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INTRODUCTION

Phosphorus is a ubiquitous mineral in nature and one of the most abundant minerals in the human
body, representing about 1% of the total body weight (Calvo and Lamberg-Allardt, 2015). The body
utilizes phosphorus in the form of phosphate (PO4). Phosphate maintains cellular membrane
integrity, nucleic acid structure, generation of ATP, and key regulation of virtually every molecular
pathway through phosphorylation or dephosphorylation of numerous enzymes and other proteins
important for cell function and homeostasis. With so much utility, the body needs to maintain blood
phosphate concentration at 2.5–4.5 mg/dl. The body maintains phosphate homeostasis via crosstalk
among bone, kidney, and intestine. Phosphate enters the extracellular fluid pool and constantly
moves in and out of bone to meet the body’s needs (Razzaque and Lanske, 2007; Razzaque, 2009a;
Penido and Alon, 2012). Bones are a major phosphate reservoir, releasing it via the enzymatic
activities of alkaline phosphatase. Alkaline phosphatase is found on the outer portion of the cell
membrane and is responsible for catalyzing hydrolysis of organic phosphate esters present in
extracellular space, allowing for intracellular movement of phosphate (Penido and Alon, 2012). The
kidneys also regulate phosphate homeostasis, with most reabsorption occurring at the proximal
tubule. The rate-limiting step of this reabsorption is mediated by two type II transporters: sodium-
dependent phosphate cotransporter (NaPiIIa and NaPiIIc), located on apical membranes of
proximal tubule cells where these cells reabsorb a total of 80% of filtered phosphate (Penido and
Alon, 2012). NaPiIIa reabsorbs about 50% of filtered phosphate load, and its expression is partly
regulated by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and dietary
phosphate levels (Penido and Alon, 2012). NaPiIIc reabsorbs about 30% of proximal tubule
phosphate and is regulated by FGF23, metabolic acidosis, dietary magnesium, and phosphate
(Penido and Alon, 2012). Intestines absorb phosphate through various cellular and paracellular
pathways, including passive diffusion, load-dependent processes, and active transport. Intestines
regulate how much phosphate is absorbed into the bloodstream, and this process is controlled partly
by vitamin D (Penido and Alon, 2012). Vitamin D-regulated expression of NaPiIIb brings phosphate
into enterocytes via secondary active transport (Penido and Alon, 2012). PTH, by influencing the
synthesis of vitamin D, indirectly regulates phosphate absorption in the duodenum and jejunum
(Penido and Alon, 2012).

Numerous hormones are also involved in maintaining systemic phosphate homeostasis
(Razzaque, 2022a). PTH acts on the kidneys to decrease phosphate reabsorption and increases
the production of 1α-hydroxylase, which catalyzes the hydroxylation of calcifediol into calcitriol (the
bioactive form of vitamin D). Increased production of 1,25(OH)2D3 (active vitamin D) enhances
both calcium and phosphate absorption in the gut and also determines the extent of phosphate
reabsorbed in the proximal tubule of the kidney via suppressing PTH activity (Penido and Alon,
2012). FGF23 increases renal excretion of phosphate and inhibits the synthesis of 1,25(OH)2D3 in
attempts to lower serum phosphate concentrations (Prié and Friedlander, 2010; Agoro et al., 2020;
Akimbekov et al., 2022; Nakatani et al., 2022). Renal excretion is accomplished by decreasing NaPiIIa
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and NaPiIIc protein expression levels (Prié and Friedlander,
2010). For FGF23 to be functional and lower serum phosphate
levels, it needs Klotho, which increases FGF23’s affinity to its
receptor at the target organs (Urakawa et al., 2006). Klotho is a
single-pass transmembrane protein in the renal tubules,
parathyroid gland, brain, and skeletal muscle (Prié and
Friedlander, 2010). Klotho acts as an obligate cofactor for
FGF23 binding and activation of cognate FGF receptors
(Urakawa et al., 2006). The absence of FGF23 or Klotho leads
to hyperphosphatemia and resulting premature aging features in
mice (Razzaque et al., 2006; Nakatani et al., 2009a; Nakatani et al.,
2009b). These features include but are not limited to loss of body
weight, kyphosis, hypogonadism, infertility, generalized tissue
atrophy, and reduced life span (Ohnishi and Razzaque, 2010),
many of these alteration parallel potential aging sequelae.

Phosphate Burden and Inflammation
Recent studies have found that phosphate burden can lead to the
activation of inflammatory responses to propagate gingival
inflammation and dental decay among children (Goodson
et al., 2017; Goodson et al., 2019; Erem et al., 2022; Michigami
et al., 2022). An increased salivary phosphate concentration has
been associated with higher inflammatory markers and could
predict childhood obesity (Hartman et al., 2013; Razzaque,
2022b). Hyperphosphatemia has associations with immune
dysfunction. According to Plantinga et al., high phosphate
levels early during dialysis were associated with an increased
risk of infection when adjusting for secondary
hyperparathyroidism, uremia, or poor dialysis (Plantinga et al.,
2008). Patients with end-stage renal disease (ESRD) poorly
respond to immunizations against pathogens, have impaired
cell-mediated immunity, and reduced CD4+/CD8+ T
lymphocyte ratio (Plantinga et al., 2008). Decreases in T
lymphocyte numbers are likely due to increased oxidative
stress and accumulation of uremic toxicity, both are features
of ESRD (Plantinga et al., 2008). Investigators also discovered a
negative correlation between hyperphosphatemia severity and a
number of naive subsets of T lymphocytes, raising the possibility
that hyperphosphatemia plays a role in reduced numbers of
T cells seen in ESRD (Plantinga et al., 2008).

One of the many parameters categorizing aging is the
functional decline of the healthy immune system, leaving the
older population more susceptible to pathogens causing bacterial
pneumonia and influenza (Sosa et al., 2020). Sosa et al. found pro-
inflammatory cytokine expression higher in aged mice, with 40%
serum phosphate levels beyond those of their counterparts. These
cytokine values were decreased when they were fed a low
phosphate diet (Sosa et al., 2020). They also found a positive
correlation between Interleukin-1β (IL-1β) expression and serum
phosphate levels, effectively showing hyperphosphatemia
increases inflammation in vivo (Sosa et al., 2020). IL-1β is an
essential factor for acute host responses and resistance to
pathogens, while exacerbating damage during chronic disease
and acute injury (Lopez-Castejon and Brough, 2011). Dietary
phosphate loading promotes systemic inflammation and
oxidative stress measured by serum Tumor necrosis factor
alpha (TNF-α) and urinary 8-hydroxy-2′-deoxyguanine to

creatinine (8-OHdG/Cr) levels; 8-OHdG is a metabolite of
DNA repair and is measurable in the urine (Yamada et al.,
2014). TNF-α is released by macrophages or monocytes and
has many functions including necrosis or inflammation (Besse
et al., 2022). Dietary phosphate loading increases TNF-α in a
dose-dependent fashion; serum TNF-α levels were significantly
correlated with urinary 8-OHdG/Cr levels (a measure of oxidative
stress) (Yamada et al., 2014). The investigators also observed a
decrease in TNF-α and OHdG/Cr when lowering dietary
phosphate intake or reducing serum phosphate levels (Yamada
et al., 2014). This may also be one way to explain the chronic low
grade of inflammation found in the elderly with altered
phosphate balance. Although intermittent inflammation is
needed for survival during infections and physical injury,
chronic systemic inflammation is detrimental to human health
(Pinti et al., 2014). Chronic inflammation increases the incidence
of many diseases in the elderly, such as cardiovascular disease
(CVD), cancer, diabetes mellitus, chronic kidney disease (CKD),
autoimmune, and neurodegenerative disorders (Furman et al.,
2019). High phosphate burden also increases inflammatory
responses in experimental studies, as demonstrated by
Yamada et al., who found that increasing phosphate loads in
the body led to increased mRNA levels of TNF-α in the aorta,
heart, and kidney in rats (Yamada et al., 2014). Cancer patients
are also known to experience increased phosphate burden
compared to non-cancer patients, most likely due to
increased metabolic activity of cancer cells. Elevated
phosphate burdens have been shown to positively correlate
with the risk of lung, pancreas, thyroid, and bone cancers in
men, and cancers of the esophagus, lung, and nonmelanoma
skin cancer in women (Brown and Razzaque, 2018). Studies
have shown that elevated phosphate levels can induce epithelial
to mesenchymal transition (EMT), a major cellular event related
to tumor invasion and metastasis (He et al., 2021; Alexander
et al., 2022; Lewis et al., 2022).

Phosphate Burden and Aging
Aging is a complex biological process where progressive
accumulation of age-associated changes with time are
associated with or directly responsible for the increased
susceptibility to disease and death, which accompanies
advancing age (Boss and Seegmiller, 1981; Ohnishi and
Razzaque, 2010). It decreases cardiac output by 1% a year
after 30, mostly due to reduced response of catecholamines
and cardiac glycosides by cardiac muscle cells (Boss and
Seegmiller, 1981). Blood pressure increases as there is
progressive stiffening of arteries with age, particularly in the
aorta, increasing afterload or the load against which the heart
has to contract to eject blood (Boss and Seegmiller, 1981). Natural
lipid deposits in vessels increase the risk for arteriosclerosis and
coronary artery disease. Decreases in lung volume and elastic
recoil leads to an increase in residual volume, which is the volume
of air that cannot be exhaled from the lungs (Boss and Seegmiller,
1981). Decreasing elastic recoil causes a greater tendency for
airways to collapse, resulting in ventilation-perfusion mismatches
(Boss and Seegmiller, 1981). Kidney size and glomeruli number
decrease by about 30% by age 65 (Boss and Seegmiller, 1981).
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Many of these age-associated changes are not pathologic but stack
the odds towards pathology.

Hyperphosphatemia is most often caused by renal failure, as
the kidneys excrete up to 90% of daily phosphate, leaving the
other 10% to the gut (Goyal and Jialal, 2022). High phosphate
levels are caused by its high intake, vitamin D intoxication, and
several genetic diseases. Potential symptoms associated with
hyperphosphatemia are hypocalcemia due to calcium-
phosphate precipitation in the skin and soft tissues, vascular
calcifications, and arteriosclerosis. High phosphate levels
manifest with central nervous system disturbances such as
coma, seizures, delirium, neuromuscular excitability, muscle
cramping, tetany, and eventual cognitive decline (Acquaviva
et al., 2022; Goyal and Jialal, 2022). It leads to cataracts and
conjunctivitis in the eye from induction of symptomatic
hypocalcemia due to calcium-phosphate precipitation (Goyal
and Jialal, 2022). Renal failure results in reduced synthesis of
calcitriol and secondary hyperparathyroidism, causing increased
osteoclastic bone reabsorption and release of calcium and
phosphate into the circulation and this lengthened bone
demineralization leads to increased occurrences of fractures
(Goyal and Jialal, 2022). Hyperphosphatemia induces changes
in endothelial cells, such as declines in nitric oxide (NO)
production due to oxidative stress, thereby leading to reduced
cell viability and increased apoptosis (Peng et al., 2011). High
phosphate levels lead to endothelial cell senescence via cell cycle
arrest, thereby leading to senescence rather than death via
apoptosis (Terzi et al., 2016; Olmos et al., 2017; Maique et al.,
2020; Hu and Moe, 2022).

Aging is a process that is characterized by increased
susceptibility of individuals, as they age, to factors that
eventually lead to their morbidity and mortality (Weinert and
Timiras, 2003; Jayanthi et al., 2010). As individuals age, they have
progressive loss of tissue and organ functions, leading to the
development of the oxidative stress theory of aging (OSTA)
hypothesis. OSTA suggests the aging rate is directly related to
the accumulation of oxidative damage (Salmon et al., 2010). It is
based on structural damage resulting from the accumulation of
oxidative damage to macromolecules (DNA, protein) via reactive
oxygen (ROS) and nitrogen (RONS) species. High ROS levels
over a long period activate signaling pathways, which accelerate
proteolysis and eventual cell death (Barreiro, 2016). In a study
performed by Nagai et al. using Klotho deficient mice, the
investigators demonstrated that hyperphosphatemia resulted in
cognition impairment due to increased oxidative damage and
apoptosis in hippocampus neurons, which could be rescued by
administering an antioxidant (Nagai et al., 2003).

Hyperphosphatemia leads to extensive oxidative stress in the
mitochondria, although it is unclear how phosphate increases
ROS generation and mitochondrial permeability transition
(MPT). The most conceivable hypothesis is that phosphate
catalyzes reactions that favor ROS formation (Kowaltowski
et al., 2001). MPT is one of the ways mitochondria release
apoptotic signal molecules into the cytosol. MPT causes non-
selective increased permeability of the inner mitochondrial
membrane resulting in loss of matrix components, swelling,
and eventual rupture and cytochrome C release (Zoratti and

Szabò, 1995). Zhao et al. have found that hyperphosphatemia
induced calcification with oxidative stress of mitochondria (Zhao
et al., 2011). A decline in mitochondrial function has long-held
associations with an increase in features of aging (McGuire,
2019). Such changes lead to programmed cell death or
apoptosis. Long-term exposure to high phosphate levels
potentiates aging and age-related disorders (Ohnishi and
Razzaque, 2010; Jacob et al., 2013; He et al., 2021; Hetz et al.,
2021).

Phosphate Burden and Cardiovascular
Pathology
Hyperphosphatemia impairs endothelial cell function through
endothelin-1 and NO imbalances leading to dysfunction of the
endothelium, an important step in the pathogenesis of
atherosclerosis which can impair functionality of all the
organs, including renal and cardiac functions (Olmos et al.,
2017). High phosphate levels caused a decline in NO
production via bradykinin and increased ROS, thereby leading
to endothelial dysfunction (Peng et al., 2011).
Hyperphosphatemia also reduced intracellular calcium levels,
increased protein kinase C-B2, increased apoptosis, and
reduced cell viability (Peng et al., 2011). Hyperphosphatemia
accelerated vascular aging by collagenization of the tunica media
in the walls of arteries, with phosphate and calcium crystals
accumulating in the elastic fibers of the vessel (Boss and
Seegmiller, 1981).

FGF23 is a hormone that lowers blood phosphate levels
(Razzaque and Lanske, 2007; Razzaque, 2009a; Razzaque,
2009b). When phosphate levels are high, bone secretes FGF23,

FIGURE 1 | Simplified diagram illustrating various factors that can
directly or indirectly influence FGF23 activities. PO4: phosphate; Ca

2+:
calcium.
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which acts on the kidney to increase the excretion of phosphate
(Pinti et al., 2014) (Figure 1). FGF23 also suppresses vitamin D
synthesis by inhibiting cytochrome P27B1 and stimulating
cytochrome P24 to reduce the levels of 1,25(OH)2D3 (Pinti
et al., 2014). Vitamin D increases the absorption of calcium
and phosphate in the intestines and mobilizes bone tissue via
enhancing osteoclastic activities to increase blood levels of
phosphate and calcium (Furman et al., 2019). Severe
hyperphosphatemia is induced in human diseases where
FGF23 is mutated (Benet-Pagès et al., 2005; Onishi et al.,
2008; Chakhtoura et al., 2018). FGF23 gene deletion from
mice resulted in hyperphosphatemia (Sitara et al., 2004), thus
solidifying the role of FGF23 in reducing serum phosphate levels.
The mouse with nonfunctioning FGF23 had lower lifespan than
the wild-type counterparts. This decrease in lifespan was partially
due to generalized tissue and organ atrophy and vascular
calcifications. Hyperphosphatemic mice also had lower adipose
and skeletal muscle mass thanmice with normal phosphate levels,
further attesting to the accelerated aging in these mice (Sitara
et al., 2004). Finally, FGF23 deficient mice were also infertile,
hypoglycemic, and had increased total serum cholesterol
(Shimada et al., 2004; Sitara et al., 2004).

Another gene that regulates phosphate homeostasis and is
critical for FGF23 function is Klotho. Both Klotho and FGF23
deficient mice consistently display signs of premature aging and
CKD-associated with mineral and bone disorders. Klotho
deficient mice are completely resistant to FGF23 and thus
develop hyperphosphatemia (Nakatani et al., 2009a). Some of
the symptoms seen in these mice have shorter lifespan, infertility,
arteriosclerosis, skin atrophy, and emphysema (Nakatani et al.,
2009b; Ohnishi and Razzaque, 2010). It is important to note that
the Klotho deficient mice could be rescued from all symptoms by
reducing phosphate levels towards the normal ranges (Ohnishi
and Razzaque, 2010). CKD and its complications, such as
vascular calcification, CKD-mineral and bone disease (MBD),
all result from a Klotho deficiency, which manifests as accelerated
aging due to phosphate burden.

Hyperphosphatemia leads to vascular dysfunction through
endothelin 1 and NO imbalances. A study by Foley et al. have
found evidence for hyperphosphatemia increasing incidence of
cardiac calcification, left ventricular hypertrophy, and
cardiovascular events, including deaths, were all accelerated
with hyperphosphatemia (Foley, 2009; Foley et al., 2009).
Although the reason is not entirely mapped out yet, one
thought could be via a mechanism other than vascular
calcification. It could be Klotho or FGF23 dysfunctions, which,
as previously discussed, have shown to lead to CVD in mice.
Hyperphosphatemia changes the amount of Klotho, FGF23,
PTH, and calcitriol in the body, therefore increasing CVD
incidence (Foley, 2009). Hyperphosphatemia increases CVD
risk in individuals who do not have CKD and CVD (Dhingra
et al., 2007). Phosphate burden (higher than 3.5 mg/dl) was
associated with 55% increased CVD risk. This could be
because high phosphate levels inhibit vitamin D synthesis; low
levels of vitamin D have been hypothesized to decrease cardiac
contractility and vascular dysfunction (Dhingra et al., 2007). High
phosphate levels have also been found to induce endothelial cell

dysfunction via lowering NO levels and intracellular calcium
levels, and attendant apoptosis and reduced cell viability (Olmos
et al., 2017). It is important to note that sevelamer carbonate, a
phosphate scavenger, improved endothelial function and reduced
mortality in patients with type 2 diabetes mellitus and
inflammation in patients on peritoneal dialysis for kidney
failure (Chennasamudram et al., 2013). Sevelamer, which
binds phosphate in gut and prevents absorption, improved
endothelial function and decreased plasminogen activator
inhibitor 1, C-reactive protein, and IL-6 (Chennasamudram
et al., 2013). Dysfunction of endothelial cells has been
associated with the development of cardiovascular and renal
damage in diabetes, hypertension, or atherosclerosis (Peng
et al., 2011; Chennasamudram et al., 2013). A high phosphate
burden increases oxidative stress in endothelial cells leading to
cellular dysfunction. When dysfunctional, endothelial cells are
unable to synthesize nitric oxide, aggravating atherosclerotic
plaque formation occurs in Apo-E deficient mice (Shiota et al.,
2011). A high-phosphate diet accelerated atherogenesis in Apo-E
deficient mice (Ellam et al., 2011).

Phosphate Burden and Muscular Pathology
A high phosphate burden accelerates skeletal muscle atrophy
through mechanisms not fully understood yet. Chung et al.
demonstrated increased phosphate levels leading to increased
muscle wasting owing to reduced myotubule size, increased ROS
generation, decreased protein synthesis, and accelerated protein
degradation (Chung et al., 2020). This is especially important
with aged individuals, as their musculoskeletal system tends to
breakdown with increase in age. Aging is associated with
progressive and involuntary loss of muscle mass and strength,
a condition known as sarcopenia. Sosa et al. have found
hyperphosphatemia induces cellular senescence in murine
myoblasts, leading to sarcopenia as one potential consequence
(Sosa et al., 2018; Sosa et al., 2021). Of relevance, cellular
senescence is the inability to progress through the cell cycle.
This occurred to myoblasts due to increased mTOR activation
and reduced autophagy under hyperphosphatemia conditions via
Integrin-linked kinase (ILK) activation (Sosa et al., 2018), which
is essential to myoblast senescence; suppressing ILK expression
resulted in increased autophagy and protected myoblasts from
senescence triggered by hyperphosphatemia (Sosa et al., 2018).
With myoblast losing their proliferative abilities, sarcopenia may
develop (Sosa et al., 2018). This was identified through
hyperphosphatemia inducing senescence in cultured myoblasts
through ILK overexpression via gene transfer using adenoviral
expression vectors encoding ILK gene, lowers cell replication
capacity since older mice have a considerable loss of muscle
strength, which correlates with hyperphosphatemia and
increased ILK and p53 (Sosa et al., 2018). Overexpression of
ILK upregulates p53, which is a cell cycle inhibitor (Sosa et al.,
2018). It is also important to discuss CKD and its role in
accelerating muscle loss. Muscle atrophy is a major clinical
issue in CKD patients, and muscle preservation has an integral
part in the patient treatment and outcomes (Chung et al., 2020). A
high phosphate burden has been suggested to suppress myogenic
differentiation in vitro and promote skeletal muscle atrophy in
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vivo in diseases such as CKD. This is mainly accomplished
through enhanced nuclear factor erythroid 2-related factor 2
(Nrf2) transcriptional activity via increased ROS generation
and p62 expression (Chung et al., 2020). Nrf2 is a sensor of
oxidative stress and is prevented from binding to DNA by Kelch-
like ECH-associated protein 1 (Keap1). Keap1 is inactivated
during oxidative stress which allows Nrf2 to influence multiple
mechanisms including drug metabolism, oxidant signaling, and
antioxidant defense (Chung et al., 2020). P62 is a stress induced
protein which leads to inclusion body formations and can also
target ubiquitinated proteins for digestion (Chung et al., 2020).
Experimental animal studies have shown that
hyperphosphatemia increases inflammation to intensify anemia
and skeletal muscle wasting (Czaya et al., 2022); phosphate
burden induces hepatic levels of IL-6 and IL-1β to enhance
the expression of hepcidin, a potential causative link between
hyperphosphatemia, anemia, and skeletal muscle dysfunction
(Czaya et al., 2022). Hepcidin regulates systemic iron
homeostasis by blocking intestinal iron absorption and
macrophage iron recycling at high levels (Czaya et al., 2022).

Phosphate Burden and Renal Pathology
CKD is associated with hyperphosphatemia, which increases the
odds of developing various diseases, such as coronary artery
disease (John et al., 2011). As mentioned above, kidneys are
responsible for phosphate excretion to keep levels in an optimal
range. CKD leads to increased numbers of nonfunctioning
nephrons as well as increased amounts of phosphate in the
body (Foley, 2009). CKD does not allow for successful aging,
which is desirable by most. Successful aging is defined as aging
while remaining free of CVD, cancer, chronic obstructive
pulmonary disease (COPD), and personal/cognitive disability
or impairment (Sarnak et al., 2008). Sarnak et al. have found
that impaired renal function, such as CKD, promotes
unsuccessful aging (Sarnak et al., 2008). Although not
completely understood why CKD promotes unsuccessful aging,
Sarnak et al. proposed three potential mechanisms. First, kidney
dysfunction may be the secondary symptom due to vascular
disease or hypertension. Second, kidney function may mediate
an increase in several other risk factors for aging, like anemia,
insulin resistance, and inflammation. Third, kidney dysfunction
may be linked to unsuccessful aging related to insufficient
glomerular filtration rate (GFR) (Sarnak et al., 2008). Even
early stages of CKD can drop a minimum of 5 years to the
normal life span (Sarnak et al., 2008). CKD culminates in
systemic mineral metabolism and bone composition along with
a decrease in GFR (Hou et al., 2018). This creates a scenario known
as CKD-MBD. With falling GFR levels, serum calcium and
phosphate levels rise (Hou et al., 2018). Disruption in mineral
homeostasis increases secretion of PTH, FGF23, and decreases
calcitriol. These effects combined lead to increased bone turnover
and extra-skeletal calcifications (Sprague et al., 2021).
Hyperphosphatemia, vascular calcification, and elevated FGF23
concentrations are the components of CKD-MBD, which
exacerbate cardiovascular disease, accounting for around 60% of
deaths among patients with CKD on dialysis (Sprague et al., 2021).

CONCLUSION

Phosphate is an important nutrient that has various roles in the
human body. It is imperative to keep its concentration in normal
homeostatic ranges to avoid increasing chances of developing
numerous systemic pathologies, as discussed earlier.
Hyperphosphatemia has a role in many aspects of accelerated
aging, prominent among them sarcopenia, decreased immune
function, skin atrophy, development of arteriosclerosis,
tumorigenesis, or the progression of various neurodegenerative
disorders (Figure 2). Potential interventions to delay phosphate-
associated aging-like features could be through decreasing
phosphate burden with phosphate scavengers. Reducing
dietary phosphate intake is another intervention, which could
be achieved through avoiding artificially added phosphate-rich
processed foods (Miyamoto et al., 2022). As phosphate is
commonly found in additives and preservatives, the FDA does
not require food industries to list amounts of phosphate on labels,
thus making the task of controlling the amount of consumed
much more challenging. In closing, it is becoming increasingly
clear that hyperphosphatemia represents a major driver of
accelerated aging, emphasizing the unmet needs for further
interventional studies with the potential to yield therapeutic
breakthroughs.
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