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Abstract

Sounds like “running water” and “buzzing bees” are classes of sounds which are a collective

result of many similar acoustic events and are known as “sound textures”. A recent psycho-

acoustic study using sound textures has reported that natural sounding textures can be

synthesized from white noise by imposing statistical features such as marginals and correla-

tions computed from the outputs of cochlear models responding to the textures. The outputs

being the envelopes of bandpass filter responses, the ‘cochlear envelope’. This suggests

that the perceptual qualities of many natural sounds derive directly from such statistical fea-

tures, and raises the question of how these statistical features are distributed in the acoustic

environment. To address this question, we collected a corpus of 200 sound textures from

public online sources and analyzed the distributions of the textures’ marginal statistics

(mean, variance, skew, and kurtosis), cross-frequency correlations and modulation power

statistics. A principal component analysis of these parameters revealed a great deal of

redundancy in the texture parameters. For example, just two marginal principal compo-

nents, which can be thought of as measuring the sparseness or burstiness of a texture,

capture as much as 64% of the variance of the 128 dimensional marginal parameter space,

while the first two principal components of cochlear correlations capture as much as 88% of

the variance in the 496 correlation parameters. Knowledge of the statistical distributions

documented here may help guide the choice of acoustic stimuli with high ecological validity

in future research.

1 Introduction

Be it buzzing bees, a flowing river, flocks of squawking birds or howling wind, the natural

world is filled with a huge diversity of different sound textures, and humans have added fur-

ther to that variety with all manner of traffic and machine noises. While this variety may at

first glance seem limitless, it is nevertheless useful to ask whether all this variety of environ-

mental sound can be captured in a more or less bounded parameter space with knowable

parameter distributions. If so, estimating the parameter distributions that characterize a large
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portion of the perceptual diversity of environmental sounds could be very useful, as it would

allow us to ask how sound stimuli used in psychoacoustic or physiological studies of the audi-

tory system relate to the types of sounds the auditory system actually encounters, and may

have adapted to.

Here we describe our attempt to characterize these distributions by collecting and statisti-

cally analysing a large corpus of a class of natural sounds known as sound textures. We

understand sound textures in the sense popularized by [1], as sounds that may have a lot of

complexity, e.g. the sound of waves breaking on a pebble beach, but which are nonetheless well

described by a limited set of stationary statistical parameters. From these parameters, highly

realistic exemplars of such sounds can be synthesized from scratch by morphing random noise

samples to assume the spectral, modulation and correlation structure characteristic of that

type of texture. While textures defined in this way are fundamentally stochastic, and thereby

exclude some important classes of sounds which are highly deterministic (such as highly regu-

lar rhythms) or non-stationary (such as an isolated frequency sweep, a spoken sentence or a

piece of music) they nevertheless cover a large proportion of the sounds encountered in natu-

ral and man-made environments, and the fact that they appear to be well characterized by a

potentially large but finite number of statistical feature parameters makes the research ques-

tions we are pursuing here tractable.

Previous studies have identified a variety of parameters that are in principle suitable for

characterizing sounds, including, for example, features like Mel-frequency cepstral coefficients

(MFCC), band energy ratio, spectral flux and the wavelet subspace cepstrum. These have been

nicely reviewed by [2], and are often used in applications such as sound event classification

and computational auditory scene analysis (CASA). However, cepstral coefficients tend to

look at relatively short time windows, so here we chose to use the auditory texture statistics

developed by [1], which was inspired by the previous characterization of features used in visual

texture discrimination research [3–5].

[1] were able to show that natural sounding textures can be synthesized de novo by “shap-

ing-noise” to impose the statistical features of the desired sound on random noise samples.

Synthesized sounds from “white noise” by [1] were often easily identifiable as exemplars of a

particular type of natural sound, and in many cases indistinguishable from a natural recording.

The statistical parameters they adopted in their study was inspired by knowledge of the filter-

ing of sounds known to be performed by the peripheral and central auditory systems. In their

model, the input signal is band pass filtered into a range of frequency bands which mimics

cochlear filtering. The amplitude envelope of the signal in each frequency band is extracted

and cochlear transduction of sound is simulated by applying compressive nonlinearity to the

amplitude envelopes (raising the envelope by a power of 0.3).

From the compressed cochlear envelopes, statistics such as the mean, variance, skew, kurto-

sis and the correlation between bands are computed for the amplitude distributions of these

“cochlear envelopes”. The mean, variance, skew and kurtosis (also referred to as the first, sec-

ond, third and fourth moment respectively) of the envelope amplitudes, will collectively be

referred to as “marginal moments”, or “marginals” of the sound texture. In addition, the pair-

wise correlations between cochlear envelope amplitudes (“cochlear correlations”, for short) are

computed. Previous studies by [5, 6] reported that both marginal moments and correlations

are important features of visual textures, and the same is clearly true for auditory textures. Fur-

thermore, the compressed cochlear envelopes are also passed through a second bank of band-

pass filters to measure the distribution of amplitude modulations (the “modulation power” sta-

tistics) and to compute correlations between modulation channels.

To appreciate how the types of statistical parameters extracted by the [1] model can distin-

guish types of sound textures, consider that some textures are “sparse”, exhibiting periods of
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relative silence with bursts of energy of widely varying amplitude distribution (e.g. grains of

hail bouncing on a tin roof), while others have a much more constant stream of sound (e.g. a

high pressure jet of water rushing out of a faucet). Marginal moments will distinguish sparse

from less sparse sounds easily, with sparse sounds having relatively greater variance, skew and

kurtosis. Indeed, the usefulness of marginal moments in distinguishing natural sounds and

images has been appreciated for a while [7, 8]. Similarly, modulation power statistics may be

useful to distinguish “buzzing insects” sound textures, which have low modulation power at

low frequencies but higher modulation power at higher frequency bands, from “waves on a

beach” for which modulation power is relatively uniform across all modulation frequency

bands.

In addition to cochlear marginals and modulation power distributions, [1] also examined

the role of correlations, either between cochlear envelopes, or between modulation filters.

Cochlear correlations (C) turned out to be a perceptually very powerful feature, discriminat-

ing, for example, the sound of applause, in which the ebb and flow of acoustic energy is highly

correlated across many cochlear frequency channels, from “running water” type sounds, in

which correlations between cochlear envelopes are small. Unlike cochlear correlations, modu-

lation correlations are computed between outputs of modulation filter banks, and they come

in two “flavors”, cross-modulation-frequency-band (C1) and within-modulation-frequency-

band (C2). Compared to cochlear correlations, modulation power and marginals, the modula-

tion correlations appear to play a much less important role in auditory texture perception [1],

given that listeners found changes in modulation correlations to be relatively unimportant

when judging the realism of a synthetic texture. Hence, we decided not to consider this type of

statistical feature in this study.

2 Materials and methods

To examine the statistical parameter space spanned by natural sound textures, we collected a

corpus of natural sound recordings, computed their statistical parameters using the [1] frame-

work, and subjected the resulting database of statistical parameters to dimensionality reduc-

tion by principal component analysis (PCA). This allowed us to identify parsimonious

“principal feature axes” which explain a substantial portion of the variability among sound tex-

tures typically found in the environment, and to determine the ranges of parameter values that

environmental sound textures typically occupy.

2.1 Sound collection

We collected 450 high quality raw sound samples from freesound, a freely available web

resource [9]. After a preliminary inspection, we selected 200 sound samples which were

deemed to be “texture like”. Sound clips with long duration of silence were excluded. All the

sounds are of 48 kHz sample rate, and each clip is of 15 s duration. A zip archive copy of the

corpus of textures is available at https://auditoryneuroscience.com/SoundTextures/index.

html.

2.2 Statistical parameter extraction

In this study, we explore the distribution of marginal moments, cochlear correlation, and

modulation power over our corpus of natural sound textures. There are thus three aspects to

our study of the statistical parameters of natural textures: a) Exploring the marginal moments.

b) Exploring the correlation statistics. c) Exploring the modulation power statistics. The work-

flow of our exploration process for each statistical feature type is shown in Fig 1.
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The Sound Synthesis Toolbox V1.7 by [1] segregates each input sound into a number of

“cochlear” frequency sub bands and computes the marginal statistics for each sub band. Here

we have taken 32 cochlear filters with center frequencies equally spaced on an equivalent rect-

angular bandwidth (ERB) scale [10], spanning 80–20000 Hz. Other than the frequency range,

this is the same to the model by [1]. The output of each of the 32 cochlear filters undergoes

envelope extraction and compression, and four “marginal moments”, mean, variance, skew

and kurtosis, of the compressed envelope values are computed, yielding 32 × 4 = 128 marginal

parameters for each sound.

The Sound Synthesis Toolbox V1.7 also computes the pair-wise correlation between the

cochlear envelopes. This yields 32 × 32 = 1024 correlation parameters, although many are

redundant given that the correlation matrix is symmetric around the main diagonal of ones,

hence there are in fact (1024–32)/2 = 496 unique and variable parameters. To compute the

modulation power parameters, the output of each cochlear envelope is passed through another

set of 20 “modulation” bandpass filters. The center frequencies of these modulation filters are

equally spaced on a log scale from 0.5 to 200 Hz, the same parameters as those used by [1].

Modulation power is then measured as the variance of the output of each modulation filter,

normalized by the variance of the respective cochlear envelope. For each sound, a total of 32

(cochlear channels) × 20 (modulation channels) = 640 modulation power parameters are

computed.

Thus, each sound in our corpus is described by a parameter set of 128 marginal values,

496 correlation values and 640 modulation values, a very high-dimensional parameter space,

but also one that is expected to be highly redundant, given that, for example, the marginal

moments in adjacent frequency bands are bound to be highly correlated. To examine this

redundancy, and to arrive at a low-dimensional parametrization of our sound corpus which

would make it feasible to examine the ranges and distributions of statistical features that are

common among environmental sounds, we subjected each of the parameter sets (marginals,

correlations, modulations) to PCA. Prior to PCA, the raw parameter values underwent the

Fig 1. Work flow for exploring the statistical parameter space of a corpus of natural sounds. Using the sound synthesis tool box, marginal,

correlation and modulation power statistics were computed for the entire corpus. Envelope variance and kurtosis, as well as modulation power

parameters, are log transformed to make their distributions more symmetric around the mean. Each of these parameter sets is normalized and centered

by z-scoring, and the z-scored parameter sets are subjected to PCA and interpreted.

https://doi.org/10.1371/journal.pone.0238960.g001
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following two pre-processing steps: Firstly, we found that the distributions of the envelope

variance and kurtosis parameters, as well as the modulation power parameters, were strongly

positively skewed, as might be expected. Hence, they were therefore log-transformed to yield

more symmetric and compact parameter distributions. Secondly, the distributions of means,

log(variances), skew and log(kurtosis), as well as those of the correlations and the log(modula-

tion power) values were normalized and centred by z-scoring for each parameter. This caused

each z-scored parameter to have a mean of 0 and standard deviation of 1. After these prepro-

cessing steps, the matrices of 200 sound examples × 128 marginal parameters, 200 × 496 corre-

lations, and 200 × 640 modulation power values were independently analysed with PCA.

3 Results

The distributions of the original and transformed (pre-processed) statistical parameters com-

puted for the corpus are shown in Fig 2A–2H. Fig 2A shows the distribution of the mean enve-

lope amplitudes across frequency bands for the entire corpus. The distribution of variances of

the envelope amplitudes is shown in Fig 2C, and the distributions of skew and kurtosis are

depicted in Fig 2E and 2G respectively. The distributions of the raw variance and kurtosis

parameters in particular are quite asymmetric, with a noticeable positive skew. This asymme-

try is reduced after log transformation and z-scoring, as can be seen in Fig 2D and 2H.

3.1 Principal components of the marginal statistics of sound textures

The results of the PCA on the marginal statistics are shown in Fig 3. A key indicator of whether

PCA is a useful and appropriate tool to identify major underlying trends and patterns in the

data is whether the first few principal components capture (“explain”) a large proportion of

the variability between samples. The proportion of variance explained by the first few principal

components (PCs) is shown in Fig 3A. Perhaps surprisingly, the first two principal compo-

nents are sufficient to capture about 64% (cumulative variance red line) of the variance of the

128 marginal parameters for our corpus of 200 acoustically very diverse samples of environ-

mental sounds. Fig 3B shows the distribution of our sound corpus over the “marginal space”

spanned by the first two principal components, and Fig 3C and 3D show the “shapes” of the

first and second PCs for the marginals. When inspecting the heatmap plots of these PCs, it is

worth remembering that, because the parameters were z-scored prior to PCA, the units of the

color scale are standard deviations above or below the mean parameter values for the entire

corpus. The first PC (Fig 3C) is characterized by low means but large variances and skews,

with perhaps slightly above average kurtosis, and these trends apply more or less uniformly

across all cochlear frequency channels. Consequently, PC1 will discriminate sounds that are

“sparse”, with silent periods punctuated by occasional bursts of sound which drive the large

variance and skew in the envelopes, from sounds that are dense with steady unvarying enve-

lopes. The low mean envelope values compensate for the large variance and positive skew: as

all sound samples were normalized for RMS power, sounds that are characterized by bursts

with positive skew in their envelope amplitudes must have a relatively lower mean envelope

“baseline”.

To illustrate that the first PC of marginals distinguishes sound textures along a “sparseness”

dimension, we examine the marginal statistics of two example sounds from our corpus, “sea at

night” and “clock ticks”, in Fig 4. These sounds in the PCA space are highlighted by red and

blue dots respectively in Fig 3B, and they were chosen to be approximately at opposite ends of

the distribution along PC1 but with nearly identical PC2 values. “Sea at night” has lower PC1

values in contrast to “clock ticks”. From Fig 3C, we expect that “clock ticks” should have on

average lower envelope means, but higher envelope variance, skew and kurtosis, than “sea at
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night”. The panels in Fig 4 confirm this. “clock ticks”, a texture of the sound of multiple clock-

works—and brief silences between the ticks—is also a much “sparser” sound than “sea at

night”, which features rolling wave and wind sounds that produce continuously elevated

sound pressure levels. Others before us have remarked that marginal moments can capture the

sparseness of natural stimuli [1, 7, 8], but it is interesting to note from Fig 3A that the first PC

Fig 2. Distribution of statistical parameter values for the entire corpus. (A, B) Distribution of mean of envelope amplitudes. The median, 5th and

95th centiles of the distributions were 0.09, 0.034 and 0.16 respectively. (B) Mean of envelope amplitudes after z-scoring. (C) Distribution of variances

of envelope amplitudes. The median, 5th and 95th centiles were 0.31, 0.13 and 0.77 respectively. (D) Variances of envelope amplitudes after log

transformation and z-scoring (E) Distribution of skew of envelope amplitudes. The median, 5th and 95th centiles were 0.56, -0.77 and 3.0 respectively.

(F) Skew of envelope amplitudes, after z-scoring. (G) Distribution of kurtosis of envelope amplitudes. The median, 5th and 95th centiles were 3.79, 2.13

and 17.4 respectively. (H) kurtosis of envelope amplitudes after log transformation and z-scoring. Black dotted lines in each panel show the 5th

percentile, median, and the 95th percentile.

https://doi.org/10.1371/journal.pone.0238960.g002
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of the marginal distributions accounts for almost half of the variability observed in our corpus

of natural sound textures, suggesting that the “sparseness” it captures is indeed a major dis-

criminating feature of environmental sounds.

The first PC in Fig 3C can reasonably be interpreted as capturing the sparseness of sounds,

but does the second PC shown in Fig 3D also lend itself to an intuitive interpretation? The 2nd

PC is characterized by envelope mean z-scores near zero, negative values for variance, but

large values for skew and particularly for kurtosis, the latter with some high-frequency bias. To

interpret this result, consider that variance, skew and kurtosis all measure excursions from the

Fig 3. Principal components of the marginal parameters. (A) Percent variance explained by the first 7 PCs of the marginal parameters. The red line

over (A) shows the cumulative variance explained by the principal components. The first two PCs capture 64% of the variance explained. (B)

Distribution of the sounds in our corpus along the first two PCs of the marginals. Four example sound textures examined further in Fig 4 are

highlighted in color. (C, D) Shape of the first and second PCs of the marginals, respectively. The 1st PC distinguishes textures of relatively low mean and

high variance, skew and kurtosis from textures for which the reverse is true. The 2nd PC has mean and skew values that are near zero, and thus mostly

distinguishes textures with low variance and but high kurtosis, particularly for frequency bands above 800 Hz, from sounds with the opposite feature

combination.

https://doi.org/10.1371/journal.pone.0238960.g003
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mean, but skew and kurtosis, as higher order moments, are “more sensitive” to such excur-

sions, growing with the third and fourth powers of the deviation from the mean respectively,

rather than just the square. Thus, an envelope distribution with a large kurtosis but a small var-

iance will have a particularly long, thin “tail”, meaning that sound amplitudes can shoot up to

very large values relatively frequently, but will not spend much time at “middling” amplitude

levels, while for a texture with relatively larger variance and smaller kurtosis, the converse is

true. We would therefore expect sounds with high marginal PC2 scores to be not just sparse,

but “bursty”, exhibiting intermittent bouts of very high sound energy and fluctuating quite

Fig 4. Comparison between the envelope statistics of “sea at night” from one end of PC1 dimension and “clock ticks” from the other end. (A) “Sea

at night” has higher envelope mean than “clock ticks” as it is in the lower end of PC1 dimension (B, C, D) Envelope of “clock ticks” with high variance,

skewness and kurtosis than “sea at night” for frequencies above ~1kHz.

https://doi.org/10.1371/journal.pone.0238960.g004

PLOS ONE Exploring the distribution of statistical feature parameters for natural sound textures

PLOS ONE | https://doi.org/10.1371/journal.pone.0238960 June 23, 2021 8 / 21

https://doi.org/10.1371/journal.pone.0238960.g004
https://doi.org/10.1371/journal.pone.0238960


wildly between loud and quiet, but relatively little in between, unlike textures with low PC2

scores which would exhibit comparatively “less extreme” amplitude fluctuations. In PC2, large

kurtosis goes hand in hand with positive skew. This is likely attributable to the fact that sound

envelope amplitudes cannot be negative, and the large amplitude excursions of “bursty”

sounds with high kurtosis are therefore bound to be positively skewed. Thus, PC2 appears to

rank sound textures on how “bursty” they are. In Fig 5 we illustrate the marginal statistics for

two sounds chosen to vary systematically along PC2, but have approximately the same values

for PC1: “restaurants”, and “roosters”. Fig 3C highlights the coordinates of these two sounds in

Fig 5. Comparison of “restaurant ambience” and “roosters” across PC2 dimension of marginal statistics. (A) “Roosters” has a lower mean for

cochlear envelope than “restaurant” (B) “Roosters” has a higher variance cochlear envelope than “restaurant”. PC2 in Fig 3D indicates that as we move

along the PC2, sounds should have opposing trends in mean and variance values of their cochlear envelopes. (C, D) As we move in the PC2 direction

“skew” and “kurtosis” should be higher. “roosters” has higher skew and kurtosis than “restaurant”.

https://doi.org/10.1371/journal.pone.0238960.g005
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marginal PC space with a green and a magenta spot respectively, and shows that “roosters” has

a much higher PC2 value than “restaurants”. As can be seen in Fig 5, the two sounds exhibit

the expected trends, with “roosters” having on average smaller variance but greater kurtosis

than “restaurants”. Both sounds are of average “sparseness”, but while in “restaurants” there is

a variety of background sound events of differing levels (voices, cutlery sounds, footsteps, etc),

“roosters” jumps wildly between periods of relative quiet and moments of loud and forceful

crowing, making it the substantially more “bursty” sound of the two.

In summary, the first two PCs of the marginals of our corpus of sound textures between

them account for two thirds of the variance (44% and 20% respectively, see Fig 3A) in envelope

marginals across the corpus, indicating that the marginal statistics in environmental sound

textures are highly redundant. We also observed that the two first PCs lend themselves to an

intuitive interpretation, capturing features that can be described as the “sparseness” or the

“burstiness” respectively of the sounds.

3.2 Principal components of the cochlear correlations of sound textures

The distributions of the cochlear correlations between the envelope amplitudes for different

cochlear frequency bands computed for the corpus and pooled over all frequency bands, are

shown in Fig 6A. The distribution shows a number of interesting features. Firstly, anticorrela-

tions (that is, negative correlation coefficients) are extremely rare. That is perhaps unsurprising

given that positive correlations between frequency bands arise easily whenever a broadband

source modulates activity simultaneously in multiple adjacent frequency channels, but physical

mechanisms that would lead to anticorrelated sound envelopes in different frequency bands

are hard to envisage. Secondly relatively large correlations (R>0.5) are somewhat more com-

mon than smaller ones (R<0.5), although the full positive range of correlation coefficients is

very well represented. The median R value was 0.5536, and the 5th and 95th centile values

were 0.0052 and 0.9163 respectively. Fig 6B shows the distribution of correlations after pre-

processing for the PCA via z-scoring to achieve a more symmetric distribution.

Fig 6. Distribution of cochlear correlation parameter values for the entire corpus. (A) Distribution of cochlear correlations between the

envelope amplitudes of different cochlear frequency bands. The median, 5th and 95th centiles of the distribution (dotted lines) were 0.55, 0.0052

and 0.91 respectively. (B) Distribution of cochlear correlations after z-scoring.

https://doi.org/10.1371/journal.pone.0238960.g006
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The results of PCA on the correlation statistics are depicted in Fig 7. In Fig 7A we can see

that the first PC accounts for a remarkably high proportion of the variance, with 78%. The

second PC, in comparison, captures a comparatively modest 10% and the percent variance

explained by the remaining components is in the single digits. Despite the great diversity of the

corpus and the large number of correlation parameters, 88% of the variability in correlation

parameters can be accounted for by the first two principal components only. Fig 7C and 7D

Fig 7. Principal components of cochlear correlation parameters. (A) The first PC alone captures ~78% of variance, whereas the

second PC captures merely 10% and higher PCs capture only very small proportions of the variance. Together PC1 and PC2 show

cumulative variance of 88%, as shown by the red line. (B) Coordinates of all sound textures in our corpus along the principal

components of cochlear correlations. Colored dots represent four example sounds examined further in panels E-H. (C) PC1 shows

elevated correlation across all pairs of cochlear frequencies, and thus distinguishes “highly correlated” from “poorly correlated”

sounds. (D) PC2 captures whether correlations are more pronounced among low or high frequencies. (E-H) normalized

cochleagrams for the four sound texture examples highlighted in (B) by colored dots.

https://doi.org/10.1371/journal.pone.0238960.g007
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show the “shapes” of the first and second PCs for the correlation statistics. The units of the

color scale in the heatmaps (Fig 7C and 7D) are once again standard deviations of the correla-

tion values for the entire corpus. Only the upper triangular matrix of the PCs is shown, as these

are symmetric correlation matrices. The heatmaps of correlation statistics for the selected

sounds have been shown in Fig 8 to show a comparison of correlation statistics.

The first PC (Fig 7C) is essentially completely “flat”, and it will therefore distinguish tex-

tures for which envelope amplitudes are highly correlated between frequency bands from

those that are poorly correlated, irrespective of frequency. High correlations among frequen-

cies in sound textures typically arise if many broad-band clicks or noise-bursts contribute to

the texture, as these will create synchronized, abrupt changes in sound level across many

Fig 8. Heatmaps of the correlation statistics of selected sounds. (A) ‘Water Dripping’, with a very small PC1 value for cochlear correlations, has

substantially lower cochlear correlations throughout than ‘Applauding Crowd’ (B), which has a very high PC1 value. (C) and (D) show the

correlation matrices of ‘Fire Outside Woods’ and ‘Dragging Chair’ respectively, which lie near opposite ends of PC2 of the cochlear correlations.

For ‘Fire Outside Woods’ high correlations are largely confined to the upper frequency bands only, while for ‘Dragging Chair’, sizeable correlations

between high and low frequencies are also observed.

https://doi.org/10.1371/journal.pone.0238960.g008
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frequency bands. Thus, an applauding crowd, or pouring gravel onto a hard surface would

generate highly correlated sound textures. Examples of less correlated textures are generated

from sources that are more narrow band and which become active independently. The sound

of running water is a typical example. In running water, much of the sound is created from the

excitation of small air bubbles. Each bubble is a resonator with a more or less narrow band res-

onance that depends on the bubble’s size, and different sized bubbles may burst or become

otherwise excited at different times, creating sound patterns that are poorly correlated across

frequency.

Indeed, the first PC is very good at discriminating “applause”-like sounds from “water”-like

sounds, as can be appreciated from Fig 7B, 7E and 7F. Fig 7E and 7F show the cochleagrams

for a sample of dripping water sounds and the sound of an applauding crowd respectively.

These cochleagrams have been normalized for sound level in each band by z-scoring the enve-

lope amplitudes in each band independently. Correlations across cochlear frequency bands are

visible as vertical bands in these cochleagrams, and the normalization ensures that such bands

are not obscured by overall sound level differences in different sound frequency bands. The

“dripping water” sound shown in Fig 7E is relatively weakly correlated, as can be seen from its

low PC1 coordinate in Fig 7B (red dot), and while there are clear horizontal stripes in the high

frequency part of its cochleagram, there are also many prominent narrow band features, par-

ticularly in the lower frequencies. In contrast, the “applauding crowds” sound in Fig 7F has a

high PC1 correlation coordinate (Fig 7B, blue dot), and a lot of prominent vertical striping

throughout its cochleagram.

The second PC of the correlation parameters captures whether high correlations are more

prominent in lower or higher frequency bands only or not (see Fig 7D). Normalized cochlea-

grams of sound textures with very different PC2 coordinates are shown in Fig 7G and 7H. The

sound texture “Fire Outside Woods” (Fig 7G, green dot in Fig 7B) has a strongly negative PC2

coordinate, and indeed, high envelope correlations are prominent only in the higher frequency

bands. These features likely originate from broad band but somewhat high-pitched crackling

sounds which come about when small twigs in a fire burst, and which contribute to the charac-

teristic “fire” sound. In contrast, the “Dragging Chair” sound texture (Fig 7H, cyan dot in Fig

7B has a higher PC2 coordinate and correlations are more or less evenly distributed through-

out the frequency bands.

In summary, while the number of possible pairwise correlations between cochlear fre-

quency bands is very large (496 parameters per sound texture in our study), almost 78% of the

variance in these correlation statistics is captured by a PC that simply measures the extent to

which amplitude envelopes are correlated regardless of frequency band. A relatively modest

additional 10% of variance is explained by a PC that distinguishes sounds with correlations in

high frequencies from sounds with correlations in lower frequencies. Like marginals, correla-

tion statistics are therefore very highly redundant.

3.3 Principal components of the modulation power statistics of sound

textures

The distributions of the original and transformed (pre-processed) modulation power parame-

ters pooled over the entire corpus are shown in Fig 9. Fig 9A shows that the original modula-

tion power distribution for the sound corpus is highly asymmetric and positively skewed. Its

median was 0.0278, and its 5th and 95th centiles were 0.0037 and 0.1141 respectively. Log

transformation and z-scoring for PCA preprocessing made the distribution much more sym-

metric (Fig 9B).

The results of PCA on the modulation power parameters of our sound corpus is shown Fig 10.
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Analysis of the 640 dimensional modulation power statistics indicates that 71% of variabil-

ity of our sound corpus are explainable by the first two principal components as shown in Fig

10A. The distribution of our sound corpus along the first two PC dimensions is shown Fig

10B, while Fig 10C and 10D depict the “shapes” of first and second PCs respectively. PC1,

which captures 48% of the variance in modulation parameters, discriminates sounds which

are modulated at fast modulation frequencies (greater than ~60 Hz) from those that are slowly

modulated, and this again holds in a very similar manner across all cochlear frequency bands

(Fig 10C). Meanwhile, PC2 (shown in Fig 10D) accounts for 25% of the variance and is sensi-

tive to the extent to which sound textures exhibit amplitude modulations at “middling” modu-

lation frequencies of around 30–100 Hz.

We again illustrate these dimensions with examples chosen from the corpus which span

either the first or the second PC axes, and which are highlighted in Fig 10B with colored dots.

Thus “Gunshots” (red dot in Fig 10B, z-scored modulation spectra shown in Fig 10E) lies at

the low end of PC1, and the texture is dominated by modulation frequencies of typically less

than 10 Hz, while “Bees” (blue dot in Fig 10B, z-scored modulation spectra shown in Fig 10F)

is dominated by high modulation frequencies, typically above 100 Hz. The causes of the differ-

ent amplitude modulation rates for these two examples are intuitive: bees beat their wings at

much faster rates than users of firearms typically pull triggers. Meanwhile the texture sample

“applauding crowd” (Fig 10G, green dot in Fig 10B) has a PC2 coordinate of approximately

-1.8, and its modulation spectrum exhibits the expected dearth of modulations near 60 Hz,

while the texture “vacuum cleaner” (Fig 10H, cyan dot in Fig 10B) has a PC2 coordinate of ~

+1.5 and prominent ~60 Hz modulations. Thus, just like marginal and correlation parameters,

modulation parameters too exhibit a high degree of redundancy, so that almost three quarters

(71%) of the variance across the 640 parameters could be captured with just two PC coordi-

nates. And again, the PCs obtained lend themselves to simple interpretations, in this case fast

vs slow (for PC1), and with or without much modulation in a mid, ~60 Hz range (for PC2).

In summary, our PCA of texture feature classes has yielded a set of highly intuitive feature

dimensions, which could be described as sparse or not, correlated or not, and fast vs slow. To

Fig 9. Distribution of modulation power parameter values for the entire corpus. (A) Distribution of modulation power parameters for the

entire corpus. These are computed over the cochlear envelope amplitudes after modulation filtering. The median, 5th and 95th centiles of the

distribution (dotted lines) were 0.028, 0.0037 and 0.11 respectively. (B) Distribution of modulation power parameters after log transformation and

z-scoring.

https://doi.org/10.1371/journal.pone.0238960.g009
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provide the reader with audio examples which illustrate the effect of “moving through statisti-

cal texture feature space” along these principal dimensions, we have chosen one texture from

near the origin of our corpus entitled “sea waves with gurgling gutter”, and morphed it, shift-

ing it by one or two standard deviations either up or down along the PC dimensions described

Fig 10. Principal components of the modulation parameters. (A) Proportion variance explained by the first seven PCs

of modulation power parameters. Percentage of cumulative variance is indicated by the red line. (B) Distribution of

sound textures from our corpus along the first two PC coordinates for modulation power. The first two PCs capture

~71% of cumulative variance. (C, D) Shape of first and second PC respectively. PC1 discriminates sounds “slowly” from

“rapidly” modulating sounds, with a boundary near 60 Hz for all cochlear frequencies. PC2 discriminates sounds with

prominent modulations in a “mid range” (near 60 Hz) from sounds lacking such modulations. (E) Modulation spectrum

of sound texture sample “Gunshots”, showing prominent modulation at low rates. (F) Modulation spectrum for “bees”.

High modulation frequencies (> ~80 Hz) dominate. (G, H) The modulation spectrum for “Applauding Crowd” shows a

relative dearth of modulations near 60 Hz, while that for “Vacuum Cleaner” shows prominent ~60 Hz modulations.

https://doi.org/10.1371/journal.pone.0238960.g010
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in Figs 3C, 3D, 7C, 7D, 10C and 10D respectively. Interested readers can listen to these

morphed sound examples by visiting http://auditoryneuroscience.com/Textures/Morphing.

3.4 Correlations between feature classes

In this analysis, we have investigated the parameter distribution of the statistical features intro-

duced by [1], and analysed them separately and independently for each of the statistical feature

classes they introduced in their model, but it is worth considering that these feature classes

may not be statistically independent. To consider a specific example, one might expect a

“sparse” sound texture which scores high on the PC1 of the marginals skew and kurtosis due

to its intermittent sounds to also have more low frequencies in its sound envelope, and there-

fore to have negative coordinates for the modulation power PC1 described in Fig 10. It would

therefore not be surprising if there were significant correlations between PC coordinates for

different feature classes among the textures in our corpus. Fig 11 shows that this is indeed the

case.

Fig 11. Correlations between principal component coordinates. Top row: (A) PC1 of cochlear correlations and marginal statistics are

positively correlated (R = 0.45). (B) There is also a weak negative correlation (R = -0.27) between the PC1 of marginals and modulation

power, (C) and a weak negative correlation (R = -0.6) between the PC1 of modulation power and cochlear correlation. Bottom row: (D-F)

No significant pairwise correlations were observed between the PC2 coordinates marginals, cochlear correlation or modulation power.

https://doi.org/10.1371/journal.pone.0238960.g011
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In Fig 11(A)–11(C) we plot PC1 coordinates of the textures in our corpus for the three dif-

ferent texture classes against each other, and we note that all three pairings exhibit significant

correlations, ranging from quite weak but significant (Fig 11B: marginals vs modulation

power, R = -0.27) to substantial (Fig 11B: cochlear correlations vs modulation power). Some of

the correlations shown in Fig 11A–11C are “positive”, others “negative”, but when interpreting

the sign of these correlations one needs of course bear in mind that these signs depend on the

ultimately arbitrary direction of the principal component vectors that were returned by the

analysis (PC vectors pointing in the exact opposite direction would be equally valid and

would flip the sign of the correlation). If we take into account the directions of the PC vectors

obtained in our analysis we observe 1) that “sparse” sounds (high marginal PC1) tend to have

a larger amount of cochlear correlation (Fig 11A), 2) that “sparse” sounds tend to have more

slow amplitude modulations (Fig 11B), and that slowly modulated sounds tend to have more

cochlear correlation than rapidly modulated ones (Fig 11C). Note that correlations among

principal component coordinates do not extend to second principal components, as can be

seen in Fig 11D–11F.

3.5 Is the size of the corpus adequate to produce generalizable results?

One question that deserves consideration is whether our corpus of 200 sound recordings con-

stitutes a large and diverse enough sample of the diversity of natural sounds to allow us to

draw general conclusions. This question can be addressed empirically by subsampling. In

effect, we can simulate what results we would have obtained if our corpus had been substan-

tially smaller by repeating the analyses just described on only a subset of the corpus. By this

logic, we can split our corpus randomly into two subsets of 100 recordings each, analyse each

subset independently and compare the results obtained from each half corpus against each

other and against the results from the analysis of the whole corpus. We performed such an

analysis on eight random splits of our corpus and each time observed very similar results to

the ones just described (data not shown for brevity). This gives us a high degree of confidence

that our corpus is large enough to generate reliable results.

4 Discussion

The idea that statistical regularities may govern the types of sensory stimuli we encounter in

our environment has a long history, as does the idea that the sensory systems may be adapted

to some of these statistical features or regularities [11, 12]. This idea has arguably been much

more influential in vision research than in hearing research. For example, an attempt by [13]

to explain the centre-surround structure of primary cortex visual receptive fields as nature’s

solution to the problem of having to encode the structure of visual scenes in a sparse, and

hence energy-efficient, manner, has become enormously influential. (Note, however, that

more recent work by [14] proposes an intriguing alternative explanation, namely that cortical

receptive field structure not just of visual but also auditory cortical neurons may be optimized

to facilitate efficient prediction of future inputs, rather than efficient coding of current inputs).

An early example of work looking for statistical regularities specifically in the auditory

modality comes from [15], who already reported over 40 years ago that pitch and amplitude

fluctuations over long segments of music and speech streams recorded from the radio exhib-

ited a so-called 1/f distribution. Garcia-Lazaro and colleagues [16] later built on that observa-

tion and showed that auditory cortex neurons appear to be tuned to these statistics, in that

they respond more strongly and reproducibly to artificial sound streams that follow 1/f distri-

butions than to sounds which fluctuate according to slower (1/f0.5), or faster (1/f2) distribu-

tions. This was later shown to be an emergent property of the ascending auditory pathway, as
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inferior colliculus neurons generally prefer more rapidly fluctuating sounds, and neurons in

the medial geniculate exhibited no particular preference for fluctuations that were either faster

or slower than 1/f [17]. These studies are conceptually similar to earlier work by [7, 18], which

had described power-law statistics in amplitude distributions of natural sounds, and reported

evidence that midbrain neurons can encode synthetic sounds with higher accuracy (as quanti-

fied by mutual information), when these stimuli match the statistical parameters typical of

natural sounds. Other noteworthy examples of studies concerned with the distributions of

environmental sounds and their relevance to auditory processing include a well-known study

by [19], which presented an efficient coding argument alongside an analysis of natural sounds

to explain the cochlear frequency tuning characteristics, or a study by [20] which described the

low-pass nature of spectral and temporal modulations in natural sounds, in a manner corrobo-

rating and extending the findings by [15]. Also, there is work showing that the time constants

of adaptation in the auditory midbrain appear to be matched to the statistics of natural sounds

[21] and that the neural representation of the interaural time difference is consistent with it’s

efficient representation given the natural distribution of this auditory spatial cue [22, 23].

Despite this relatively long history, the literature on natural sound statistics and their rele-

vance to auditory processing and perception has remained relatively thin, perhaps because it is

still unclear which of the many statistical parameters that could in theory be devised or applied

to the study of natural sounds is most likely to provide highly useful and practical descriptors

of natural sounds. In this context, the study by [1] provided a fresh perspective. By being able

to generate recognizable, and often highly realistic, morphs of natural sound textures by

imposing the statistical parameters they had identified onto white noise, [1] demonstrated that

their chosen statistical parameter set comes close to being a set of “sufficient statistics”. The

fact that these sets of parameters fully describe many types of natural sound textures also raises

the intriguing hypothesis that neurons in the central auditory system may be tuned to statisti-

cal parameters similar to those identified in their study. Such tuning could easily explain our

perceptual ability to distinguish different sound textures with ease, even though these textures

are stochastic signals, and two recordings of the same type of sound texture are essentially

guaranteed to be very different sound waves. Identifying a set of statistical parameters that

come close to fully characterizing sound textures is therefore a very significant conceptual

advance. However, there are issues which make it difficult in practice to build on their work

with follow-on psychoacoustic and neurophysiological studies. One such issue is the fact that

the number of statistical parameter values used by [1] to characterize and synthesize textures is

very large, in the order of 1500 parameters in total for each texture. This parameter explosion

arises largely because marginals, correlations and envelope modulation spectra are computed

independently for every frequency band. In addition, the range of parameter values that one is

likely to encounter in natural or environmental soundscapes has not been described.

Ideally one would wish to build on [1] approach to devise a characterization of the statistical

features of natural sound textures which uses a far smaller number of numerical parameters

and identify their distributions across the ecological acoustic environment. We do not claim

that our analysis presented here has achieved this, but it has nevertheless shown that this may

be possible in principle, given the enormous redundancy of the statistical parameters we have

identified through our PCA of a corpus of environmental texture recordings which we have

analysed. Indeed, just two PC coefficients for marginals captured 66% of the variance of a 128

dimensional parameter space. Similarly, the first two PC coefficients of cochlear correlations

cover 88% of 496 dimensional parameter space, and the first two PC coefficients of modulation

power explain 71% of variance of a 640 dimensional modulation parameter space. Lower-

dimensional descriptions of natural sound statistics which nevertheless capture much of the

richness of the auditory environment should therefore be possible.
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Another noteworthy finding of our PCA analysis is that it illustrates the high degree to

which many statistical features tend to covary across frequency bands. Thus, the first PC

across the marginals showed very little variation in mean, variance, or kurtosis as a function of

cochlear frequency (Fig 3C), the first PC of cochlear correlations is effectively constant across

all pairs of frequency bands (Fig 7C), and the first and second PCs of the modulation parame-

ters show only coarse variation as a function of cochlear frequency. This observation is not

entirely novel, as [7] had already conducted a filter bank analysis on an ensemble of natural

sounds, and reported that temporal lower order statistics for a given sound sample tend to be

highly similar across frequency bands. Nevertheless, in combination with the many additional

values which we report here, this confirmatory finding is potentially quite useful. Thus, if

someone presented us with a “mystery texture sound”, reproduced at a unit RMS amplitude,

and asked us to guess what its statistical parameters are likely to be in some particular fre-

quency band, then we would be able to declare with some confidence, firstly, that the particular

frequency band probably does not matter, secondly, that its mean envelope amplitude has

a 90% chance of falling between ~0.0338 and 0.1618 with a maximum likelihood value of

~0.0905 (Fig 2A), the variance of the envelope amplitude has a 90% chance of falling between

~0.1292 and 0.7763 with a maximum likelihood of ~0.315 (Fig 2C), its skewness has a 90%

chance of falling between ~-1.8 and +3 with a maximum likelihood of ~0.6 (Fig 2E), and its

kurtosis is 90% likely to fall between ~1 and 18 (Fig 2G) with a maximum likelihood of ~5.

Similarly, envelopes in any two cochlear frequency channels are a priori more likely than not

to be substantially correlated, with an R> 0.55 (Fig 6). The data presented here can therefore

facilitate informed guesses about as yet unknown natural sounds that we may be presented

with in the future, and we hope that a better characterization of the statistical features of natu-

ral sounds will enable us to start asking better questions about the extent to which expectations

derived from these distributions may be “built into” the functional anatomy of our central

auditory nervous system.
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