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SARS-CoV-2 is the cause of a recent pandemic that has led to more than 3 million deaths
worldwide. Most individuals are asymptomatic or display mild symptoms, which raises an
inherent question as to how does the immune response differs from patients manifesting
severe disease? During the initial phase of infection, dysregulated effector immune cells
such as neutrophils, macrophages, monocytes, megakaryocytes, basophils, eosinophils,
erythroid progenitor cells, and Th17 cells can alter the trajectory of an infected patient to
severe disease. On the other hand, properly functioning CD4+, CD8+ cells, NK cells, and
DCs reduce the disease severity. Detailed understanding of the immune response of
convalescent individuals transitioning from the effector phase to the immunogenic
memory phase can provide vital clues to understanding essential variables to assess
vaccine-induced protection. Although neutralizing antibodies can wane over time, long-
lasting B and T memory cells can persist in recovered individuals. The natural
immunological memory captures the diverse repertoire of SARS-CoV-2 epitopes after
natural infection whereas, currently approved vaccines are based on a single epitope,
spike protein. It is essential to understand the nature of the immune response to natural
infection to better identify ‘correlates of protection’ against this disease. This article
discusses recent findings regarding immune response against natural infection to
SARS-CoV-2 and the nature of immunogenic memory. More precise knowledge of the
acute phase of immune response and its transition to immunological memory will
contribute to the future design of vaccines and the identification of variables essential to
maintain immune protection across diverse populations.
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SARS-COV-2 AND THE ACUTE PHASE OF
INFECTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is a novel strain of coronavirus responsible for the current
pandemic that has infected more than 140 million and caused
the death of more than 3 million individuals globally (https://
coronavirus.jhu.edu/). Among infected individuals, 80% of
patients display mild symptoms or are asymptomatic, 15%
required oxygen (O2) and about 5% have critical pneumonia-
like symptoms and require assisted ventilation (1). As more than
a year has passed since the origin of this pathogen, there is
tremendous interest in the long-term properties of
immunological memory of recovered individuals as it can
assist in design & improvement of next generation vaccines
(2). As of March 2021, there are currently 8 vaccines approved
for full use and 5 vaccines in early or limited use (3). Among
these, the first two authorized vaccines were modified mRNA
vaccines by Pfizer-BioNTech (Tozinameran) and Moderna
(mRNA-1273). These two vaccines were predominantly rolled
out in high-income countries and require ultra-cold chain
infrastructure (-70°C for Pfizer vaccine). Other approved
vaccines exhibit fewer logistic challenges and are suited for
medium to low-income countries where they can be
transported and stored in standard 2-8°C conditions (4).
Among the most populous countries in the world, India and
China have ramped up immunization efforts using their
indigenous vaccines developed by Bharat Biotech and CanSino
Biologics respectively. Further, there are 23 vaccine candidates in
Phase 3 trials and its hoped that millions of individuals would be
vaccinated in the next few months globally (3). Intensive
research is underway to understand similarities and variations
in the immune response in naturally recovered patients and
vaccine-induced immunization. In this review, we will discuss
the natural immune response to SARS-CoV-2 with particular
emphasis on immunological memory.

The SARS-CoV-2 (+) RNA genome is known to encode 29
proteins (5, 6). The protein repertoire includes structural
proteins: spike (S), membrane (M), envelope (E), nucleocapsid
(N), and 16 nonstructural proteins (NSP 1-16) (7). Additionally,
there are 9 accessory proteins (ORFs - 3a, 3b, 6, 7a, 7b, 8, 9b, 9c,
10) (8). Although main structural proteins and NSPs are studied
in considerable detail, accessory proteins are emerging as
important mediators of SARS-CoV-2 pathophysiology. In a
recent study, accessory protein ORF9b was found to promote
infection by binding to a mitochondrial chaperone protein
named Tom70 (9).

The entry of the virus into the cell requires the presence of
two host proteins, ACE2 and TMPRSS2. ACE2 acts as an entry
receptor while TMPRSS2 acts as a cellular protease for priming
of viral spike protein which is required for fusion with the host
cell membrane (10). Recently, the expression of ACE2 and
TMPRSS2 has been confirmed in salivary glands and oral
mucosa epithelia which implicates the role of the oral cavity
and saliva in the transmission of SARS-CoV-2 (11). In
respiratory tissues, co-expression of ACE2 and TMPRSS2 is
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only restricted to type II pneumocytes and a subset of
epithelial cells. Ziegler et al. reported that respiratory tissue
shows a poor expression of ACE2 and TMPRSS2 with only
0.8% of type II pneumocytes with co-expression of both the
proteins (12). Interestingly, SARS-CoV-2 has more than 10-20-
fold higher affinity for ACE2 compared to other coronaviruses,
and it is purposed as one of the several reasons for its harsh
pathophysiology (13). Meanwhile, the expression of ACE2 has
also been documented in two other cells: enterocytes of the small
intestine and goblet secretory cells of the nasal mucosa (12).
These findings hint at the presence of other receptors/pathways
which can be used by the virus to infect the host cells. Recently,
two studies have identified Neuropilin-1 as another novel cell
surface receptor for the entry of SARS-CoV-2 (14, 15). In
addition to these receptors, the role of other co-receptors such
as sialic acids, heparan sulfate, CD147, or GRP78 needs to be
investigated in greater detail as they can provide novel
opportunities to design therapeutic interventions against
COVID-19 (15, 16).

The SARS-CoV-2 infection leads to broad activation of innate
and adaptive limbs of the immune system in humans. In the
adaptive immune system, T cells play a critical role in managing
the immune response to the viral pathogens (17). For its
activation, T cells depend on the interaction between TCR (T
Cel l Receptor) and peptide-MHC complex (Major
Histocompatibility Complex also known as HLA - Human
Leukocyte Antigen in humans). One of the important variables
to be considered in this interaction is the effect of genetic
polymorphism in the process of antigen presentation and its
association with the risk of COVID-19 (18). Individuals with
specific allele, particularly HLA-B*46:01 are found to be pre-
disposed to severe form of COVID-19 disease. On the other
hand, individuals with HLA-B*15:03 had higher capacity to
present SARS-CoV-2 epitopes to T cells and were associated
with mild COVID-19 symptoms (19, 20). Although further
studies are required to establish this correlation in diverse
populations, it has been proposed that individuals with high-
risk HLA alleles could be prioritized for vaccination (20).

At the clinical level, COVID-19 patients show diverse
symptoms, ranging from mild to life-threatening acute
respiratory distress syndrome (ARDS) which were also present
during MERS and SARS-CoV-1 infection (21). The
accumulation of pro-inflammatory cytokines like IL-1a, IL-1b,
IL-17A, IL-12 p70, IFN-a, IFN-g, TNFa and other cytokines
included in the ‘cytokine release syndrome’ increases
proportionally with an increase in viral load (22). In some
patients with comorbidities, symptoms can be severe from
septic shock, multi-organ failure due to capillary leaks, to the
formation of thromboemboli and organ dysfunction. Another
important variable in the form of sex difference has emerged,
which has resulted in males developing a higher risk of mortality
and severe illness compared to females. It is likely due to inherent
immunological differences between males and females. One of
the reasons for this difference could be higher levels of baseline
pro-inflammatory cytokine, chemokines, and the presence of
improved T-cell activation in females (23). In circulation, lower
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numbers of blood lymphocytes characterized as Lymphopenia is
a prognostic indicator in COVID-19 patients as its level drops
drastically in patients with severe disease whereas, moderately ill
patients showed less fluctuation (24) Besides, rise in neutrophils,
low lymphocyte-to-CRP and low neutrophil-to-lymphocyte ratio
(NLR) have emerged as indicators of severe COVID-19
progression (25, 26). Several other immune cells play critical
roles in COVID-19 patients and are shown in Figure 1 and
Table 1.

In addition to understanding the immune response from
circulating blood, two other sources with much more
information from the site of infection are Bronchoalveolar
lavage fluid (BALF) and autopsy specimen. BALF analysis has
identified increased infiltration of macrophages in patients with
severe disease compared to moderately ill patients. CD8+ T cells
in severe patients showed higher proliferation, energy
production, and translation capacity whereas, patients with
moderate symptoms had T-cells in the proliferative stage (76).
In another study, single-cell analysis identified pro-inflammatory
macrophages at higher levels in severe patients compared to
clonally expanded CD8+ T cells (77). Lung autopsy of COVID-
19 patients has shown 2 distinct categories of interferon-
stimulated genes (ISGs), ISGhigh (high viral load and pro-
inflammatory cytokines) with early mortality compared to
ISGlow with low viral load. Interestingly, lung morphology was
relatively intact in ISGhigh patients compared to ISGlow patients
Frontiers in Immunology | www.frontiersin.org 3
which showed significant lung damage. In this study, activated T
cell signature was found in ISGlow patients with a low viral count
which might be indicative of their importance in antiviral
immunity (78).
SARS-COV-2 AND THE IMMUNITY PHASE

When infected by respiratory pathogens, innate and adaptive
immune cells eliminate the pathogen and lead to formation of
memory immune cells for rapid immune response against future
infection. There is evidence of protective immunity conferred by
B-cells in SARS-CoV-2 infected patients. The spike and
nucleocapsid proteins specific antibodies are detectable as early
as 6 days after the confirmation of COVID-19 (79, 80). It has
been shown that the presence of neutralizing titers of IgG
antibodies against SARS-CoV-2 can offer protection against re-
infection (81). There is emerging evidence of potent memory B
cell response in COVID-19 recovered individuals (82). It has
been additionally shown in longitudinal studies of mildly
infected patients, that while the initial spike in IgA antibodies
drops significantly, the levels of IgG antibodies remain elevated
for duration of at least first 3 months (83). In a recent study, IgG
antibodies against spike proteins were found to be stably
produced for over 6+ months post-infection. SARS-CoV-2
CD4+ T cells and CD8+ T cells showed a half-life of 3-5
FIGURE 1 | Mediators of Immunopathology in SARS-CoV-2 infection and resolution.
May 2021 | Volume 12 | Article 660019
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TABLE 1 | The role of immune cells in inflammation, homeostasis, and SARS-CoV-2 pathophysiology.

Innate immune cells

Immune cells Immune cell function in inflammation and homeostasis Emerging clinical relevance in SARS-CoV-2 infection
Neutrophils Neutrophils are first responders at the site of infection and contribute to acute lung

injury (27). Apart from its role in inflammation, apoptosis of neutrophils serves as a
signal for withdrawal of tissue damage (28).

Neutrophil responsive chemokine signature, secretion of
NET (Neutrophil extra-cellular traps), and increased
infiltration of neutrophils were found to be associated with
severe cases of COVID-19 (29–32).

Mast cells Mast cells with poor regulation of pre-formed inflammatory granules can lead to
severe pathology of the lungs (33). In addition to inflammatory function, mast cells
can contribute to homeostatic functions through the secretion of anti-inflammatory
cytokines and wound healing processes (34).

Dysfunctional mast cells and release of histamines leads to
hyperinflammation hyperinflammatory cytokine storm in
COVID 19 patients with severe disease (35, 36).

Basophils Basophils are similar in function to mast cells and release pre-formed mediators upon
IgE-induced activation (37, 38). Basophils in the lungs have been shown to maintain
lung homeostasis by regulating the maturation and function of alveolar macrophages
(39).

Basophils are reduced in the acute phase but increase in
the recovery phase. Basophils were found to enhance B
cell response and production of strong IgG antibody titers
(40).

Eosinophils Eosinophils can exacerbate tissue damage by contributing inflammatory cytokines
and lipid mediators (38). In normal conditions, eosinophils play several roles including
glucose homeostasis, immunomodulation, and other biological functions (41).

IFN-g triggered expansion of CD62L+ Eosinophils
contributes to ARDS. Eosinophil levels were found to
increase in the recovery phase of COVID-19 patients (40).

Dendritic cells Airborne pathogens and debris are removed by lung-resident dendritic cells. These
cells cross-present antigens to naïve T cells after migrating to lymph nodes to
activate immune response (42).

Impaired functionality of dendritic cells was found in SARS-
CoV-2 infected patients (43).

Monocytes Monocytes along with granulocytes have been shown to emigrate to naïve tissues for
maintenance of normal tissue functions (44). In diseased conditions, pulmonary
monocytes can initiate and activate CD8+ T cells in the lungs during infection (45).

SARS-CoV-2 induces mixed M1/M2 phenotype in
circulating monocytes (46).

Macrophages Macrophages contribute the majority of cellular immune content in homeostatic lungs
and are composed of three subtypes: bronchial macrophages, interstitial
macrophages, and alveolar macrophages (42).

Patients with higher viral load demonstrated T cell
exhaustion and correlated with CCL15 expressing M1-like
macrophages (47).

Adaptive immune cells
B cells Among all immunoglobulins, IgA is the most prevalent in the lungs and is secreted by

B cells and plasma cells (48).
A reduced number of ‘Naturally effector’ B cells were found
in COVID-19 patients (49).

Plasmablasts Plasmablasts mature into plasma cells that secrete IgA, IgM, IgD, IgG, and IgE,
essential for contributions to the health and disease of lungs (48).

PBs showed metabolic shift to higher amino-acid
metabolic pathways in severe patients which is reduced in
convalescent-phase (50).

CD4 T cells Naïve T cells can differentiate into effector or memory T cells upon exposure to
antigen through antigen-presenting cells (APCs) (51).

SARS-CoV-2 infected patients showed TH1 cytokine
profile (52).

CD8 T cells CD8+ T cells produce IFN-g, TNF-a, and IL-2, which leads to the killing of infected
cells using cytotoxic granules (granzyme and perforin) (51).

Decrease in CD8+ T cells in severe cases (32).

T memory cells T resident memory cells are present in the lungs for rapid control of respiratory viral
infections (53).

Long-lasting T cell immunity was found to be present in
COVID-19 recovered patients (54).

B memory cells Resident memory B cells play a significant role in the adaptive immunity of lungs (55). B memory cell response persists after the recovery phase
(56).

T-regulatory cells T regulatory cells in the lungs promote tolerance to inhaled antigens and prevent
excessive inflammation (57).

Reduction of T-reg cells was observed in severe to
moderate COVID-19 patients (58–60).

Other immune cells
Monocytic myeloid-
derived suppressive
cells (M-MDSCs)

MDSCs are present in pathological conditions such as infection or cancer (61). Higher frequency of M-MDSCs in acute patients (43).

Polymorphonuclear
(PMN)-MDSC

Expansion of PMN-MDSCs correlated with ICU patients
and inflammatory cytokines: IL-1b, IL-6, IL-8, and TNF (62).

NK cells NK cells provide immunity against viral infections through antibody-dependent cellular
cytotoxicity and cytotoxic lysis (63). In steady conditions, lung NK cells are
predominantly in the hypofunctional state to prevent unwanted, excessive
inflammation (63).

Lowered NK cells and effector functionality (64).

NK memory cells Memory-like NK cells with robust recall properties can play a vital role during viral
infection (65).

A significantly higher number of memory NK cells in
deceased patients (66).

Innate lymphoid
cells

During infection, Innate lymphoid cells play a critical role in the repair of mucosal
surfaces (67). After infection, these cells promote pulmonary homeostasis through
mechanisms such as wound healing and upregulation of amphiregulin (68).

Severe patients had a lower frequency of ILCs (69).

Gamma delta T
cells (gdT cells)

gdT cells have both innate and adaptive features for protection against invading
pathogens (70).

Depleted levels of gdT cells were found in severe patients
(49).

Mucosa-associated
invariant T cells
(MAIT cells)

MAIT cells are activated by conserved pathogenic ligands and play a protective role
(71).

MAIT cells are actively recruited to inflamed airways of
COIVD-19 patients. There was a significant reduction in
MAIT cells in severe COVID-19 patients (69, 72).

TH17 cells TH17 inhibits Th1 type immune response and can contribute to immunopathology
during viral infections (73). In a steady state, IL-17A plays an important role in the
repair and maintenance of epithelial cell homeostasis (74).

TH17 activation has been associated with severe COVID-
19 symptoms (75).
Frontiers in Immunolo
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months (84). A recent comparative study between severe and
mild patients showed better humoral immunity in severe
patients because of a higher level of BCR clonal expansion and
activation (85). In contrast to these observations, Gattinger et al.
used inhibition assay and found that S- (Spike) specific and
RBD- (Receptor-Binding Domain) specific antibodies did not
always correlate with inhibition of RBD binding to ACE2. In this
small study, 25 convalescent patients showed a range of
inhibition levels, from complete lack of inhibition to even
enhanced RBD binding in some of the subjects (86). It should
be pointed out that natural SARS-CoV-2 infection does not lead
to protective antibody response in all patients. These factors
should be carefully assessed while quantifying the efficacy of
vaccine-induced immune memory.

In addition to the humoral response, SARS-CoV-2 infection
elicits protective immunity as shown by the persistence of BM
(Memory B cells) and TM (Memory T cells) in recovered patients
(87–89). The resolution phase after an infection is followed by
the death of most of the immune cells except around 10% ‘long-
lived memory cells’ (90). These memory cells can provide long-
term robust protection against future infections. Interestingly,
the transition of IgM+ and IgG+ BM generates a transitionary bi-
phasic appearance during the post-infection period. IgM+ BM
cells were found to be present during the initial 20 days of
infection up to 150 days, which was followed by IgG+ antibodies
(84). Further, there has been evidence of a decline in circulating
virus-specific antibodies against spike protein, NCP, or non-
structural proteins (91–93). Despite this drop, a numerically
significant number of RBD- and NCP-specific BM cells remain in
circulation as much as 240 days after onset of symptoms (94).
However, most of the RBD- BM cells showed CD27+ phenotype
compared to NCP- BM cells which suggest that RBD- cells have
undergone more cell divisions with higher number of somatic
hypermutations (94) (95). It has been shown that BM transitions
through phases, as antigen-exposed BM cells demonstrate
multiple replication cycles, class switching, and somatic
hypermutation (95) (96). CD21low CD27+ activated BM cells
are present for a short duration for about 2 weeks and are
followed by resting BM expressing CD21+ CD27- (97, 98). The
presence of TAC1, CD80, CD180 cells shows that they can
activate quickly when exposed to infection again (95, 99).
SARS-CoV-2 studies have shown robust B cell memory
response as long as 8 months after the start of COVID-19
symptoms (84). Further, these BM cells have been found to
correlate positively with T follicular helper cells (Tfh) cells
which suggests increased germinal center activity (94). Tfh
cells help B cells in affinity maturation and are essential for the
generation of memory plasma cells (100). This study has shown
that although antibody numbers are reduced over time, the
memory B cells compensate for this drop and are ready for
active deployment. Some researchers have proposed the
identification of these BM cells to be better predictors of long-
term immunity compared to antibodies (94).

When infected by respiratory pathogens, the innate, and
cellular components of the adaptive immune system function
in succession to eliminate and generate immunogenic memory
Frontiers in Immunology | www.frontiersin.org 5
against the pathogen (101). The humoral immune response to
SARS-CoV-2 is short-lived which puts specific focus on T cell
immune memory. In comparison, B cell response to SARS-CoV-
1 was also short-lived but virus-specific CD8+ T cells have been
shown to persist for 6-11 years (102, 103). In another study,
memory T cells against SARS-CoV-1 were detected even 17 years
after the previous pandemic, hinting at the long-term immune
response against the pathogens (17). In a recent study, almost
half of donor blood samples between 2015 and 2018 showed
reactivity to SARS-CoV-2, well before the emergence of this
pathogen in the human population. It is speculated that this
might be due to the cross-reactivity of other common cold
coronaviruses with SARS-CoV-2 (104). This type of
‘heterologous immunity’ is from peptides of diverse viruses
and is considered a widespread phenomenon but its role in
protection against SARS-CoV-2 needs to be investigated.

There has been accumulating evidence that SARS-CoV-2
memory T cells are produced and maintained in individuals
recovered from illness. The response of T cells against a range of
SARS-CoV-2 epitopes such as M, N, and 6 other ORFs along with
spike protein has been identified. CD4+ T cell response against
SARS-CoV-2 spike protein was found to correlate with levels of IgG
and IgA titers (105). Further, in COVID-19 patients, a positive
correlation of lymphopenia with disease severity was found.
However, the qualitative response of CD4+ T cells was found to
be impaired in critically ill patients as they had a lower number of
virus-specific CD4+ T cells with decreased IL-21, IL-4, and IFN-g
production (106). In one study, polyfunctional Th1-specific
response with the secretion of IFN-g, TNF-a, IL-2 was seen in
patients with mild symptoms whereas, it was found to shift toward
Th2 in ICU patients (106). Additionally, a higher frequency of Th17
cells and release of IL-17 was found to be associated with severe
cases of COVID-19 (75). In contrast, another study found a lower
distribution of Th1, TH17 compared to a higher percentage of Th2
cells in COVID-19 patients. Interestingly, this study also found an
increase in senescent Th2 cells in patients who died from COVID-
19 (107). In a different post-mortem study on severe COVID
patients, lymph and spleen analysis revealed a lack of germinal
centres, an increase in Th1 cells and a decrease in Th2 cells (108).
Additionally, allergic diseases and asthma with its characteristic
type-2 inflammation might not be a risk factor for SARS-CoV-2
infection. Apart from IL-4 and IL-5, IL-13 has been shown to reduce
the expression of ACE-2 (109, 110). Asthma patients have been
broadly divided into Type-2 asthma and Non-Type 2 asthma with
different inflammatory profiles and resulting risk susceptibility.
While T2 asthma patients elicit a strong TH2 response and
possess lower COVID risk, Non-T2 asthma patients express
higher Th1 response and COVID disease severity with pre-
dominant lung destruction (111). In another interesting study, ex
vivo analysis of IL-13 reduced expression of both ACE2 and
TMPRSS2 in airway epithelial cells. Further, this study also found
higher expression of TMPRSS2 but lower expression of ACE2 in
nasal epithelial cells of type 2 asthma and allergy patients (112). The
influence of the Th1/Th2 paradigm and its relationship to SARS-
CoV-2 infection and disease severity needs to be characterized in
greater detail.
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There are several other SARS-CoV-2 induced variations at the
cellular and metabolic level that play an essential role in shaping
the immune response of humans. Apart from the reduction of
CD4+T cells, lower number of NK cells and an increase in
inflammatory monocytes has been observed in COVID 19
patients (50, 113). In another study, similar findings in severe
patients have been reported along with the downregulation
of HLA class II, increase in inflammatory cytokines, and
neutrophil count (114). At the cellular level, an epigenetic
modification was observed with hypomethylation of genes
corresponding to innate immune signaling, the release of IL-
1b, and TNF-a. Comparatively, genes of ATP metabolism and
T cell receptor signaling showed decreased expression (50).
Metabolic exhaustion of immune cells has also shown to play a
vital role in COVID-19 pathogenesis. The activation process of
lymphocytes involves switching between glycolysis and
mitochondrial respiration that require additional mitochondrial
biogenesis, protein translocation, and glycosylation pathways
(115). In COVID-19 patients, Plasmoblasts (PBs) are shown to
be metabolically active with the excessive shuttling of glucose for
antibody glycosylation that might lead to metabolic exhaustion of
these cells (116, 117). Further, if exacerbated, alteration in
antibody formation such as the formation of fucosylated-IgG
antibodies might lead to critical illness in COVID 19 patients
(118). In another study, increase in the frequency of PBs was
found in severe patients that normalized after sickness (50, 119).
Further, Megakaryocytes (MKs) were found to be significantly
high characterized by high Interferon expression signature (50).
In the autopsy analysis of COVID 19 patients, MKs and
thrombosis were observed in several organs including a rare
finding of platelet-derived microthrombi in the heart (120).
Systematic multi-organ complications might be facilitated by
these damaging interactions of immune cells and tissue.
Critically ill patients with poor oxygen circulation have shown
an increase in numbers of Erythroid progenitor cells which derive
from bone marrow due to hypoxic stress. The upregulation
of GATA1 through HIF1 regulation leads to an increase in
circulation of these cells and has been linked to heightened
immune response (50, 121). The emerging role of epigenetic
regulation and metabolic exhaustion in the generation of
immunogenic memory should increase our understanding of
their participation in immune memory against SARS-CoV-2.

Upon activation, T cells can move along multiple trajectories
for clearance of pathogen but the T cells with effector functions
die after few days of the onslaught, leaving behind a pool of
memory T cells. These T cells can be divided into three broad
categories based on their trafficking pattern, anatomical location,
and activity: T central memory (TCM), T effector memory (TEM),
and T resident memory (TRM) (122). TEM displays rapid
generation granzyme and IFN-g but very low proliferative
capacity. TCM on the other hand, with CD62L and CCR7 show
homing capacity for secondary lymphoid organs where they can
be deployed to prevent systemic infection, activate effector
functions, and infiltrate peripheral tissues for rapid response
against pathogens. This fits into the biphasic response whereby
TEM initial onslaught against pathogen and later new range of T
Frontiers in Immunology | www.frontiersin.org 6
cells from TCM pool gets ready for the final elimination of the
pathogen (123). Overall, the difference between effector T cell
response and memory T cell response includes an increased pool
of memory T cells reactive against the pathogen, pre-
programmed specific effector response generates rapid
response against a specific pathogen, and generation of
resident memory T cells TRM in peripheral tissues (124).
Additionally, other memory immune cells are also being
identified with their role in SARS-CoV-2 pathogenesis. In a
recent study, SARS-CoV-2 specific CD8+ T cells was found to
consist of two prominent populations of TEMRA cells (terminally
differentiated effector memory cells re‐expressing CD45RA) and
Tscm (T stem cell memory) cells. TEMRA cells have been identified
to play an important in protection against SARS-CoV-2. These
SARS-CoV-2 antigen experienced tissue resident CD8+ T cells
re-express CD45RA, a naïve cell marker known to offer
protection in tissues such as spleen, blood, and lung (125). The
role of TEMRA cells was explored in a different study using
deep immune profiling analysis that identified three major
immunotypes of COVID-19. Immunotype 1 was associated
with disease severity, activated CD4+ T cells, low circulatory
circulating follicular helper cells, and TEMRA cells. Immunotype 2
group did not show any association with disease severity and
showed lower CD4 T cell activation and proliferation memory B
cells. Immunotype 3 was characterized by lack of T and B cell
response and negative association with disease severity (119).
Further, the importance of other immune cells, particularly
memory Tfh cells is critical against SARS-CoV-2 as these
CD4+ T cells originating from GC-Tfh cells play a central role
in the event of re-exposure to the antigen (126). Whether the
SARS-CoV-2 long-term immunity can maintain this pool of
memory Tfh cells remains to be determined. Cumulatively, these
studies show that the complexity of immune memory in SARS-
CoV-2 infection will form a critical component while analyzing
the long-term efficacy of vaccine-induced memory response to
SARS-CoV-2.

There is another critical host factor that plays a central
role in shaping the detrimental effect of SARS-CoV-2 infection.
“Immunosenescence” , characterized by decl ine and
dysregulation of immune response due to aging plays a
significant role in COVID-19 pathogenesis. It includes gradual
deterioration in the form of reduced thymus function, chronic
stimulation by antigens and corresponding increase in
proinflammatory mediators, latent reactivation of pathogens,
and poor response to vaccines. This “Inflammaging” also
assists in alternative activation of M2-macrophages with a
dysregulated phagocytic capacity which can lead to adverse
outcomes in many infectious diseases (127) (128). The co-
morbidity of heart and lung diseases puts the elderly
population at mortality risk from viral infections (129). As the
individual grows older, the pool of naïve T cells declines along
with reduction of proper environment, a conducive milieu in the
form of cytokines, cell-cell interaction, and chemokines, which
are essential for the proper functioning of the immune response.
The lack of a proper environment for their functionality can
sometimes lead to an excessive life-threatening situation of a
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cytokine storm. On the other end, paucity of proper signaling,
ineffective priming of T cells by antigen-presenting cells can lead
to exhausted T cells with chronic poor effector response.
SARS-COV-2 VACCINE AND MEDIATORS
OF DURABLE IMMUNITY

The greater understanding of the immune response to SARS-
CoV-2 is assisting the scientific community in the identification
of key variables essential to study the long-term immune
response to this novel pathogen. There are several important
variables to be considered to understand the durability of
vaccine-induced immune memory. To begin with, epigenetic
programming of innate cells has shown protection against SARS-
CoV-2. In a randomized controlled study, BCG administration
showed significant delay in first infection compared to the
placebo group (median: 16 months Vs, 11 months respectively)
(130). BCG or other vaccines can trigger ‘pathogen-agnostic
antimicrobial resistance’ due to increased baseline immunity
(131). It has been proposed that these live vaccines (including
oral polio and measles) can boost trained immunity through
reprogramming of immune cells at epigenetic, transcriptional,
and functional levels (132). It should be further explored as to
how much ‘trained immunity’ can contribute to protection
against infective agents of the pandemic.

Several studies have explored immune variations with protection
against SARS-CoV-2 but currently, there is a lack of immune
correlate of protection associated with the COVID-19 (133).
Currently, nABs (neutralizing antibodies) are considered the
benchmark to quantify protection but a decline in production of
nABs can be observed in some of the SARS-CoV-2 recovered
patients (134). In a recent study, a mechanistic link was found
between SARS-CoV-2 infection and resulting B cell response with
limited durability. In this study, severe SARS-CoV-2 infected
patients showed blunt germinal centers, reduction in Bcl-6
expressing B cells and Tfh cells. Further, the presence of a high
amount of TNF can also reduce GC response and block
differentiation of Tfh cells necessary for B cell maturation (108).
There are other mediators of immunity such as T-cells, that can
complement nABs as a potential variable to quantify immune
protection. In fact, heterogeneous immunological memory has
shown discordance where recovered individuals displayed both
ends of the spectrum: High nAB/low T cell and low nAB/high T
cell (135). In another study, 93% exposed asymptomatic individuals
mounted T cell while only 60% showed seropositive status (136) On
the other hand, T cells have shown reactivity even in the absence of
antibodies in asymptomatic individuals thus, highlighting the
potent role of memory T cells in COVID-19 infection (88).
Further, CD8+ T cells of recovered individuals showed higher
expression of TCF1 and can quickly differentiate into diverse T
cells such as Tfh in case of re-exposure to SARS-CoV-2 (88). It has
been speculated that the presence of other means of protection such
as TRM can lower the threshold of nAB required for protection
against COVID-19. It can cause rapid deployment of effector T cells
and other leukocytes to provide synergistic protection. TRM can also
Frontiers in Immunology | www.frontiersin.org 7
directly influence the production of antibodies (137, 138). Further, T
cell activation and resulting reduction of Treg cells can also play a
critical role in maintaining the immunity in T cell patients. T cells
are known to express activation markers such as CD38, HLA-DR,
and Ki67 (54). It has been observed that the exhaustion markers
such as programmed cell death marker 1 (PD-1) and the receptor
mucin domain-containing protein-3 (TIM-3) leads to the poor
effector function of T cells (139). Interestingly, T cell hyperactivation
fuels its exhaustion which leads to a reduction in the activity of T-
reg cells. In fact, circulating levels of Treg cells were found to be
reduced in severe patients compared to COVID-19 with mild
symptoms (58, 60). It would be interesting to explore the relative
contribution of reduction of T-reg cells in SARS-CoV-2
induced pathogenesis.

The activation of T cells requires interaction between T cell
receptor and antigen-MHC complex I (Human leukocyte antigen –
HLA in humans) to induce an immune response against infection.
The spike protein is a major T cell epitope in other coronaviruses
whereas in SARS-CoV-2, the epitopes are spread out from spike to
nucleocapsid and matrix protein which results in multiple co-
dominant CD4 T cell epitopes (138). Clinically, the magnitude
and range of epitope coverage was found to be higher in severe cases
compared to mild ones after SARS-CoV-2 infection (140). Further,
a higher number of multi-cytokines producing T cells (M/NP)
compared to anti-spike CD8+ T cells was found in recovered
patients which indicates the importance of other viral proteins as
a target for future vaccines (140). Among first approved vaccines,
Pfizer, Moderna, and many other candidate vaccines are targeting
spike protein (S) but other vaccine candidates are targeting other
proteins such as viral protease (Mpro) and RNA-dependent
polymerase (RdRp) among others in an effort to induce potent
immune response and protection against COVID-19 (141). In
another attempt to provide broad immunity by activating
multifunctional CD4 T cells, vaccine developer Novavax have
incorporated antigens such as M (Matrix protein) as an adjuvant
along with standard trimeric SARS-CoV-2 S protein as a vaccine
target (142). Apart from these antigens, a recent study has addressed
the need for novel antigens by mapping the full landscape of exact
antigens involved in SARS-CoV-2 infection. This study recognized a
total of 122 immunogenic epitopes in SARS-CoV-2 infected
patients among a total of 3141 epitopes. They also found that
most immunodominant peptides are located in ORF1 and ORF3 of
SARS-CoV-2 genome (143). These observations might help in
understanding the quality of memory immune response especially
considering that ORF1 is highly conserved among coronaviruses
and there is baseline heterologous immunity against other
coronaviruses in general population (143). Further, these antigens
expand the horizon for vaccine design as it has been speculated that
an increase in the number of epitopes may be beneficial in the
generation of amore robust CD8+ T cell response (138). It would be
interesting to compare and analyze the extent and durability of
immune protection provided by vaccines based on single spike
protein, other antigen(s) or the use of antigens in the form of
adjuvant. In this light, any promising vaccine should define a
correlate of protection in the form of durable B and/or T cell
response. The unprecedented pace of discovery has led to the
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development of vaccines in a record time and the continuation of
subsequent research is bound to decode the complexity of mediators
required for protection in a wider population.
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