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A B S T R A C T

Remote health monitoring has become quite inevitable after SARS-CoV-2 pandemic and continues to be
accepted as a measure of healthcare in future too. However, contact-less measurement of vital sign, like Heart
Rate(HR) is quite difficult to measure because, the amplitude of physiological signal is very weak and can
be easily degraded due to noise. The various sources of noise are head movements, variation in illumination
or acquisition devices. In this paper, a video-based noise-less cardiopulmonary measurement is proposed. 3D
videos are converted to 2D Spatio-Temporal Images (STI), which suppresses noise while preserving temporal
information of Remote Photoplethysmography(rPPG) signal. The proposed model projects a new motion
representation to CNN derived using wavelets, which enables estimation of HR under heterogeneous lighting
condition and continuous motion.

STI is formed by the concatenation of feature vectors obtained after wavelet decomposition of subsequent
frames. STI is provided as input to CNN for mapping the corresponding HR values. The proposed approach
utilizes the ability of CNN to visualize patterns.

Proposed approach yields better results in terms of estimation of HR on four benchmark dataset such as
MAHNOB-HCI, MMSE-HR, UBFC-rPPG and VIPL-HR.
1. Introduction

The SARS-CoV-2 (COVID-19) epidemic is changing the landscape of
global healthcare [1,2]. This transformation may be witnessed by the
abrupt change in the medical appointments via telehealth. To deliver
high quality patient care and lower the risk of COVID-19, telehealth
emerges as a solution. Performing primary care visits to the patient’s
home lowers the risk of infection, improves visit efficiency, and makes
treatment more accessible to persons who live in distant areas or are
unable to travel. Tele-health provides diagnosis based on self reported
symptoms and visual observation. But they are unable to objectively
analyze the patient’s physiological state in the majority of cases. Special
attention must be given to cardiovascular protection while treatment,
as suggested by experts [3]. By the development of more precise
and efficient non-contact cardiopulmonary measurement technologies,
remote physicians would have access to data allowing them to make
more informed decisions. It is significant that the telehealth will be
imbibed in the health care system of future generation.

Non contact cardiopulmonary measurement technology such as
Photoplethysmography(PPG) traps subtle changes in the reflected light
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due to physiological activity. HR estimation is possible by color vari-
ations that are synchronized with blood volume. In recent years there
has been an increased interest in exploring methods for rPPG measure-
ment [4]–[5], which allows HR estimation from the skin, i.e., the face
area, without contact with a person.

Verkruysse et al. [4] proposed an early approach for the detec-
tion of rPPG signal depending upon the blood volume, using a low
cost camera. Since its inception, researchers have made tremendous
progress in camera-based HR estimation. Since the pulse signal is
very weak it can be easily affected by noise due to presence of
body movement or variation in illumination. Many researchers sim-
plified this noise by making certain assumptions and successfully
derived HR from rPPG signal. For example, sources are considered
to be statistically independent in Blind Source Separation(BSS) meth-
ods such as Principle Component Analysis (PCA) [6] and Indepen-
dent Component Analysis (ICA) [7]. Similarly, model based meth-
ods such as Chrominance (CHROM) [8] and Plane-Orthogonal-to-Skin
(POS) [5] have made certain presumptions and are based on sim-
ple skin reflection model. However, the noise present in realistic
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situation is far more complex and varied. Under such situation it is
difficult to get the reliable measurement using conventional methods.

Recently, from last few decades, the invasion of deep learning in
prominent research fields such as computer vision and natural lan-
guage processing, results in a substantial improvement. Motivated by
these, researchers intrigued to test the applicability of deep learning
techniques in the field of rPPG. Several researches [9–12] have used
CNN architectures and able to provide much better rPPG estimation
than conventional methods. As suggested in [13], representation of HR
signals plays a significant role to train a deep HR estimator. Inspired
by these we have proposed a new deep learning based rPPG estimation
method using spatiotemporal representation of videos. In particular, a
unique feature extraction strategy for efficiently presenting a sequence
of frames to CNN is devised. We create a video abstraction method for
transforming important spatial and temporal information of a video in
a 2D representation called STI. The STI will be submitted to CNN for
estimation of HR.

1.1. Article contribution

• A new paradigm is proposed for the estimation of HR under
realistic noise conditions.

• We proposed a spatio-temporal map to highlight the signal related
to heart rate while suppressing other uncorrelated signals. Such
spatiotemporal image forces the CNN to specifically learn infor-
mative signal related to heart rhythm for the estimation of final
HR.

• A new method is proposed to form a 2D STI from 3D videos, for
better representational learning by CNN. STI utilizes the property
of wavelets to work at multiple scales and resolution.

• The construction of STI are based on wavelets, which is robust to
uniform motions. Under extreme noise circumstances and even
if there are some occlusions, tracking using wavelet transform is
still feasible.

• Cropping and rescaling STI are used to solve the problem of
variation in the size of input video frames.

• We run thorough intra- and cross-dataset tests to demonstrate that
the proposed method outperforms state-of-the-art methods.

. Related works

In this section, we discuss previously proposed techniques for both
onventional and deep learning-based rPPG measurement.

.1. Conventional methods

Verkruysse et al. [13] initially assessed the possibilities to mea-
ure heart rate remotely using face recordings. Since then, numerous
esearchers have committed themselves to rPPG research. The con-
entional methods of rPPG based HR estimation are majorly divided
nto two categories namely 1. Blind Source Suppression(BSS) based
lgorithms 2. Model based algorithms. BSS based methods assumes
ources to be statistically independent and non Gaussian. It extracts
ulse signal from mixed signals of pulse and noises without having
he prior knowledge of mixing. Most commonly used BSS methods are
CA [7] and PCA [6].

Empirical mode decomposition method proposed by [14] sepa-
ates signal into number of intrinsic modes, and one clean signal is
elected which resembles pulse signal. These above mentioned meth-
ds becomes inefficient in the presence of head movement, facial
eformations, and illumination variations.

In order to overcome noise due to motion, model based methods
s proposed. Chrominance method (CHROM) [8] uses a method that
tilizes a skin reflection model and combines RGB channels in a linear
ashion. Dependence on skin reflection model, easily separates the
ulse, and noise occurs due to motion. POS [5] utilizes the same skin
2

reflection model but uses different projection for the separation of pulse
and motion induced noise. With the prior knowledge of signature blood
volume pulse vector, robustness of PBV [15] for noise is provide better
than CHROM and POS. By using clearly defined skin mask another
method called spatial subspace rotation (2SR) [16] is proposed to
measure a spatial subspace of skin-pixels and measure its temporal
rotation for pulse extraction. The advantage of this method is that, it
does not require preliminary information about skin tone or pulse. All
of the methods presented above are based on calculating the spatial
mean of the entire face, assuming that each pixel’s contribution to
rPPG estimate is equal. Such an assumption is noise-sensitive, making
it impossible to use in realistic circumstances. For HR estimation in
naturalistic condition, [17] proposed a method which automatically
discards noisy features and selects only features corresponding to HR
value. This method used a matrix completion theory involving self
adaption strategy. In this method the author is trying to localize per-
turbations in chrominance features due to face movements. However
the methods stated above are not sufficiently robust for unsteady
environmental conditions such as low illumination, abrupt motion etc.
This constraint motivates the adoption of deep learning techniques to
achieve robustness.

2.2. Deep learning-based remote HR estimation

Technologically enhanced results are driving force behind using
deep learning techniques for real world problems. HR measurement
from facial videos can no longer be untouched. There are two pos-
sible ways of applying deep learning technique, end-to-end or as a
feature decoder. The first end-to-end method [18] provides spatio-
temporal visualization of physiological signal via attention mechanism.
The main aim of the proposed network is to discriminate motion from
different sources and output target motion signal. Motion analysis is a
very important step in deep learning based video processing. Motion
representation such as frame difference or optical flow are calculated
manually to fed into the convolutional neural networks Deepphys [18]
exploits motion difference information followed by attention networks
for better estimation of rPPG signals. AutoHr [19] proposed an end-
to-end network with strong Neural Architecture Search(NAS) method.
End-to-end method proposed in [11] learns features through a feature
extractor CNN network, which is further presented to HR estimator. The
end-to-end methods results in a mysterious black box model, which is
often difficult to understand.

In contrast non end-to-end methods first extracts handcrafted fea-
tures followed by deep learning network for HR estimation [9,10,12,
20–22]. Spatiotemporal features of video are extracted, and then these
uniquely arranged spatiotemporal maps is applied to CNN network
for HR estimation in [9,12,20]. After extracting the rPPG signals via
traditional CHROM [8], Hsu et al. [23] formed the Time Frequency
representation (TFR) of an image by directly accumulating the fre-
quency component of processed time domain signal. VGG15 is used as
a backbone network for HR regression. Qiu et al. [9] extracted features
via Eulerian Video Magnification(EVM) and then CNN is employed to
regress the HR value. Niu et al. [12,13,20] formed a spatiotemporal
map, which is a representation of aggregated information from multiple
ROIs. Next, ResNet18 is cascaded for HR prediction. However, these
methods need strict preprocessing procedures and neglect the global
clues outside the pre-defined ROIs. Performances of these methods is
limited to availability of accurate ROIs. Although they offers substantial
improvement in RMSE but at the cost of preprocessing overhead.

Methods stated above performs effectively for slight head move-
ments and motion due to natural facial expression, but is less reliable
for drastic head movements or continuous motion. Some motion sig-
nals occurs due to periodic head movements, closely aligned with the
pulse signal, further complicate the problem. Such signals cannot be
easily distinguished by deep learning methods or filters with empirical
settings.



Computers in Biology and Medicine 151 (2022) 106307K.B. Jaiswal and T. Meenpal
Table 1
A brief summary of the existing HR estimation networks based on spatiotemporal maps.

Method Input signal Feature extraction Backbone network Outcomes

Hsu et. al [23] Green Channel Signal Time frequency representation
of an image

VGG15 Pioneering work for real-time rPPG
measurement using deep learning
framework

Qiu et. al [9] RGB EVM regression CNN Realtime HR estimation
with very less processing time

Niu et. al [12] CHROM n temporal signals are
concatenated row wise to form
spatiotemporal map

Deep regression model
with Gated Recurrent
Unit(GRU)

HR estimation in general
situations like head movements and bad
illumination

Pulse GAN [22] CHROM Noisy rPPG signal Conditional GAN Noise-less realistic rPPG signal is
generated

Song et. al [24] CHROM Feature map is constructed
by arranging the peaks of the signal in a
time delayed manner

ResNet18 Noise-less feature images are produced
which improves the prediction accuracy of
HR

Wu et. al [25] RGB Spatiotemporal feature map generation
similar to Song et. al with equivalent
padding

ResNet18 Able to generate spatiotemporal maps
which compensates missing frames in
unstable situations.

Proposed RGB Spatiotemporal feature map generation
using wavelets, for better motion estimation

ResNet18 Motion robust HR estimation is possible
under realistic situations
Fig. 1. Overview of our system for HR estimation. Three modules: ROI selection, Feature extraction, HR estimation are present in our system.
The theme of deep learning methods is the quest of strong repre-
sentations to capture salient features for a given task, which enables
improved performance. Spatial correlations between the CNN represen-
tations can be captured with the help of learning mechanisms, which
increases the effectiveness of the network (see Table 1).

3. Proposed method

The proposed method is divided into three steps, ROI detection and
tracking, STI generation and HR estimation using CNN. All the blocks
of proposed scheme as shown in Fig. 1 is described briefly in following
sections:

3.1. ROI detection and tracking

The subtle changes in the reflected light from the skin region is an
important clue for extracting pulse rate. In facial image, there is no
contribution of non-skin regions(hair, eyes, eyebrows) to pulse rate. But
its presence definitely effects SNR. Therefore ROI selection is done to
filter out the unwanted facial region. It is performed as a preprocessing
step majorly in all state-of-the-art methods. For detecting faces in video
frames we have used 68 landmark detector [26]. The detected ROI is
tracked using Kanade–Lucas–Tomasi (KLT) algorithm [27]. In Eq. (1),
eight points of the 68 facial landmarks are used to accurately define
the ROI.

𝑋𝑐 = 𝑋13

𝑌𝑐 = 𝑚𝑎𝑥(𝑌40, 𝑌41, 𝑌46, 𝑌47)

𝑊 = 𝑋16 −𝑋13

𝐻 = 𝑚𝑖𝑛(𝑌50, 𝑌52) − 𝑌𝑐

(1)

Where 𝑋𝑐 and 𝑌𝑐 are the coordinates of top left corner. 𝑋𝑛 and 𝑌𝑛
represents coordinates of point 𝑛 (𝑛 = 1, 2, 3, 4, 5......68), 𝑊 stands for
3

Fig. 2. The green dots represents 68 landmark points. The region highlighted in blue
is the ROI subjected to further processing for HR detection.

width of ROI block and 𝐻 stands for height of ROI block. ROI defined
in this way always exclude eyes and mouth region (see Fig. 2). Hence
it reduces the impact of natural facial movements such as blinking of
eyes and lip movements while talking.

3.2. Spatio-temporal map generation

Spatiotemporal networks possess a very important position in many
video based detection systems such as action detection, action recog-
nition etc. Inspired by this, in this paper, we have developed a novel
feature extraction method to form STI. This feature extraction facilitates
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Fig. 3. Block diagram STI generation (HL and LH shows subbands of wavelet and ⊕ sign shows the vector concatenation.).
Fig. 4. A diagram of heart rate estimator using a spatiotemporal Image representation and transfer learning.
an efficient representation of input frames to be provided as input to
CNN. Here a compressed 2D representation of a video is generated
by decreasing spatial data redundancy while maintaining temporal
dynamics of video. ROIs of input frames are subtracted consecutively
to remove any static properties. Then three-scale discrete Daubechies’
wavelet transform is applied to the difference ROI in order to obtain
multiple spatial frequency bands. Gradient, texture and edge infor-
mation can be extracted from coefficients of wavelet transform. The
horizontal and vertical projections of wavelet coefficients results in a
feature vector representing spatial information. HH subband is left, as
there is no spatial correlation. Only HL and LH subbands are used for
computing horizontal and vertical projection. Horizontal and vertical
projection is computed as:

𝑉𝑟𝑗 (𝑦) =
𝑞𝑗
∑

𝑥=0
(𝑟𝑗 (𝑥, 𝑦)), 𝑦 ∈ 1......𝑞𝑗 (2)

𝐻𝑟𝑗 (𝑥) =
𝑝𝑗
∑

𝑦=0
(𝑟𝑗 (𝑥, 𝑦)), 𝑥 ∈ 1......𝑝𝑗 (3)

where, 𝑟 ∈ 𝐻𝐿,𝐿𝐻 and 𝑗 ∈ 1, 2, 3 where subbands are represented by 𝑟𝑗

in 𝑗th scale, 𝐻𝑟𝑗 (𝑥) and 𝑉𝑟𝑗 (𝑥) shows horizontal and vertical projection
of subbands, respectively. 𝑝𝑗 represents count of rows and 𝑞𝑗 represents
column count in subbands in 𝑗th scale.

The resultant feature vector is constructed by joining horizontal and
vertical projection of subbands in different scales.

𝐹𝑉 = (𝐻 + 𝑉 ) (4)
4

𝑖 𝑟𝑗
where 𝑖 represents frame count, 𝑟 ∈ 𝐻𝐿,𝐿𝐻 and 𝑗 ∈ 1, 2, 3. The
computed 𝐹𝑉𝑖 is of the size ∑𝑠

𝑗=1 2(𝑚𝑗 + 𝑛𝑗 ), where 𝑠 represents num-
ber of scales of Wavelet transform. Each pixel of the 𝐹𝑉𝑖 is globally
averaged. As a result, a temporal sequence is created that illustrates
how skin color changes (see Fig. 3). This spatiotemporal image con-
tains the signal corresponding to the flow of blood, which ultimately
exhibits HR value. Since our technique is built on a fully convolutional
architecture, potentially face sequences of any size, both spatially
and temporally, is viable input. Moreover, the formation of STI using
wavelets, provides robustness towards uniform motions. Under extreme
noise circumstances, even if there are some occlusions due to low
light, tracking using wavelet transform is still feasible. To demonstrate
the spatiotemporal image generation more precisely a spatiotemporal
images corresponding to six frames of size 780 × 580 is shown in Fig. 6.
The feature vector is calculated using formula given in the Eq. (4) and
found to be of size 2382 × 19800. The dimensions of the spatiotemporal
image depends on the number of frames and the size of feature vector.
The size of spatiotemporal image plays a vital role in determining the
number of layers of convolutional network, size of kernels and stride.

From spatiotemporal map shown in Fig. 6 it can be clearly seen that
the videos with less motion gives same column values and the brightest
column value corresponds to the peak value from which HR can be
calculated. Such representation makes learning of videos very conve-
nient to CNN. Moreover converting 3D videos to 2D representation
also reduces computational complexity to much extent. The brightest
column in the STI corresponds to the highest value of HR which can
be passed to CNN for learning. The temporal sequence obtained from
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Fig. 5. Example frames from different dataset, corresponding spatiotemporal image and predicted HR value using CNN.
each frame of a video are arranged in form of rows for spatiotemporal
representation (see Fig. 5). Conversion of videos into STI diminishes
the effect of information loss due to motion such as change in scale,
rotation or appearance which eventually reduces noise.
Algorithm 1: Feature Extraction
Input : A raw RGB video with frames [𝐼1, 𝐼2, 𝐼3......𝐼𝑛], wavelet

decomposition levels l
Output: Spatiotemporal image 𝑆

𝑆 = [ ]
for each frame 𝐼 do

Wavelet decomposition with level 𝑙
Consider HL and LH subbands
Compute vertical projection 𝐻𝑟𝑗 (𝑥) using Eq. (2)
Compute horizontal projection 𝑉𝑟𝑗 (𝑦) using Eq. (3)
Concatenate to form feature vector 𝐹𝑉𝑖

end
𝑆.𝑎𝑝𝑝𝑒𝑛𝑑(𝐹𝑉𝑖)

3.3. Convolutional neural network

Feature extraction is performed to extract only the desired infor-
mation as appropriate features from any given input. To utilize the
potential of pre-trained deep neural networks for efficient representa-
tion of input, feature extraction is the quickest way. Using a pre-trained
model for learning small database is a highly successful strategy. Pre-
trained model, trained on original large database provides features, as
effective as generic model when trained on small database. (see Fig. 4)
It is worth noticing that Resnet18 model has fewer filters and lower
complexity than VGG nets. Also the convergence of Resnet18 is faster
and occurs at early stage then any other plain net. This motivates us to
select Resnet18 [28] for estimation of label (i.e, HR value). ResNet-18
accepts input of size 224, therefore preprocessing of raw image is done
to get the desired shape, before applying to the network. The ResNet-
18 model then portrays an input hierarchically, with deeper layers
contains high-level features. Since we are using ResNet for predicting a
single value, therefore the output layer is modified as a fully connected
dense layer having only one node with linear activation function. We
have used linear activation function here. The model is trained with
a mean square error loss function. Adam optimizer [29] is used for
optimization. Learning rate of 0.0005 is used for training. Maximum
training epoch is 70 for all the database. Same as other CNN regression
tasks [30], 𝐿1 loss function is used to minimize the difference between
regression output label and ground truth. To avoid overfitting we use
dropout layer with dropout ratio of 0.6. Dropout enhances the network
generalization capability. The loss function is described in Eq. (5)

𝐿𝑜𝑠𝑠 =
𝑁
∑

|𝐻𝑅𝑖 −𝐻𝑅𝑖| (5)
5

𝑖=1
where, 𝐻𝑅𝑖 is actual HR value and 𝐻𝑅𝑖 is predicted HR value.

4. Result analysis

4.1. Experimental settings

We have conducted all the experiments on publicly available
databases. All the databases MAHNOB-HCI [31], MMSE-HR [32], UBFC-
rPPG [33] and VIPL-HR [34] are available online and contains facial
videos of a subject with respective physiological signals.

A window of 5 s is taken for processing of videos and their cor-
responding physiological data. In order to remove the variations in
datasets, the ground truth is resampled at 30 Hz. The range of bandpass
filter is taken as [0.7–3] Hz. Generated spatiotemporal images are
resized to 224 × 224 before feeding to CNN.

4.1.1. Dataset
MAHNOB-HCI tagging database consists of video and corresponding

physiological signals (EEG,ECG, respiration amplitude and skin temper-
ature). Total of 527 videos from 15 female and 12 male participants
is accumulated. This time duration plays a crucial role as very small
duration results in loss of information and large duration videos results
in smaller number of samples. Videos of 10 s duration is considered
for the formation of spatiotemporal images, results in 527 × 10 = 5270
spatiotemporal images.

VIPL-HR is a large scale database consists of 2378 visible light
videos and 752 near infrared videos(NIR) accumulated from 107 sub-
jects. The congruency of VIPL-HR database environment to the real-
world scenario benefits us in training CNN for challenging condi-
tions. Taking 10 s video of each subject, total 2378 × 10 = 23780
spatiotemporal maps are generated from visible light videos only.

UBFC-rPPG dataset is specifically created for rPPG analysis. UBFC-
rPPG is divided into two i.e, dataset-I(simple) and dataset-II(realistic).
We have considered only 42 videos of dataset-II collected under realis-
tic scenario. According to the same time setting of videos 42 × 10 =420
spatiotemporal images are generated.

4.2. Evaluation metrics

To evaluate the accuracy of the rPPG pulse extraction algorithms,
we adopt metrices from recently published articles [35–38]. The eval-
uation metrics are standard deviation (𝐻𝑅𝑠𝑑), the mean absolute HR
error (𝐻𝑅𝑚𝑎𝑒), the root mean squared HR error (𝐻𝑅𝑟𝑚𝑠𝑒), the mean of
error rate percentage (𝐻𝑅 ), and Pearson’s correlation coefficients 𝜌.
𝑚𝑒𝑟
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Fig. 6. Six consecutive frames of MAHNOB-HCI dataset with the corresponding wavelet feature vectors and spatiotemporal image.
1. Standard Deviation: Standard deviation quantifies the variation
in the HR values.

𝐻𝑅𝑠𝑑 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

𝐻𝑅𝑖
𝑒 −𝐻𝑅𝑒

)2
(6)

where 𝐻𝑅𝑒 = 𝐻𝑅𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 −𝐻𝑅𝑔𝑛𝑑

2. Mean absolute error:

𝐻𝑅mae = 1
𝑛

𝑛
∑

𝑖=1
𝐻𝑅𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 −𝐻𝑅𝑖
𝑔𝑛𝑑 (7)

3. Root Mean Square Error:

𝐻𝑅rmse =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝐻𝑅𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 −𝐻𝑅𝑖
𝑔𝑛𝑑 )

2 (8)

RMSE is difference of squares of predicted and ground truth
value. Lower values indicates strong correlation between data.

4. Mean Error Rate Percentage:
It represents accuracy as percentage.

𝐻𝑅mer =
1
𝑛

𝑛
∑

𝑖=1

𝐻𝑅(𝑖)
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 −𝐻𝑅(𝑖)

𝑔𝑛𝑑

𝐻𝑅(𝑖)
𝑔𝑛𝑑

× 100 (9)

difference of average of all HR estimated value and ground truth
HR value provides mean absolute error.

5. Pearson’s Correlation Coefficient:
To measure the correlation between estimated value and ground
truth value Pearson correlation is used.

𝜌 =

∑𝑛
𝑖=1

(

𝑋(𝑖) −𝑋
)(

𝑌 (𝑖) − 𝑌
)

√

∑𝑛
𝑖=1

(

𝑋(𝑖) −𝑋
)2

√

∑𝑛
𝑖=1

(

𝑌 (𝑖) − 𝑌
)2

(10)

where, 𝑋 represents estimated HR and 𝑌 represents true HR.

4.3. Evaluation on MAHNOB-HCI:

Our proposed method is evaluated on widely used MAHNOB-HCI
dataset for HR measurement. The video samples are of high com-
pression rate and impulsive motions caused due to change of facial
expression based on the movie scenes. MAHNOB-HCI is multimodal
dataset, recorded basically for emotion recognition. It is one of the
oldest dataset used for HR detection, hence can be profoundly found in
existing literature. Table 2 shows the results on MAHNOB-HCI dataset.
It shows the comparison of different state-of-the-art methods with or
6

Fig. 7. Bland–Altman plot demonstrating the correlation between ground truth and
predicted HR on the MAHNOB-HCI data set; the horizontal lines represent the mean
and 95% limits of agreement.

Fig. 8. Scatter plots between ground-truth HR and estimate HR on the MAHNOB-HCI
data set.
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Fig. 9. Bland–Altman plots demonstrating the correlation between ground truth and
predicted HR on the UBFC-rPPG dataset; the lines represent the mean and 95% limits
of agreement.

Fig. 10. Scatter plots between ground-truth HR and estimate HR on the UBFC-rPPG
data set.

without deep learning. Firstly, the effectiveness of the preprocessing
method can be seen from the projected results. In [17], the patch
formation over facial region provides robust HR measurement for
short duration signal, which results in significantly low errors (RMSE,
MAE) compared to the methods utilizing full face region. Although the
performance is good in [17] and [39], these methods involves intense
preprocessing hence, not suitable for real time estimation of HR. On the
other hand methods build over deep learning models provides better
performance. The training protocols of all the deep learning based
models is different, so the comparison is done at general level. It can be
depicted from Table 2, the proposed model exhibit a decrease in MAE
by a large margin when compared with the traditional and end-to end
learning methods. The proposed method results is approximate to the
results of existing end-to-end learning methods.

4.4. Evaluation on VIPL-HR:

To validate the effectiveness of the proposed method, we have tested
it on VIPL-HR dataset. As shown in Table 3, the performance of all three
traditional methods (Tulyakov2016 [32], POS [5] and CHROM [8])
7

Table 2
Average HR estimation result on MAHNOB-HCI database using different methods.

Method SD MAE RMSE 𝝆

Poh [7] 24.3 25 25.9 0.08
Poh [6] 13.5 13.2 13.6 0.36
CHROM [8] – 13.49 22.36 0.21
Li [39] 6.58 6.87 7.62 0.81
SAMC [17] 5.81 5.93 6.23 0.83
SynRhythm [40] 4.48 4.37 4.49 –
HR-CNN [11] – 7.25 9.24 0.51
DeepPhys [18] – 4.57 – –
PhysNet [41] 7.8 5.96 7.88 0.76
Meta-rPPG [37] 4.9 3.01 3.68 0.85
EVM-CNN [9] 2.79 3.67 3.26 0.86
Auto-HR [19] 4.73 3.78 5.1 –
Rencheng [24] 5.57 4.61 5.70 0.86
Proposed 3.96 2.72 4.05 0.96

Table 3
Average HR estimation result on VIPL-HR database using different methods.

Method SD MAE RMSE 𝜌

SAMC [32] 18 15.9 21.0 0.11
POS [5] 15.3 11.5 17.2 0.30
CHROM [8] 15.1 11.4 16.9 0.28
13D [42] 15.9 12.0 15.9 0.07
DeepPhys [18] 13.6 11.0 13.8 0.11
RhythmNet [20] 8.11 5.30 8.14 0.76
Proposed 7.98 5.23 7.21 0.82

is not on par for VIPL-HR dataset due to complex head motions and
variable illumination. Moreover, low values of Pearson’s correlation
coefficient by end-to-end-learning based methods (e.g., 13D [42] and
DeepPhys [18]) indicates non-reliability of predicted HR values. In con-
trast, our proposed model shows significant improvement and yielded
promising results for the challenging dataset. The proposed model
provides enhanced spatiotemporal features which improves the pre-
dictability of HR. As a result it can be seen in Table 3 that the
proposed method achieves promising result with RMSE of 7.21 bpm.
The proposed method also outperforms popular deep learning methods
like [18,20] with MAE advantages of 5.62 and 0.13 respectively in HR
estimation.

4.5. Evaluation on UBFC-rPPGNet:

We also evaluate our model in one of the widely used UBFC-
rPPGNet data set. We have adopted the same comparison method as
used in other datasets. The UBFC dataset is divided into training and
validation sets using the ratio of 6:4 because it is a small dataset and
the distribution is quite close, so that we can use all the information
to its greatest potential. Till date many researchers have used this
dataset for testing algorithms like [5,7,37,43]. Table 4 shows the
comparison results using UBFC-rPPG dataset. It is observed from the
table that the proposed method yielded quantitatively better results.
The proposed method outperforms deep learning method like [43]
and [37] with MAE advantage of 1.57 and 2.09 respectively in HR
estimation. Results shown in Table 4 implies that proposed method
performs best by providing MAE of 3.88%. The improvement in Pearson
correlation coefficient indicates the robustness of model towards the
small size of dataset with limited HR values range. It is observed
that improving information learning through spatiotemporal images,
enhances the performance of the model.

4.6. Evaluation on MMSE-HR:

MMSE-HR dataset is widely used, most popular dataset for HR
estimation. From Table 5, it can be seen that the proposed methods out-
performs most of the existing methods. However, EVM-CNN [9] obtains
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Table 4
Average HR estimation result on UBFC-rPPG database using different methods.

Method SD MAE RMSE

Verkruysse [4] 20.2 10.2 20.6
Poh [7] 18.6 8.43 18.8
CHROM [8] 19.1 10.6 20.3
POS [5] 10.4 4.12 10.5
3D-CNN [43] 8.55 5.45 8.64
Meta-rPPG [37] – 5.97 7.42
Proposed 3.39 3.88 6.23

Table 5
Average HR estimation result on MMSE-HR database using different methods.

Method SD MAE RMSE 𝝆

Li [39] 20.2 14.6 19.95 0.38
CHROM [8] 14.08 12.2 13.97 0.55
SAMC [32] 12.24 10.8 11.37 0.71
POS [5] – 5.77 – 0.82
DeepPhys [18] – 4.72 8.68 0.82
EVM-CNN [9] – – 6.95 0.98
Proposed 6.63 6.4 6.82 0.95

best Pearson correlation coefficient. This result is due to over fitting
of the proposed model as well as the fact that there are insufficient
training data to cover all ranges of heart rate. Also we have found
traditional methods such as POS outperformed some deep learning
methods, which is a proof of excellent generalization ability of some
traditional methods.

Results shown in Table 5 implies robustness of extracted features
of proposed model by delivering lowest RMSE. The proposed model
exhibits comparable results with existing deep learning methods, in
terms of RMSE and Pearson correlation coefficient. The results imply
that the proposed method is effective for not only one specific environ-
mental condition but for most of the complex situations. Despite the
varied facial expressions of the subject on the MMSE-HR dataset, our
technique can deliver good results. This proves the robustness of the
face modeling process used in our model.

4.6.1. Accuracy
The accuracy of the model can be improved only when the ROI

selection method, the STI formulation and the backbone network used,
works efficiently in collaboration. We have tested our model for within
database case i.e, when testing and training are from the same dataset.
For 10-fold cross validation, we have randomly selected 40 videos from
each datasets and divided into 40 sets, 10 for each dataset. The average
accuracy is found to be 87% for MAHNOB-HCI, 82% for MMSE-HR,
78% for UBFC-rPPG and 90% for VIPL-HR respectively.

4.7. Bland Altman plot

The Bland Altman plots comparing predictions on MAHNOB-HCI
dataset and UBFC-rPPG dataset by our proposed method are shown
in Figs. 7 and 9. This plots helps us to analyze the influence of the
spatiotemporal Image formation on the prediction of HR through CNN.
The range of estimated HR are within normal limits. Furthermore, from
Figs. 7 and 9, it can be seen that the arrangement of HR is analogous
and aligned. Analyzing scatter plots from Figs. 8 and 10 reveals that
the model and the ground-truth HR holds linear relationship, which is
gradually becomes stronger. In one statement, it can be said that the
proposed model is more robust.

5. Discussion

The Covid-19 epidemic necessitates the adoption of digital health-
care. Non-contact techniques can lower the risk of infection and also
8

enables patient to stay in a secure environment at home.
Spatiotemporal feature extraction has been predominantly used
in [9,12,20] for estimation of HR using deep learning models. Based
on the excellent performance gain by these methods, we have also
endeavoured to build a model using STI. Improved performance mea-
sured in terms of evaluation metrics proves the reliability of the pro-
posed method. In this study a spatiotemporal image is generated using
wavelet transform. The motion estimation model using wavelet fa-
cilitates estimation of dense optical flow. Motion estimation using
wavelet uses full resolution regions without blurring images. While
concurrently optimizing the coarser and finer areas of optical flow,
small facial movements and large motions can be accurately calculated
by using large-to-small full-resolution zones without causing picture
blur. However, accuracy of the model degrades when both artifacts i.e,
motion and low illumination condition occurs together.

As one can see from the comparison tables that the lowest mean
error rate percentage in obtained in MAHNOB-HCI database because
our model is robust for low movements only. Whereas the Pearson
correlation coefficient is also best for this database only. For rest of
the databases like VIPL-HR the MAE is very close to the best. Looking
at the advantages of formulating spatiotemporal images we have also
formulated one spatiotemporal image which when applied to CNN
performs best and shows significant improvement in HR measurement.

The cost effectiveness and simple architecture for STI generation
proved advantageous over videos, to be directly presented to CNN. STI
also possess resistance towards variation in scales. To experimentally
verify this property the proposed method is tested on UBFC-rPPG
database. Specifically, it can be said that STI map is the first level
extracted features, further convolutional and pooling layers of CNN
exhibits higher level features. Finally the features are fed to the fully
connected layer for HR values.

Vertical and horizontal projection of subbands produces STI. We
have also tried different combinations like diagonal directions, vertical
and diagonal and horizontal and diagonal. But none of the combination
gives improved results.

We also provide insights for the robust heart rate measurements in
realistic situations in future. The proposed method is able to measure
HR in more real life situations exposed to uncontrolled environmen-
tal conditions. Overall, the proposed spatiotemporal pipeline can be
considered as a generalized framework that can be used for other spa-
tiotemporal tasks. For example, the proposed feature extractor model
can be adopted for action recognition in videos. Another intriguing
possibility for the future is to find ailments that are based on variations
in heartbeats over time. Such a study would be very important to
foretell cardiac conditions in people who would otherwise seems to
be completely normal. Keeping in mind that most immediate and
earlier diagnosis of the cardiac disorders is essential to the subject’s
survival. Such a study will be extremely important because of the
advantages and ease of use of the measuring method. Unlike the
traditional technologies like the electrocardiograph (ECG).

6. Conclusion

Telehealth and the SARS-CoV-2 pandemic have acutely highlighted
the specific need for accurate and computationally efficient cardiovas-
cular and pulmonary sensing. This article describes a neural network
model for estimating HR. We constructed 2D STI from 3D videos
using wavelet decomposition of each frames and projecting in different
subspaces. These vertical and horizontal projections of subbands of
wavelet are concatenated to form the feature vector. At the end, for the
entire video, feature vectors of each frames are concatenated together
to form STI. STI is subjected to CNN for better learning and extracting
HR values. To prove the effectiveness, proposed approach is tested on
publicly available datasets and comparable results are obtained.
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