence of features again.

3.2.2. Scale Attention (SA)

There were certain problems with the use of CBAM [15]. One of these was that CBAM
ignored the interaction between channel attention and spatial attention. Another was that
the channel-wise pooling operations overlooked the feature distribution of the feature
maps. Based on the above analysis, the SA was proposed to smooth out these defects at
the same time. The construction of SA is shown in Figure 4 and its overall process can be
summarized as:

Fs = Mcavg(Fx) ‖ Mcmax(Fx), (3)

FSE1 = f cex( f csq(Conv3×3(Maavg(Fs)))),

FSE2 = f cex( f csq(Conv3×3(Mamax(Fs)))),
(4)

Fsa = Conv1×1(Fs ⊗ (FSE1 ⊕ FSE2)), (5)

FSA = Fx ⊗ (σ(Fsa)), (6)

where the ReLu and batch normalization are neglected, Fx denotes the input feature map,
Mcavg and Mcmax denote channel-wise average pooling and channel-wise max pooling,
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‖ denotes the concatenate operation, Fs denotes the feature map after channel-wise pooling,
Maavg and Mamax denote adaptive average pooling and adaptive max pooling, Conv de-
notes the convolutional layer and the subscript represents the kernel size, f csq and f cex are
two fully connected layers, FSE1 and FSE2 denote the feature maps in two branches after two
fully connected layers, ⊕ denotes the element-wise summation, Fsa represents the spatial
weight, σ represents the softmax function, FSA represents the output of the SA module.

Sigmoid

Channel-wise Max Pooling and Average Pooling

Adaptive Max Pooling and Average Pooling

Fully connect

Pass through
Element-wise Multiplication

Share Weight +

+ Element-wise Addition

Conv, BN, ReLU

Conv, BN, ReLU

Figure 4. An illustration of scale attention (SA). SA addressed the defects of convolutional block
attention module (CBAM) by adaptive channel pooling and squeeze-and-excitation (SE) block.

Specifically, SA can be separated into four steps. First, the input feature map
Fx ∈ RC×H×W was fed into two channel-wise poolings and generated two feature maps
Fcavg = Mcavg(Fx) ∈ R8×H×W and Fcmax = Mcmax(Fx) ∈ R8×H×W , respectively. After-
wards, Fcavg was concatenated with Fcmax to generate Fs ∈ R16×H×W as the Equation (3).
By preserving more pooled channels, SA kept more of the channel information of the feature
maps. Second, Fs passed into adaptive max pooling and adaptive average pooling simul-
taneously to create Famax = Mamax(Fs) ∈ R16×3×3 and Faavg = Maavg(Fs) ∈ R16×3×3, re-
spectively. Then, Famax and Faavg would pass through one shared-weight convolution layer
and two shared-weight fully connected layers to generate FSE1 and FSE2 as the Equation (4).
By retaining a higher resolution, SA saved more spatial information than the traditional
pooling method. Third, SA directly fused FSE1 and FSE2 with a element-wise summation.
Thereafter, the mixed feature was element-wise multiplied with Fs followed by a point-wise
convolution layer as Equation (5). This step integrated channel attention weight into the
spatial attention process and reduced the channel of the merged features with a point-wise
convolution layer. Finally, the spatial attention feature, Fsa ∈ R1×H×W , passed through
softmax to grab the spatial attention weight. Then, the output of SA, FSA ∈ RC×H×W , was
generated from the element-wise multiplication with Fx and the spatial attention weight as
the Equation (6).

3.3. Mask Branch

We noticed that the Mask R-CNN with a special feature extraction method proposed
by Chen et al. [11] refined the feature points of the ETT tip and the Carina with the mask of
ETT and tracheal bifurcation and achieved state-of-the-art performance. Inspired by their
feature extraction algorithm and considering the characteristics of FCOS [13], this paper
adopted a mask branch into the neck, trying to refine the feature point of the ETT tip and
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Carina in the same way. The architecture of the mask branch is shown in Figure 1 and its
operation can be summarized as:

Fseg = P2 ⊕Upsameple2(P3)⊕Upsameple4(P4)⊕Upsameple8(P5), (7)

FSEG = Conv3×3(Upsample4(Conv4
3×3(Fseg))), (8)

where the ReLu and batch normalization are neglected, Upsamplei denotes enlarging the
resolution i times with nearest interpolation, ⊕ denotes the element-wise summation, Fseg

denotes the feature map after fusion, Convi
j denotes stacking convolution with j kernel size

i times, FSEG denotes the final output of the segmentation head.
Considering that the features of an object might be separated into the feature pyramid,

and a large magnification may cause some problems, this paper only fused P3−5 together
(Equation (7)). Explicitly, P3−5 would be enlarged to the same resolution with P2 and then
summarized together. Afterwards, the fused feature maps would feed into the segmentation
head which includes a series of convolution and up-sampling to generate the segmentation
mask (Equation (8)).

3.4. Post-Process Algorithm

The process of the post-process algorithm is shown in Figure 5. In general, the al-
gorithm has three steps. First, it found the highest confidence bounding box (bbox) of
the ETT/tracheal bifurcation. Second, it applied a Gaussian mask based on the center of
the ETT/tracheal bifurcation bbox or the center of the image to determine the best ETT
tip/Carina. Finally, if the confidence of the best ETT tip/Carina was less than a threshold,
then the best ETT tip/Carina would be generated after comparing with the confidence of
the ETT/tracheal bifurcation bbox.

Expressly, in the first step, the algorithm kept the first bbox of the ETT/tracheal
bifurcation as the best one and enumerated all bboxes which were classified as ETT/tracheal
bifurcation. If the confidence of a bbox was larger than the best one, then the best bbox
would be replaced by the bbox. As for the second step, if the bbox of ETT/tracheal
bifurcation existed, the algorithm would produce a Gaussian mask based on the center
of the bbox. Otherwise, the Gaussian mask would be generated based on the center of
an input image. Afterwards, the confidence of the bboxes classified as ETT tip/Carina
would multiply the value which was grabbed from the same position as the center point of
the bbox on the Gaussian mask. Then, the algorithm chose the best ETT tip bbox/Carina
bbox as the first step based on this multiplied value. After checking whether the ETT tip
bbox/Carina bbox existed or not, the algorithm adopted a threshold to filter out the ETT
tip bboxes/Carina bboxes which did not need to be purified. Finally, the remaining bbox of
ETT tip/Carina was compared with the corresponding bbox of ETT/tracheal bifurcation.
If the confidence of the ETT tip bbox was lower than the ETT bbox, the ETT tip would be
replaced by the center point of the lowest two points of the ETT bbox. Otherwise, the ETT
tip was the center point of the ETT tip bbox. As for Carina, if the confidence of the Carina
bbox was lower than the tracheal bifurcation bbox, the Carina would be replaced by the
center point of the tracheal bifurcation bbox. Otherwise, the Carina was the center point of
the Carina bbox.
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3.5. Loss Function

The loss function was based on FCOS [13] appended with a segmentation loss. The for-
mula of the loss function can be summarized as:

Ltotal = Lcls + Lreg + Lcenterness + Lseg, (9)

where the Lcls is the classification loss implemented with focal loss [25], Lreg is the regression
loss implemented with GIoU loss [38], Lcenterness is the center-ness loss implemented with
binary cross entropy loss [13], Lseg is the segmentation loss implemented with cross entropy
loss plus dice loss as in [39].

Lcls = FL(pt) = −at(1− pt)
γlog(pt),

pt =

{
p, i f y = 1

1− p, otherwise,

at =

{
a, i f y = 1

1− a, otherwise,

(10)

The formula of focal loss is shown in Equation (10), where y ∈ {±1} denotes the
ground-truth class, p ∈ [0, 1] denotes the predicted probability for the class with label y = 1,
a ∈ [0, 1] denotes a weighting factor for class with label y = 1. Additionally, the γ is set to 2
as [13] did. This loss function can mitigate the class imbalance problem by down-weight
easy samples.

Lreg = LGIoU = 1− GIoU

GIoU = IoU −
∣∣C \ (A ∪ B)

∣∣∣∣C∣∣
IoU =

∣∣A ∩ B
∣∣∣∣A ∪ B
∣∣

(11)

The formula of GIoU loss is shown in Equation (11), where A, B denotes two arbitrary
shapes, C denotes the smallest convex shapes enclosing both A and B. GIoU solved the
problem that if |A ∩ B| = 0, IoU cannot reflect the relationship between A and B.

Lcenterness = LBCE(centerness, centerness∗)

centerness∗ =

√
min(l∗, r∗)
max(l∗, r∗)

× min(t∗, b∗)
max(t∗, b∗)

(12)

The LBCE is the binary cross-entropy loss, the centernss∗ ∈ [0, 1] denotes the ground-
truth value of centerness, l∗, r∗, b∗, t∗ denotes the distance from a feature point to the
left, right, top, and bottom of the relative ground-truth bbox. FCOS down-weighted
the confidence of low-quality predicted bboxes by adding this loss function. Concretely,
during the inference phase, the classification score will multiply with the corresponding
predicted centerness score. Thus, the low-quality bboxes could be filtered out by non-
maximum suppression (NMS).

Lseg = LDice + λLCE

LDice = 1− Dice

Dice =
2|A ∩ B|
|A|+ |B|

LCE(pt) = −log(pt)

pt =

{
p, i f y = 1

1− p, otherwise,

(13)
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The λ is a trade-off between Dice loss and cross-entropy loss, and is set to 1 in
all our experiments, the LDice is the dice loss, A, B denotes two arbitrary shapes as in
Equation (11), LCE denotes the cross-entropy loss, and p ∈ [0, 1] denotes the predicted
probability for the class with label y = 1 as the Equation (10).

4. Results and Discussion
4.1. Dataset and Evaluation Metrics

This paper was approved by the institutional review board (IRB) of the National Cheng
Kung University (NCKU) Hospital (IRB number: A-ER-108-305). The chest radiograph
dataset provided by NCKU Hospital includes 1,870 portable chest radiographs of intubated
ICU patients in DICOM format and the ground truth (GT) annotations were labeled by two
board-certified intensivists. The GT ETT was labelled by four points (P1−4), and the GT
tracheal bifurcation was labelled by nine points (P5−13), as shown in Figure 6a. The purpose
of this paper was to detect the malposition by locating the ETT tip and the Carina. Therefore,
this paper adopted two boxes with a size of 300× 300 to label the feature point of the ETT
tip which was the middle point of P2 and P3, and the feature point of the Carina which was
P9 (the feature point of ETT tip and Carina are at the center of the boxes). Furthermore,
the 13 points were corrected to be sequential for generating the GT mask. In summarize,
the GT became Figure 6b. In Figure 6b, the green nodes denote the original points labeled
by the intensivists, the blue nodes denote the ETT tip and Carina, the green boxes denote
the GT bboxes of ETT and tracheal bifurcation, the blue boxes denote the GT bboxes of ETT
tip and Carina, and the red polygons denote the GT mask of ETT and tracheal bifurcation.
Finally, this paper used extra 150 chest radiographs to validate the proposed approach.

(a) (b)

Figure 6. Ground Truth. (a) Original ground truth. (b) Pre-processed ground truth.

This paper applied object error, distance error, recall, precision, and accuracy to
evaluate the performance. Object error and distance error were implemented with the
Euclidean Distance. The object error of the ETT tip was defined as the distance between the
center of the predicted ETT tip bbox and the center of the GT ETT tip bbox. The object error
of the Carina was defined as the distance between the center of the predicted Carina bbox
and the center of the GT Carina bbox. Moreover, the distance between the ETT tip and the
Carina was named the ETT–Carina distance. The distance error was defined as the absolute
difference between the GT ETT–Carina distance and the predicted ETT–Carina distance.
As for recall and precision, this paper defined successful detection (true positive) as when
the object error was no more than 10 mm [40], a false positive indicated that a region was a
specific object but the region did not include the object, and a false negative was that the
model did not indicate the GT object. Therefore, the recall and precision are defined as:

Recall =
TP

(TP + FN)
, (14)
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Precision =
TP

(TP + FP)
, (15)

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(16)

Moreover, by the Goodman’s criteria [41,42], the ideal distance of the ETT–Carina was
in the range of [30, 70] mm. However, another paper [43] recommended that the average
correct tube insertion depth was 21 cm in women and 23 cm in men. In this situation,
the distance of the ETT–Carina was less than 25 mm. Taking this into consideration,
this paper defined that the endotracheal intubation was suitable if the distance of the
ETT–Carina is in the range of [20, 70] mm, as in [9].

4.2. Implementation Details

The architecture was implemented based on Pytorch. During training, Adam [44]
with the initial learning rate of 10−4 was adopted. The batch size was set to 2 and the total
epochs were set to 120. Moreover, we employed a warm-up policy for the first five epochs
and utilized the cosine learning rate decay policy for the rest of the epochs. Additionally,
the input images were resized to have their shorter side be 800 and their longer side
less or equal to 1333. In addition, random color jitter, random rotation angle within the
range of [−10, 10] degrees, and random cropping were used during training. Furthermore,
the dataset provided by NCKU Hospital was equally divided into five folders to execute
5-fold cross-validation. Finally, all of the experiments were executed on an Nvidia GeForce
RTX 2080 Ti GPU.

4.3. Results

As shown in Table 1, by the definition of “suitable position”, this paper achieved
88.82% accuracy on the NCKU dataset and 90.67% on the external validation based on
the annotations from board-certified intensivists. Moreover, the mean of the ETT–Carina
distance error was 5.333 mm and the standard deviation of the ETT–Carina distance error
was 6.240 mm. In [9], the mean of the ETT–Carina distance error was 6.9 mm, and the
standard deviation of the ETT–Carina distance error was 7.0 mm. Table 2 shows that the
distance error of 85.83% images were less than 10 mm on the NCKU dataset and 84.00%
images were less than 10 mm on the external validation. Tables 3 and 4 show the confusion
matrix of diagnosis in NCKU dataset and external validation.

For the ETT tip and the Carina, Table 5 shows that the recall and precision of the ETT
tip were 90.96% and 91.60%, separately. The recall and precision of the Carina were 93.90%
and 94.10%, separately. Table 6 shows the mean and standard deviation of object error on
the ETT tip were 4.304 mm and 5.526 mm, respectively. The mean and standard deviation
of object error on the Carina were 4.118 mm and 3.655 mm, respectively. Table 7 shows that
in the object error of the ETT tip, there were 90.96% images not longer than 10 mm. Table 8
shows that in the object error of the Carina, the differences of the 93.90% images were not
longer than 10 mm. Although most of the performances on the external validation were
dropped, the performance on ETT–Carina still showed the robustness of our architecture in
detecting the malposition of the ETT.

Table 1. The performance in ETT–Carina distance error.

Test Folder Acc. (%) Mean (mm) Std. (mm)

Folder 1 90.37 5.130 5.609
Folder 2 87.70 5.969 8.325
Folder 3 88.24 5.256 5.491
Folder 4 86.63 5.437 6.663
Folder 5 91.18 4.874 5.111
Average 88.82 5.333 6.240

External val. 90.67 5.015 5.147
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Table 2. The distance error distribution in ETT–Carina.

Test Folder ≤5 mm (%) ≤10 mm (%) ≤15 mm (%) ≤20 mm (%)

Folder 1 62.57 85.29 93.58 96.79
Folder 2 63.10 84.22 92.25 95.72
Folder 3 63.90 83.96 92.25 95.45
Folder 4 63.90 87.17 92.78 97.06
Folder 5 64.44 88.50 93.85 97.06
Average 63.58 85.83 92.94 96.42

External val. 66.00 84.00 92.67 97.33

Table 3. The confusion matrix of diagnosis.

Predict
GT Suitable Unsuitable

Suitable 1350 126
Unsuitable 66 311

Undetection 12 5

Table 4. The confusion matrix of diagnosis (external val.).

Predict
GT Suitable Unsuitable

Suitable 110 8
Unsuitable 5 26

Undetection 1 0

Table 5. The performance in recall and precision.

Recall and Precision ETT Tip Carina

Test Folder Recall (%) Precision (%) Recall (%) Precision (%)

Folder 1 90.64 91.37 94.65 94.91
Folder 2 89.30 89.54 93.58 93.58
Folder 3 90.91 92.14 92.25 92.49
Folder 4 91.18 91.42 94.92 95.17
Folder 5 92.78 93.53 94.12 94.37
Average 90.96 91.60 93.90 94.10

External val. 92.67 93.29 88.00 88.59

Table 6. The performance in object error.

Object Error ETT Tip Carina

Test Folder Mean (mm) Std. (mm) Mean (mm) Std. (mm)

Folder 1 4.415 5.281 3.952 3.345
Folder 2 4.858 7.869 4.236 3.663
Folder 3 3.974 4.405 4.322 3.947
Folder 4 4.584 6.273 3.895 3.527
Folder 5 3.690 3.800 4.185 3.793
Average 4.304 5.526 4.118 3.655

External val. 3.733 4.613 4.688 4.043
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Table 7. The object error distribution in ETT tip.

Test Folder ≤5 mm (%) ≤10 mm (%) ≤15 mm (%) ≤20 mm (%)

Folder 1 75.94 90.64 94.39 97.06
Folder 2 75.40 89.30 94.65 96.79
Folder 3 78.61 90.91 95.19 97.06
Folder 4 73.26 91.18 94.92 97.86
Folder 5 81.02 92.78 97.06 97.59
Average 76.85 90.96 95.24 97.27

External val. 83.33 92.67 94.67 96.67

Table 8. The object error distribution in Carina.

Test Folder ≤5 mm (%) ≤10 mm (%) ≤15 mm (%) ≤20 mm (%)

Folder 1 74.60 94.65 98.13 99.20
Folder 2 74.06 93.58 97.59 99.20
Folder 3 73.53 92.25 96.52 98.40
Folder 4 78.34 94.92 97.86 98.93
Folder 5 74.06 94.12 98.13 98.40
Average 74.92 93.90 97.65 98.83

External val. 68.67 88.00 96.67 98.00

4.4. Compare with the SOTA

This section compares the proposed method with the state-of-the-art (SOTA) method
proposed by Chen et al. [11]. Both of these methods executed the experiment on the same
datasets. Table 9 presents the the accuracy of detecting malposition and the distance error
of the ETT–Carina, and Table 10 presents the error distribution of the ETT-Carina distance.
Furthermore, the percentage in the brackets denotes the improvement or degeneration rate
of the performances. Based on the tables, we observed that most of the performances of the
proposed method were better than SOTA. It is worth mentioning that the proposed method
had higher accuracy on both data sets, which indicated that the proposed method could be
more accurate in detecting the malposition of the ETT.

Table 9. The comparison results of accuracy and ETT–Carina distance error.

Method
Malposition ETT-Carina Distance Error
Accuracy (%) Mean (mm) Std. (mm)

SOTA average [11] 88.11 5.543 6.310
Ours average 88.82 (+0.81%) 5.333 (−3.79%) 6.240 (−1.11%)

SOTA external val. [11] 87.33 5.668 6.651
Ours external val. 90.67 (+3.82%) 5.015 (−11.52%) 5.147 (−22.61%)

Table 10. The comparison results of error distribution on the ETT–Carina distance.

Method
ETT-Carina Distance Error Distribution

≤5 mm (%) ≤10 mm (%) ≤15 mm (%) ≤20 mm (%)

SOTA average [11] 60.37 84.20 92.78 95.39
Ours average 63.58 (+5.32%) 85.83 (+1.94%) 92.94 (+0.17%) 96.42 (+1.08%)

SOTA external val. [11] 64.00 82.00 90.67 94.67
Ours external val. 66.00 (+3.13%) 84.00 (+2.44%) 92.67 (+2.21%) 97.33 (+2.81%)

Tables 11 and 12 demonstrate the performance of the object error and the error distri-
bution on the ETT tip. Tables 13 and 14 demonstrate the performance of the object error
and the error distribution on the Carina. In general, our method was bad at detecting the
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ETT tip but good at detecting the Carina compared with SOTA. However, the improvement
on the Carina could cover the degeneration of the ETT tip. Therefore, our method could
detect the malposition more effectively.

Table 11. The comparison results of recall, precision, and object error on the ETT tip.

Method
ETT Tip

Recall (%) Precision (%) Mean (mm) Std. (mm)

SOTA average [11] 93.31 93.49 4.122 4.402
Ours average 90.96 (−2.52%) 91.60 (−2.02%) 4.304 (+4.42%) 5.526 (+25.53%)

SOTA external val. [11] 90.27 90.27 4.286 5.943
Ours external val. 92.67 (+2.66%) 93.29 (+3.35%) 3.733 (−12.90%) 4.613 (−22.38%)

Table 12. The comparison results of error distribution on the ETT tip.

Method
ETT Tip Object Error Distribution

≤5 mm (%) ≤10 mm (%) ≤15 mm (%) ≤20 mm (%)

SOTA average [11] 75.08 93.31 96.36 98.21
Ours average 76.85 (+2.36%) 90.96 (−2.52%) 95.24 (−1.16%) 97.29 (−0.94%)

SOTA external val. [11] 79.33 90.27 95.33 96.97
Ours external val. 83.33 (+5.04%) 92.67 (+2.66%) 94.67 (−0.69%) 96.67 (−0.31%)

Table 13. The comparison results of recall, precision, and object error on the Carina.

Method
Carina

Recall (%) Precision (%) Mean (mm) Std. (mm)

SOTA average [11] 94.70 95.23 4.775 5.342
Ours average 93.90 (−0.84%) 94.10 (−1.19%) 4.118 (−13.76%) 3.655 (−31.58%)

SOTA external val. [11] 91.64 91.96 4.567 4.513
Ours external val. 88.00 (−3.97%) 88.59 (−3.66%) 4.688 (+2.65%) 4.043 (−10.41%)

Table 14. The comparison results of error distribution on the Carina.

Method
Carina Object Error Distribution

≤5 mm (%) ≤10 mm (%) ≤15 mm (%) ≤20 mm (%)

SOTA average [11] 68.84 94.70 95.55 97.12
Ours average 74.92 (+8.83%) 93.90 (−0.84%) 97.65 (+2.20%) 98.83 (+1.76%)

SOTA external val. [11] 73.33 91.64 95.33 96.54
Ours external val. 68.67 (−6.35%) 88.00 (−3.97%) 96.67 (+1.41%) 98.00 (+1.51%)

4.5. Ablation Study

The ablation studies were performed on the NCKU dataset with folder 5 as the testing
data to verify the effectiveness of our method. This section only focuses on the accuracy,
the mean distance error, and the standard deviation.

4.5.1. Structure of GA

Table 15 demonstrates the performance of whether the GA adopted a softmax function.
This results presented that the GA without a softmax activation function achieved a better
outcome. Therefore, CTFA employed GA without a softmax function.
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Table 15. The effect of softmax in GA.

Method Malposition ETT-Carina ETT Tip Carina
Accuracy (%) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm)

w/softmax 90.11 5.209 6.628 3.968 5.800 4.203 4.097
w/o softmax 91.18 4.911 5.114 3.689 3.802 4.238 3.862

4.5.2. Structure of SA

In Table 16, the c and k in the brackets behind the SA denote the pooled channel
number and the followed kernel size. The SE in the brackets behind the SA shows whether
the SA adopts a SE block as the channel attention. From the six rows above, we observed
that when the output channel number of the channel-wise max pooling and average
pooling was 8, and the followed kernel size was 1, the performance was the best. Therefore,
CTFA employed SA with 8 pooled channel numbers followed by a point-wise convolution.
Furthermore, comparing the fourth row with the last row, we noticed that employing the
SE block in SA would increase the performance.

Table 16. The effect of channel, kernel and SE block of SA.

Method Malposition ETT-Carina ETT Tip Carina
Accuracy (%) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm)

SA (c1 + k7) 83.69 4.904 4.813 3.998 3.625 4.386 3.750
SA (c1 + k1) 85.83 5.648 7.628 4.911 8.605 4.185 3.674
SA (c4 + k1) 85.83 5.182 6.245 4.188 4.067 4.611 5.759
SA (c8 + k1) 87.70 5.067 5.248 4.273 4.418 4.305 4.016
SA (c8 + k7) 83.69 4.644 4.401 4.007 3.615 4.028 3.372
SA (c16 + k1) 85.56 4.883 4.778 3.985 3.696 4.351 3.969

SA (w/o SE) 86.36 5.491 9.697 4.619 11.997 4.391 3.956

4.5.3. Compare with Attention Modules

Tables 17 and 18 display the results of adopting existing attention modules in FCOS [13].
This paper calculated the number of parameters and giga floating point operations (GFLOPs)
for each attention module with an image size of 224× 224. Furthermore, the percentage
in the brackets at the “Parameter (M)” and “GFLOPs” column is the degree of increment
compared with FCOS. By Table 17, we discovered that the SE block [36], Nonlocal block [33],
Nonlocal with CSP block [45] and the CBAM block [15] brought no benefit to the accuracy
of ETT-Carina, but the CCAM block [14] and the SA block proposed by this paper could
improve the accuracy. Moreover, the SA block was more lightweight than the CCAM block
and achieved higher accuracy, as shown in Table 18. These results illustrated the efficiency
and effectiveness of the SA block.

Table 17. The comparison results of attention modules.

Method Malposition ETT-Carina ETT Tip Carina

Accuracy (%) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm)

FCOS [13] 86.10 5.335 7.831 4.254 5.427 4.659 7.497
FCOS + SE [36] 85.03 5.424 5.854 4.284 4.156 4.543 4.943
FCOS + CSPnonlocal [45] 86.10 5.404 5.817 3.980 3.708 4.332 4.416
FCOS + nonlocal [33] 86.10 5.422 6.139 4.521 10.059 4.411 4.423
FCOS + CBAM [15] 86.10 5.303 5.654 4.381 4.870 4.380 4.260
FCOS + CCAM [14] 86.90 4.632 4.491 4.025 3.641 4.035 3.517

FCOS + SA 87.70 5.067 5.248 4.273 4.418 4.305 4.016
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Table 18. The comparison results of attention modules in parameters and GFLOPs.

Method Parameters (M) GFLOPs

FCOS [13] 32.118 19.764
FCOS + SE [36] 32.126 (+0.02%) 19.764 (+0%)
FCOS + CSPnonlocal [45] 32.284 (+0.52%) 19.782 (+0.09%)
FCOS + nonlocal [33] 33.302 (+3.69%) 19.882 (+0.60%)
FCOS + CBAM [15] 32.127 (+0.03%) 19.764 (+0%)
FCOS + CCAM [14] 34.154 (+6.34%) 19.964 (+1.01%)

FCOS + SA 32.253 (+0.42%) 19.778 (+0.07%)

4.5.4. Fusion Method

This part explores the fusion method. The second row in Table 19 denotes that the C5
with reduced channel directly passes through SA, followed by GA. The third row denotes
that the C5 with reduced channel goes through SA and GA in a parallel fashion, and then
concatenates the output feature maps together followed by a point-wise convolution, batch
normalization, and relu to integrate the feature map. The last row denotes that the C5 with
reduced channel directly passes through GA, followed by SA. As shown in Table 19, the last
row demonstrated that the long-range relationship rescaled by the local relationship could
improve the performance. Moreover, this was the best connection method in our ablation
studies; thus, the CTFA adopted this method to grab better features in this paper.

Table 19. The results of GA and SA fusion method.

Method Malposition ETT-Carina ETT Tip Carina

Accuracy (%) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm)

FCOS 86.10 5.335 7.831 4.254 5.427 4.659 7.497
FCOS + SA + GA 83.96 5.225 5.306 4.304 4.376 4.425 4.032
FCOS + GA || SA 87.17 5.492 6.583 4.956 9.549 4.164 4.158

FCOS + GA + SA 87.97 4.868 4.953 4.143 4.157 4.016 3.350

4.5.5. Fusing Global Modelling Attention and Scale Attention

Table 20 presents the result of fusing a global modelling attention and a scale attention.
Here, ∗2 denotes stacking two of the same attention module together. We observed that
when directly stacking two of the same attention module together, the accuracy would drop
compared with the performance in Table 17. Specifically, when stacking two CSPnonlocal
blocks together, the accuracy would degrade from 86.10% to 85.56%, and when stacking
two CCAM blocks together, the accuracy would degrade from 86.90% to 86.10%. Further-
more, stacking two SA blocks also grabbed a worse result. However, if we stacked global
modelling attention with scale attention, the performance would increase, as shown in the
last two rows. This result showed that the global modelling attention could grab long-range
relationships and the scale attention could refine the attention map effectively. Therefore,
stacking these two kinds of attention modules together could achieve higher performance.

Table 20. The effect of fusing global modelling attention and scale attention.

Method Malposition ETT-Carina ETT Tip Carina

Accuracy (%) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm)

FCOS 86.10 5.335 7.831 4.254 5.427 4.659 7.497
FCOS + nonlocal*2 OOM OOM OOM OOM OOM OOM OOM
FCOS + CSPnonlocal*2 85.56 5.800 8.991 4.391 5.543 4.703 7.512
FCOS + CCAM*2 86.10 4.855 4.988 4.020 4.037 4.301 3.835
FCOS + SA*2 87.17 5.643 6.820 4.432 5.021 4.422 5.387

FCOS + CSPnonlocal + SA 86.90 5.727 6.518 4.646 5.267 4.685 4.732
FCOS + CCAM + SA 87.97 4.868 4.953 4.143 4.157 4.016 3.350



Diagnostics 2022, 12, 1913 19 of 24

4.5.6. Mask Branch

In Table 21, the second row denotes that CTFA is adopted in FCOS, and the “Seg”
denotes that the CTFA and the mask branch are adopted in FCOS at the same time. More-
over, the text in the brackets behind “Seg” in the “Method” column denotes which mask
annotation our approach employed at the mask branch, and the “Fusion” in the “Method”
column denotes that we directly fuse the feature maps from P2 to P5. Comparing the
results of the second row and third row, we noticed that the mask branch did not bring
advantages to the detection model. However, if we only used the annotation of ETT and
tracheal bifurcation, the performance would be improved. This phenomenon might be
caused by the occlusion of the annotations. Concretely, the annotations of the ETT and the
tracheal bifurcation were always occluded by the annotation of the ETT tip and the Carina.
Therefore, the mask branch might focus on the ETT tip and the Carina which was similar to
the original detection model (FCOS + CTFA). However, if we only adopted the annotation
of the ETT and the tracheal bifurcation, the detection model might pay more attention to
the ETT and the tracheal bifurcation. Thus, the detection model might grab some useful
context information for detecting the ETT tip and the Carina. Comparing the last two
rows, we found that the fusion policy further improves the performance. Considering the
accuracy and the object error, the method of the last row achieved the best result on the
internal dataset with folder 5 as the testing data. Moreover, it was the final architecture
employed by this paper for detecting the malposition of the ETT.

Table 21. The results of employing mask branch into FCOS.

Method Malposition ETT-Carina ETT Tip Carina

Accuracy (%) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm)

FCOS [13] 86.10 5.335 7.831 4.254 5.427 4.659 7.497
CTFA 87.97 4.868 4.953 4.143 4.157 4.016 3.350
Seg (All) 87.97 4.909 5.179 3.939 4.468 4.043 3.121
Seg (ETT) 89.04 5.486 7.682 4.398 6.754 4.521 4.244
Seg (ETT + Carina) 90.11 5.334 6.752 4.088 5.989 4.329 4.253

Seg (ETT + Carina) + Fusion 91.18 4.911 5.114 3.689 3.802 4.238 3.862

4.5.7. The Post-Process Algorithm

Figures 7 and 8 demonstrate the effect of post-processing. The red bboxes and points
in these figures are the GT ETT/bifurcation bboxes and the position of GT ETT tip/Carina,
respectively. The green polygon is the GT mask of the ETT and the bifurcation. The blue
bbox and point are the predicted ETT bbox and ETT tip, respectively. The yellow bbox
and point are the predicted bifurcation and Carina, respectively. Specifically, without the
post-process, the model might leave more than one predicted ETT tip/Carina, such as
where the red arrow points in Figure 7a. However, with the post-process, the extra points
would be removed as shown in Figure 7b. Besides, with the refinement process in the
post-process, the feature point of ETT tip/Carina could be further refined as shown in
Figure 8. Concretely, the object error of Carina was corrected from 8.469 mm to 1.319 mm.

We observed that the segmentation results of the ETT tip were always near the GT
ETT tip. However, although the mask branch could improve the detection result, the seg-
mentation result was not good enough to replace the detection result. As shown in Table 22,
if we corrected the detection result of the ETT tip by the segmentation result of the ETT
tip when the distance between them was longer than 100 pixels, the performance of ETT
would decrease and thus the performance of the ETT-Carina would also decline. Therefore,
in the post-process, we only used the bbox result of the ETT and the tracheal bifurcation to
refine the position of the ETT tip and the Carina when the ETT tip and the Carina were not
good enough.
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(a) (b)

Figure 7. Ensuring at most one ETT tip/Carina left. (a) Without post-process. (b) With post-process.

(a) (b)

Figure 8. Refining the feature point of ETT tip/Cairna by the bbox of ETT/Bifurcation. (a) Without
post-process. (b) With post-process.

Table 22. The results of adopting mask prediction or not in the post-process algorithm.

Method Malposition ETT-Carina ETT Tip Carina
Accuracy (%) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm) Mean Err. (mm) Err Std. (mm)

w/mask 85.56 7.438 10.552 6.389 10.672 4.329 4.253
w/o mask 90.11 5.334 6.752 4.088 5.989 4.329 4.253

4.5.8. Visualization

In this part, the red bboxes and points denote the GT ETT/bifurcation bboxes and the
position of GT ETT tip/Carina, respectively. The blue bbox and point are the predicted
ETT bbox and ETT tip, respectively. The green bbox and point are the predicted bifurcation
and Carina, respectively. The light blue point is the position of the ETT tip produced by
the mask branch. In the Table 23, the first row demonstrates the good results, the second
row shows the medium results, and the third row presents the bad results. We noticed that
if an image had a clear location of the ETT tip and the Carina, the performance would be
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better. Moreover, the life-supporting device might blur the location of the ETT tip and the
shadow of the heart might occlude the position of the Carina as shown in the medium case.
Apart from the problems mentioned above, the angle of the CXR might also degrade the
performance of the proposed method, as shown in the worse results when it is applied.

Table 23. The visualization results.

Good

Medium

Worse

5. Conclusions

This paper proposed an end-to-end architecture to improve the FCOS [13] for detecting
the position of the ETT tip and the Carina. First, a Coarse-to-Fine (CTFA) attention module
was designed to capture long-range relationships by global-modelling attention (GA) and
rescale the feature value with local relationships grabbed by scale attention (SA). Then,
a mask branch was adopted to enhance the feature representation of the “backbone” and
“neck”. After that, a post-process algorithm was employed to ensure that only one detection
result for each class would be left in an image and further refine the feature point of
ETT tip and Carina. Experiments on the chest radiograph datasets provided by National
Cheng Kung University Hospital demonstrated that the proposed architecture provides an
effective solution to improve the performance of the FCOS. The mean malposition accuracy
achieved 88.82% and the ETT-Carina distance error was less than 5.333± 6.240 mm on
the internal dataset. Furthermore, our method indicates the position of the ETT, ETT tip,
tracheal bifurcation, and the Carina on an image. Therefore, it is more reasonable for
detecting the malposition of the ETT compared with classification-based methods. This
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end-to-end deep learning-based method could help the intensivists, helping them to keep
an eye on the position of the ETT in ICU patients.

Although our proposed methods have exciting results, two shortages still exist that
might need to be overcome. First, the annotation of the ETT tip is labelled on the slash at
the bottom of the ETT. However, the feature point on the edge is not a good feature point
compared with the corner point. Therefore, an accurate ETT tip annotation might further
improve the performance. Second, the fusion method adopted for GA and SA is simple, as
is the additional mask branch, so further investigations of the interaction between them
might improve the performance. In the future, we will focus on these shortages, trying to
provide a more reliable model for intensivists.
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