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Highlights Impact and implications

� Advanced liver fibrosis is the main determinant of

mortality in patients with NASH.

� Non-hepatocyte pSTAT3 in NAFLD liver biopsies
correlated with fibrosis severity, inflammation and
progression to NASH.

� PSTAT3 was enriched in HPCs and SECs as deter-
mined by digital spatial profiling of NASH biopsies.

� STAT3 inhibition in mice resulted in reduced liver
fibrosis and depletion of HPCs, Kupffer cells and
plasmacytoid DCs.

� In conclusion, STAT3 activation in HPCs results in
their expansion and may mediate fibrogenesis in
NAFLD.
https://doi.org/10.1016/j.jhepr.2022.100628
Advanced liver fibrosis is the main determinant of
mortality in patients with NASH. This study showed
using liver biopsies from 133 patients with NAFLD,
that STAT3 activation in non-hepatocyte areas is
strongly associated with fibrosis severity, inflamma-
tion, and progression to NASH. STAT3 activation was
enriched in hepatic progenitor cells (HPCs) and sinu-
soidal endothelial cells (SECs), as determined by
innovative technologies interrogating the spatial dis-
tribution of pSTAT3. Finally, STAT3 inhibition in mice
resulted in reduced liver fibrosis and depletion of
HPCs, suggesting that STAT3 activation in HPCs con-
tributes to their expansion and fibrogenesis in NAFLD.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhepr.2022.100628&domain=pdf


Research article
Spatial molecular and cellular determinants of STAT3 activation
in liver fibrosis progression in non-alcoholic fatty liver disease
Jingjing Jiao,1,† Jessica I. Sanchez,1,† Omar A. Saldarriaga,2 Luisa M. Solis,3 David J. Tweardy,4 Dipen M. Maru,5

Heather L. Stevenson,2 Laura Beretta1,*

1Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; 2Department of Pathology, The
University of Texas Medical Branch, Galveston TX, USA; 3Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer
Center, Houston, TX, USA; 4Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer
Center, Houston, TX, USA; 5Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
JHEP Reports 2023. https://doi.org/10.1016/j.jhepr.2022.100628

Background & Aims: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its severe form, non-alcoholic stea-
tohepatitis (NASH), is increasing. Individuals with NASH often develop liver fibrosis and advanced liver fibrosis is the main
determinant of mortality in individuals with NASH. We and others have reported that STAT3 contributes to liver fibrosis and
hepatocellular carcinoma in mice.
Methods: Here, we explored whether STAT3 activation in hepatocyte and non-hepatocyte areas, measured by phospho-STAT3
(pSTAT3), is associated with liver fibrosis progression in 133 patients with NAFLD. We further characterized the molecular and
cellular determinants of STAT3 activation by integrating spatial distribution and transcriptomic changes in fibrotic NAFLD
livers.
Results: pSTAT3 scores in non-hepatocyte areas progressively increased with fibrosis severity (r = 0.53, p <0.001). Correlation
analyses between pSTAT3 scores and expression of 1,540 immune- and cancer-associated genes revealed a large effect of
STAT3 activation on gene expression changes in non-hepatocyte areas and confirmed a major role for STAT3 activation in
fibrogenesis. Digital spatial transcriptomic profiling was also performed on 13 regions selected in hepatocyte and non-
hepatocyte areas from four NAFLD liver biopsies with advanced fibrosis, using a customized panel of markers including
pSTAT3, PanCK+CK8/18, and CD45. The regions were further segmented based on positive or negative pSTAT3 staining. Cell
deconvolution analysis revealed that activated STAT3 was enriched in hepatic progenitor cells (HPCs) and sinusoidal endo-
thelial cells. Regression of liver fibrosis upon STAT3 inhibition in mice with NASH resulted in a reduction of HPCs, demon-
strating a direct role for STAT3 in HPC expansion.
Conclusion: Increased understanding of the spatial dependence of STAT3 signaling in NASH and liver fibrosis progression
could lead to novel targeted treatment approaches.
Impact and implications: Advanced liver fibrosis is the main determinant of mortality in patients with NASH. This study
showed using liver biopsies from 133 patients with NAFLD, that STAT3 activation in non-hepatocyte areas is strongly asso-
ciated with fibrosis severity, inflammation, and progression to NASH. STAT3 activation was enriched in hepatic progenitor
cells (HPCs) and sinusoidal endothelial cells (SECs), as determined by innovative technologies interrogating the spatial dis-
tribution of pSTAT3. Finally, STAT3 inhibition in mice resulted in reduced liver fibrosis and depletion of HPCs, suggesting that
STAT3 activation in HPCs contributes to their expansion and fibrogenesis in NAFLD.
© 2022 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL). This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
The prevalence of non-alcoholic fatty liver disease (NAFLD) is
increasing in the US.1 Non-alcoholic steatohepatitis (NASH), the
severe form of NAFLD, is now the second most common indi-
cation for liver transplantation.2 There is currently no approved
therapy for NAFLD, although several drugs are in the advanced
stages of development.3 Liver fibrosis is the most important
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predictor of mortality in patients with NAFLD and a major risk
factor for hepatocellular carcinoma (HCC).4 The risk of liver-
related mortality increases exponentially with fibrosis stage.5,6

The age-adjusted prevalence of NAFLD with liver fibrosis F2–F4
in the US population is 4.4%, reaching 18.3% in those with type 2
diabetes.7 It is therefore urgent to characterize in-depth the
molecular mechanisms that contribute to liver fibrosis progres-
sion in NAFLD and develop novel surveillance and prevention
strategies.

Signal transducer and activator of transcription 3 (STAT3) is a
transcription factor that belongs to the Janus Kinase-STAT
pathway. Phosphorylation at tyrosine Y705 is a key event in
canonical STAT3 activation, with multiple upstream inputs that

https://doi.org/10.1016/j.jhepr.2022.100628
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lead to the activation of STAT3.8 STAT3 downstream target
genes mediate STAT3’s role in development, normal physiology,
and pathology of many diseases, including cancers.9 STAT3
activation was detected in all rodent models of liver injury10

and in multiple human liver diseases, including steatosis,11

fibrosis/cirrhosis,12,13 and HCC.14,15 We and others have shown
that STAT3 activation contributes to HCC development and
growth in NASH- and obesity-related mouse models.16,17 We
have also reported the therapeutic effect of a small-molecule
STAT3 inhibitor, TTI-101 (previously named C188-9), in a pre-
clinical model of NASH-related HCC.17 STAT3 has therefore
emerged as a promising target for pharmacological intervention
in HCC and TTI-101 is currently in a phase I clinical trial for the
treatment of HCC and other solid tumors. We also reported that
the tumor growth inhibition was concomitant with improve-
ments in steatosis, inflammation, fibrosis, and liver injury
markers.17 Other STAT3 inhibitors have also been reported to
decrease liver fibrosis in preclinical models.12,18 However, to
date, no study has evaluated the activation of STAT3 and the
spatial expression of activated STAT3 in liver fibrosis in patients
with NAFLD. Thus, we explored whether STAT3 activation,
estimated by levels of STAT3 phosphorylated on Y705 (pSTAT3),
is associated with liver fibrosis severity, in a cohort of patients
with histologically characterized NAFLD. We further investi-
gated the spatial distribution of pSTAT3 and transcriptomic
changes in fibrotic NAFLD livers to characterize the molecular
and cellular determinants mediating STAT3-induced liver
fibrosis.
Patients and methods
Patients and liver biopsy samples
Archived formalin-fixed paraffin-embedded (FFPE) liver biopsies
from 133 patients with NAFLD, obtained through the percuta-
neous route using an 18-gauge core needle, were used for this
study. Participants were recruited from The University of Texas
Medical Branch at Galveston and written informed consent was
obtained from each participant in the study. Demographic and
clinical parameters from these patients are shown in Table S1. At
collection, biopsies were immediately placed into 10% buffered
formalin and processed using a TissueTekVIP tissue processor
(Sakura Finetek, Torrance, CA) prior to being paraffin-embedded.
Each biopsy was evaluated for fibrosis stage using the criteria
reported by Brunt et al.19 (F0: no fibrosis; F1: mild/moderate
zone three perisinusoidal fibrosis or portal/periportal fibrosis
only; F2: perisinusoidal and portal/periportal fibrosis; F3:
bridging fibrosis; F4: cirrhosis) and components of the NAFLD
activity score (NAS): steatosis (S0: <5%, S1: 5-33%, S2: >33-66%,
S3: >66%), lobular inflammation (I0: no foci; I1: <2 foci per 200x
field; I2: 2-4 foci per 200x field; I3: >4 foci per 200x field) and
hepatocyte ballooning (B0: none; B1: few ballooning cells; B2:
many cells with prominent ballooning). The study was con-
ducted according to the guidelines of the Declaration of Helsinki
and approved by the institutional review boards of the partici-
pating institutions.

IHC analysis of pSTAT3
Immunohistochemical (IHC) analysis was performed on an
automated immunostainer (Leica Bond III IHC Stainer, San Diego,
CA). Tissue sections (3 lm) were deparaffinized and underwent
heat-induced antigen retrieval using the Tris-EDTA buffer for
20 min. Phospho-STAT3 on Tyr705 (pSTAT3) antibody (Cell
JHEP Reports 2023
Signaling #9145) was used at 1:100 dilution. Digital images were
captured at 20x magnification using a whole slide scanner (Leica
Aperio ImageScope software) and saved in SVS. format (Aperio).
Portal triads and lobular inflammatory foci were annotated as
non-hepatocyte areas. Liver lobular areas excluding inflamma-
tory foci were annotated as hepatocyte areas. Quantification of
pSTAT3 (pSTAT3 score) was developed in a CLIA laboratory, using
nuclear V.9 algorithm (Aperio) and the product of the staining
intensity multiplied by the percentage of nuclei ([3 × % of 3+
cells] + [2 × % of 2+ cells] + [1 × % of 1+ cells]).

RNA isolation and targeted gene expression profiling
FFPE tissue blocks were sectioned at a thickness of 3 lm (2-3
sections per block). RNAwas extracted using the High Pure FFPET
RNA Isolation kit (Roche). The concentration of the extracted
RNA samples was measured with Qubit and quality control was
performed on a bioanalyzer using RNA6000 pico assay. The
percentage of RNA fragments above 200 nucleotides was used to
adjust RNA input. Gene expression was interrogated using the
PanCancer Immune Profiling and PanCancer Pathways panels
(NanoString Technologies) in the nCounter® SPRINT platform.
Gene expression data were analyzed using NanoString’s software
nSolver V.4.0 with Advanced Analysis 2.0 plugin. Data were
normalized using the Advanced Analysis tool which draws on the
NormqPCR R package.20

GeoMx DSP whole transcriptome workflow
Slides (4 lm) for four NAFLD liver biopsies with advanced fibrosis
were submitted for digital spatial profiler (DSP) whole tran-
scriptome sequencing (NanoString). The panel of morphology
markers was custom designed to include pSTAT3 in addition to
SYTO13 nuclear stain, PanCK+CK8/18, and CD45. Slides were
stained with RNAscope probes and GeoMx DSP oligo-conjugated
RNA detection probes and incubated overnight at 37 �C. Slides
were then washed with equal parts of 4x saline sodium citrate
(SSC) and 100% formamide, and dipped into 2xSSC-T (20xSSC,
10% tween-20) to allow coverslips to slide off. Slides were then
washed with 2xSSC and transferred to a humidity chamber for
antibody staining. Slides were covered with 200 ll Buffer W
(GeoMx RNA slide prep kit, Nanostring) and incubated at room
temperature for 30 min. Buffer W was removed and 200 ll of
morphology marker solution was applied to each tissue. Slides
were stained for 1 h in the humidity chamber at room temper-
ature and then washed with 2xSSC. Slides were immediately
loaded onto the GeoMX DSP slide holder with 6 ml of Buffer S
(GeoMx RNA slide prep kit, Nanostring). Files were configured to
associate RNA targets and GeoMx readout barcodes. The appro-
priate scan type and focus channel were selected to populate
fluorescence exposure settings. Scan areas were defined for high
magnification. A total of 13 regions of interest (ROIs) were
selected including five non-hepatocyte and eight hepatocyte
areas. The ROIs were further segmented based on pSTAT3-
positive or -negative staining. The DSP barcodes were UV-
cleaved and collected for each ROI and were subsequently
dispensed into a 96-well plate and counted. During the library
preparation, the DSP barcodes were tagged with their specific
ROI location and RNA target identification sequence, thus
matching them to their in situ hybridization probes and a unique
molecular identifier to deduplicate reads. Sequenced oligonu-
cleotides were then processed and imported back into the
GeoMx DSP platform for integration with the slide images and
ROI selections for spatially resolved RNA expression. FASTQ
2vol. 5 j 100628
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Fig. 1. Nuclear staining of pSTAT3. (A) In hepatocytes, and (B) in non-
hepatocyte areas, of representative liver biopsies from patients with NAFLD.
Scale bar: 200 Mm. NAFLD, non-alcoholic fatty liver disease; pSTAT3, phospho-
STAT3.
sequencing files were processed into digital count conversion
digital files using Nanostring’s GeoMx NGS Pipeline software.
Quality control checks and data analysis were performed in the
GeoMx DSP Data Analysis suite. Data were filtered by the limit of
quantitation and then normalized by the third quartile of all
counts.

Cell deconvolution analyses
Cell deconvolution analyses were generated in the GeoMx DSP
control center, using the spatialdecon geoscript (v1.1, updated
April 2021) available at Nanostring’s Geoscript Hub [https://
nanostring.com/products/geomx-digital-spatial-profiler/geo
script-hub/]. The analyses were run using the landscape adult
liver 10x matrix [https://github.com/Nanostring-Biostats/
CellProfileLibrary].21 CIBERSORTx [https://cibersortx.stanford.
edu/] was used to generate cell deconvolution analyses using
the adult mouse liver matrix [https://github.com/Nanostring-
Biostats/CellProfileLibrary]22 and RNA-sequencing data from
HepPten- NASH mouse livers treated with the STAT3 inhibitor
C188-9 or placebo for 4 weeks and reported in.17

Statistical analyses
Principal component analysis was performed with Euclidian-
based distance matrices, generated in R using log2-transformed
gene expression values and log10-transformed expression
values alongside permutational multivariate analysis of variance
test for statistical significance. QIAGEN’s Ingenuity® Pathway
Analysis (IPA) core analysis was performed on fibrosis-correlated
genes associated with STAT3 activation. Scatter plots and cell
deconvolution plots were generated in Graph Prism 9.0.0.
Results
Characteristics of individuals with NAFLD
The demographic and clinical parameters of the 133 patients
with NAFLD included in the study are summarized in Table S1.
The patients had a median age of 51 years and were predomi-
nantly females (65%). The large majority were obese (89%) with a
median BMI of 41.5, and 48% had type 2 diabetes. The majority
were White with 67% non-Hispanic White and 25% Hispanics.
The distribution of liver fibrosis stages was 2% F0, 33% F1, 28% F2,
14% F3, and 23% F4. Thirty-seven percent of participants had mild
steatosis (S1), 43% had moderate steatosis (S2) and 15% had
marked steatosis (S3). Of note, 4% of participants had cirrhosis
and burned-out NASH. The proportion of patients with no
ballooning (B0), few ballooning cells (B1), and prominent
ballooning (B2) was 32%, 51%, and 15%, respectively. The pro-
portion of patients with no lobular inflammation (I0), mild
inflammation (I1), moderate inflammation (I2), and strong
inflammation (I3) was 3%, 47%, 44%, and 5%, respectively.

Hepatic STAT3 activation and liver fibrosis severity
We first examined the relationship between liver histology fea-
tures and hepatic levels of STAT3 phosphorylation at tyrosine
705 (pSTAT3), a measurement of STAT3 activation. pSTAT3
staining was observed in both hepatocyte and non-hepatocyte
areas (Fig. 1). pSTAT3 staining was successfully scored in hepa-
tocyte and non-hepatocyte areas, in 126 biopsies. While pSTAT3
scores in hepatocytes did not significantly differ between liver
fibrosis stages, with a median ranging from 2.25 to 10.53, a small
positive correlation was observed between hepatocyte pSTAT3
scores and liver fibrosis stages (r = 0.24, p = 0.034) (Fig. 2A, upper
JHEP Reports 2023
panel). In contrast, non-hepatocyte pSTAT3 scores significantly
increased with fibrosis severity (Fig. 2A, lower panel). The me-
dian non-hepatocyte pSTAT3 scores were 4.68 in F1, 8.52 in F2,
11.33 in F3, and 13.69 in F4 (p <0.001). These results were further
confirmed by a strong positive correlation between non-
hepatocyte pSTAT3 scores and liver fibrosis stages (r = 0.53, p
<0.001). Non-hepatocyte pSTAT3 scores were also significantly
higher in patients with NASH compared to patients with NAFLD
without NASH (11.04 vs. 5.72, p = 0.017) (Fig. 2B, lower panel).
This result was confirmed by Spearman correlation analysis, as
NAS and non-hepatocyte pSTAT3 scores positively correlated (r =
0.22, p = 0.05). While no significant changes in non-hepatocyte
pSTAT3 scores were observed with steatosis severity (Fig. 2C,
lower panel), non-hepatocyte pSTAT3 scores positively corre-
lated with inflammation severity (r = 0.34, p = 0.002) (Fig. 2D,
lower panel) and ballooning (r=0.25, p = 0.02) (Fig. 2E, lower
panel). Non-hepatocyte pSTAT3 scores increased with inflam-
mation severity from 5.37 in participants with inflammation
scores I0-1, to 11.04 in those with I2 and 18.94 with I3 (p = 0.005)
(Fig. 2D, lower panel). Patients with prominent ballooning (B2)
had higher non-hepatocyte pSTAT3 scores (16.88) compared to
those with no ballooning (B0, 5.78) or mild ballooning (B1, 9.04)
(p = 0.020) (Fig. 2E, lower panel). There was no significant dif-
ference in hepatocyte pSTAT3 scores with NASH or severity of
steatosis, ballooning, and inflammation (Fig. 2B-E, upper panels).
Hepatic gene expression changes associated with STAT3
activation in patients with NAFLD
Using the targeted PanCancer Immune Profiling and PanCancer
Pathways panels, the expression of 770 immune-related genes
3vol. 5 j 100628
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Fig. 2. Quantification of pSTAT3 nuclear staining in hepatocytes (top) and non-hepatocyte areas (bottom) in liver biopsies. (A) With F1 to F4 fibrosis stages.
(B) With or without NASH. (C) With different degrees of steatosis. (D) With different degrees of inflammation. (E) With different degrees of ballooning. Log2-
transformed pSTAT3 scores were used. Error bar: interquartile range. Statistical significance was calculated using Kruskal–Wallis test (more than two groups)
or Mann-Whitney test (two groups). NASH, non-alcoholic steatohepatitis; pSTAT3, phospho-STAT3.
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and of 770 genes related to cancer-associated canonical path-
ways was successfully measured in RNA extracted from 101 of
the same archived liver biopsies. To determine the contribution
of STAT3 activation to the fibrogenic process in NAFLD, Spearman
JHEP Reports 2023
correlation analyses were performed between expression levels
of these genes and pSTAT3 scores. A total of 120 genes and 319
genes positively correlated with hepatocyte and non-hepatocyte
pSTAT3 scores, respectively, including 54 genes in common
4vol. 5 j 100628
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Fig. 3. Correlation between expression levels of selected genes and pSTAT3 scores. (A) With hepatocytes pSTAT3 scores. (B) With non-hepatocytes pSTAT3
scores. r, Spearman’s correlation coefficient. Log10-transformed pSTAT3 scores and log2-transformed gene expression data were used. pSTAT3, phospho-STAT3.
(Table S2, Fig. 3). In hepatocytes, a strong positive correlation (r
>0.5, p <0.001) was observed for TGF beta receptor 2 (TGFBR2), an
upstream activator of STAT3, the proto-oncogene c-MYC, a direct
target of STAT3 activation, thrombomodulin (THBD), C-X-C motif
chemokine receptor 4 (CXCR4/CD184), interleukin 15 receptor A
(IL15RA), IL1 receptor-associated kinase 3 (IRAK3), suppressor of
cytokine signaling 1 and 3 (SOCS1, SOCS3), interferon-gamma
receptor 1 (IFNGR1), fibroblast growth factor receptor 1 (FGFR1)
and IL4R. Other upstream activators of STAT3 or direct down-
stream targets of STAT3 activation that positively correlated with
pSTAT3 scores in hepatocytes are marked in Table S2. In non-
hepatocyte areas, a strong positive correlation (r >0.5, p
<0.001) was observed for 48 genes, including the direct down-
stream targets of STAT3 activation: Bcl-2 and hepatocyte growth
factor (HGF), the upstream activators of STAT3: platelet-derived
growth factor receptor beta (PDGFRB), colony stimulating factor
1 (CSF1) and the proto-oncogene LYN, the collagens COL1A2,
COL3A1 and COL5A2, the integrins ITGA5, ITGA9, ITGAX and ITGB1,
hepatic progenitor cell markers: activated leukocyte cell adhe-
sion molecule (ALCAM), osteopontin (SPP1) and interleukin
enhancer binding factor 3 (ILF3), genes involved in TGFb1
pathway: SMAD family member 2 (SMAD2), the proto-oncogene
ETS1, insulin-like growth factor II (IGFR2), C-X-C motif chemo-
kine ligand 6 (CXCL6) and galectin-3 (LGALS3), cell surface
markers CD46, CD47, CD53, CD58 and CD9, pro-fibrotic
JHEP Reports 2023
chemokines: CXCL10 and CXCL12, and the endothelial marker
PECAM1. Other upstream activators of STAT3 that positively
correlated with non-hepatocyte pSTAT3 scores are marked in
Table S2.

A similar analysis was performed for genes that negatively
correlated with pSTAT3 scores. A total of 62 genes and 283 genes
negatively correlated with hepatocyte and non-hepatocyte
pSTAT3 scores, respectively, including 32 genes in common
(Table S3, Fig. 3). In hepatocytes, strong negative correlations (r
<-0.5, p <0.001) were observed for S-phase kinase-associated
protein 2 (SKP2) and TNF superfamily member 10 (TNFSF10/
TRAIL). In non-hepatocyte areas, strong negative correlations (r
<-0.5, p <0.001) were observed for 30 genes, including cell sur-
face markers CEACAM8/CD66b and CD160, interleukins IL10,
IL12A, IL15, IL23A and IL27, TIR domain-containing adaptor pro-
tein (TIRAP), leukocyte receptor tyrosine kinase (LTK), ETS tran-
scription factor ELK1, and interferon-regulatory factors IRF3 and
IRF7.

IPA analysis confirmed that genes associated with STAT3
activation in non-hepatocyte areas were strongly enriched in the
hepatic fibrosis signaling pathway (p = 2.0x10-85). Other enriched
canonical pathways associated with STAT3 activation in non-
hepatocyte areas were PI3K/AKT signaling (p = 3.2x10-58); mac-
rophages, fibroblasts, and endothelial cells in inflammation
(p = 2.5x10-66); Th1 and Th2 activation pathway (p = 5.0x10-52);
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Table 1. IPA identified top canonical pathways and upstream regulators
from pSTAT3-correlated genes in non-hepatocyte areas.

Canonical pathways p values

Hepatic fibrosis signaling pathway 2.0 × 10-85

Macrophages, fibroblasts and endothelial cells in
inflammation

2.5 × 10-66

Glucocorticoid receptor signaling 2.0 × 10-63

PI3K/AKT signaling 3.2 × 10-58

Epithelial-mesenchymal transition 1.0 × 10-52

Th1 and Th2 activation pathway 5.0 × 10-52

Pattern recognition receptors (bacteria and viruses) 2.0 × 10-49

PTEN signaling 4.0 × 10-49

PKR in interferon induction and antiviral response 3.2 × 10-46

Tumor microenvironment pathway 2.5 × 10-44

Natural killer cell signaling 6.3 × 10-44

Senescence pathway 4.0 × 10-43

Upstream regulators
IFNG 1.5 × 10-72

TNF 1.6 × 10-69

TGFB1 2.3 × 10-58

IL2 1.4 × 10-52

IL10 2.8 × 10-51

CDKN2A 3.8 × 10-47

CD3 2.4 × 10-46

NR3C1 3.5 × 10-45

NFkB 2.2 × 10-42

STAT3 1.0 × 10-40

IL17A 1.4 × 10-39

CSF1 5.8 × 10-39

STAT1 6.5 × 10-39

IL4 1.1 × 10-38

IL6 1.9 × 10-38

Statistical significance was calculated using a right-tailed Fisher’s exact test.
IPA, Ingenuity® Pathway Analysis.
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PTEN signaling (p = 4.0x10-49); epithelial-mesenchymal transi-
tion (p = 1.0x10-52); and natural killer cell signaling (6.3x10-44)
(Table 1). Upstream regulators included in addition to STAT3, TNF
(p = 1.6x10-69), IFNc (p = 1.5x10-72), TGFb1 (p = 2.3x10-58), IL-2
(p = 1.4x10-52), IL10 (p = 2.8x10-51), CDKN2A (p = 3.8x10-47),
CD3 (p = 2.4x10-46), NR3C1 (p = 3.5x10-45), IL-17A (p = 1.4x10-39),
IL-4 (p = 1.1x10-38), and IL6 (p = 1.9x10-38) (Table 1).

Digital spatial transcriptome profiling of hepatocyte and non-
hepatocyte areas segmented by pSTAT3 staining
Spatial transcriptomic profiling was performed on 13 ROIs from
four NAFLD liver biopsies with advanced fibrosis, using a custom
panel of morphology markers composed of pSTAT3, PanCK+CK8/
18, and CD45 (Fig. 4A). The 13 ROIs were further segmented
based on pSTAT3-positive or -negative staining. Following
normalization and filtering by limit of quantitation, expression
data were obtained for 13,174 genes. Principal component anal-
ysis plots showed a clear separation between hepatocyte and
non-hepatocyte areas (Fig. 4B). While pSTAT3+ and pSTAT3- cells
within these areas did not fully separate, their expression pro-
files were still significantly different (p <0.001).

Cell deconvolution analysis using an adult liver matrix esti-
mated cell type distribution in pSTAT3+ and pSTAT3- hepatocyte
areas (Fig. 5A). As anticipated, hepatocytes were the main cell
type with no significant change between pSTAT3+ and pSTAT3-

(81.3% vs. 82.2%). Similarly, no difference was observed for he-
patic stellate cells (HSCs) (3.0% in pSTAT3+ and 3.7% in pSTAT3-).
In contrast, the proportion of hepatic progenitor cells (HPCs) was
significantly higher in pSTAT3+ hepatocyte areas (1.2%) compared
to pSTAT3- hepatocyte areas (0.15%) (fold change [FC] 8.0,
B
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Fig. 5. Cell deconvolution plots using adult liver matrix and ROI transcriptome profiles show changes of cell proportions. In (A) hepatocyte and (B) non-
hepatocyte areas. The mean of each cell proportion was calculated for hepatocyte and non-hepatocyte areas. Statistical significance was calculated using an
unpaired t test. ROI, region of interest.
p = 0.006). Central venous sinusoidal endothelial cells (SECs)
were also enriched in pSTAT3+ hepatocyte areas (9.4%) compared
to pSTAT3- hepatocyte areas (5.9%), although not significantly.
Central venous SECs were significantly enriched in pSTAT3+ non-
hepatocyte areas (8.9%) compared to pSTAT3- non-hepatocyte
areas (2.7%) (FC = 3.3, p = 0.048) (Fig. 5B). Periportal SECs were
also enriched in pSTAT3+ non-hepatocyte areas compared to
pSTAT3- non-hepatocyte areas (15.3% vs. 5%), although not
significantly. For immune cells, ab T cells were significantly
depleted in pSTAT3+ non-hepatocyte areas (0.6% vs. 22.1%, FC =
-36.7, p = 0.018), suggesting no detection of pSTAT3 in these cells.
pSTAT3 was detected but not significantly enriched in cd T cells,
Kupffer cells (inflammatory and non-inflammatory macro-
phages), mature B cells, natural killer cells and plasma B cells
(Fig. 5B).
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Cell distribution changes in mouse NASH livers upon STAT3
inhibition
To determine whether STAT3 activation contributed to self-
renewal of HPCs or liver SECs in NASH livers, cell deconvolu-
tion analysis using a mouse liver matrix was performed on
transcriptomic profiles we previously reported,19 from NASH
livers of HepPten- mice treated for 4 weeks with C188-8, a STAT3
inhibitor, or placebo. While no difference was observed for liver
SECs (8.1% vs. 8.7%), HPCs were significantly depleted upon C188-
9 treatment (3.7% vs. 5.8%) (FC = -1.6, p = 0.048) (Fig. 6). Kupffer
cells (2.7% vs. 5.4%; FC = -2.0, p <0.001) and plasmacytoid den-
dritic cells (0.5% vs. 1.8%; FC = -3.6, p <0.001) were also depleted
upon C188-8 treatment. In addition, while the overall percentage
of hepatocytes was unchanged, C188-9 treatment resulted in the
reduction of pericentral hepatocytes (30.1% vs. 38.6%) (FC = -1.3, p
7vol. 5 j 100628
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<0.001) and concomitant expansion of periportal hepatocytes
(52.6% vs. 37.7%) (FC = 1.4, p <0.001).
Discussion
STAT3 is strongly associated with liver injury, inflammation,
regeneration, and HCC development.23,24 We have also reported
a role of STAT3 in liver fibrosis in mice.17 While it was suggested
that STAT3 signaling drives HSC activation to promote liver
fibrosis,25,26 molecular and cellular spatial studies of STAT3 in
human NASH are lacking. Herein, we demonstrated that STAT3
activation strongly correlates with liver fibrosis severity in pa-
tients with NAFLD. The correlation was stronger for STAT3 acti-
vation in cells other than hepatocytes.

A major role of STAT3 activation on hepatic fibrosis was
further confirmed by IPA of genes whose expression correlated
with STAT3 activation in non-hepatocyte areas. Very strong
positive correlations with STAT3 activation were observed for
several collagens (COL1A2, COL3A1, COL5A2), integrins (ITGA5,
ITGA9, ITGAX, ITGB1), and pro-fibrotic chemokines (CXCL10,
CXCL12). IPA also suggested that activation of TGFb signaling was
a major mediator of pro-fibrotic STAT3 activity. Indeed, strong
correlations were observed with many genes in this pathway,
including TGFBR2, SMAD2, ETS1, IGFR2, CXCL6, and galectin-3.
Aberrant TGFb signaling in conjunction with trans-
differentiation of HSCs into fibrogenic myofibroblasts plays a
central role in liver fibrosis.27 SMAD proteins are pivotal intra-
cellular effectors of TGFb in hepatic fibrosis.28 Galectin-3 is
upregulated in human fibrotic liver disease.29 In galectin-3 null
mice, hepatic fibrosis following liver injury is reduced and TGFb
fails to activate HSCs.30 It has been previously reported that
cooperation of STAT3 and TGFb1 in HSCs exacerbates liver injury
and fibrosis31 and that STAT3 activation is essential for TGFb
activation of HSCs.32–34 In our study, STAT3 activation was
detected in approximately half of the HSCs and this activation
JHEP Reports 2023
was not required for their proliferation or survival. Future ex-
periments should further characterize these two HSC
subpopulations.

Two cell surface markers that strongly correlated with STAT3
activation in non-hepatocyte areas were the tetraspanin CD9 and
the innate immune regulator CD47. Anti-CD47 antibody treat-
ment attenuates liver inflammation and fibrosis in NASH mouse
models.35 CD9 is an important cell surface marker associated
with liver fibrosis. Single-cell analysis of cirrhotic livers identi-
fied a scar-associated TREM2+CD9+ subpopulation of macro-
phages, which expands in liver fibrosis and is pro-fibrogenic.36

In non-hepatocyte areas, strong negative correlations with
STAT3 activation were observed for IL-10 and IL-15, two major
anti-inflammatory and anti-fibrotic cytokines in the liver. IL-10
was also found as an upstream regulator by IPA, suggesting an
important role in STAT3-mediated liver fibrosis. Mesenchymal
stem cells overexpressing IL-10 inhibited liver fibrosis in mice.37

Growing evidence suggests an important role of B cells in the
development of NAFLD. B cell harboring but antibody-deficient
IgMi mice were completely protected from the development of
hepatic steatosis, inflammation, and fibrosis upon a high-fat diet
(HFD) feeding. HFD reduced the number of regulatory B cells and
IL-10 production in the liver.38

We found a strong correlation between expression of the
endothelial cell marker PECAM1 and STAT3 activation in non-
hepatocyte areas. Digital spatial profiling confirmed strong
levels of activated STAT3 in liver SECs (LSECs). LSECs are known
actors in the fibrogenic response to injury. Activated HSCs, LSECs,
and Kupffer cells are responsible for sinusoidal capillarization
and perisinusoidal matrix deposition, promoting fibro-
genesis.39,40 STAT3 activation also strongly correlated with the
expression of HPC markers such as ALCAM, SPP1, ILF3, and
CXCR4/CD184. Interestingly, activated STAT3 was specifically
enriched in HPCs as shown by digital spatial profiling, suggesting
that STAT3 activation may lead to either dedifferentiation of
8vol. 5 j 100628



hepatocytes or increased cell expansion of HPCs. In the context of
HCC, several studies have reported that STAT3 signaling pro-
motes the expansion of tumor-initiating cell self-renewal and
increases the stemness of HCC stem cells.41–45

To determine whether STAT3 activation contributes to HPC
and LSEC expansion in NASH livers, we performed deconvo-
lution analysis using a mouse adult liver matrix of tran-
scriptomic data we previously generated on the liver from
HepPten- mice treated for four weeks with C188-9, a STAT3
inhibitor, or placebo.17 This analysis revealed that C188-9
treatment results in depletion of HPCs, demonstrating that
STAT3 activation in HPCs induces their expansion. We and
others previously showed that the proliferation of HPCs is
important in HSC activation. It was suggested that increased
fibrosis likely occurs by primary progenitor expansion/prolif-
eration and secondary fibrotic myofibroblast expansion, in
close contact with progenitors.46,47 We reported that anti-miR-
21 treatment reduced liver fibrosis with a concomitant
reduction of CD24+ liver progenitor cells.48

Kupffer cells and plasmacytoid dendritic cells were also
depleted upon C188-8 treatment. The Kupffer cells, labeled as
inflammatory and non-inflammatory macrophages in the human
liver matrix, we used for deconvolution analysis were not
enriched for pSTAT3 in the human liver biopsies. Plasmacytoid
dendritic cells were not represented in the human liver matrix.
Major limitations of the analysis of immune cells are the lack of
canonical markers and standardized classification of immune
cells in the liver. Translating mice immune cell data to humans is
JHEP Reports 2023
also challenging. Finally, there is only partial overlap of the im-
mune cells included in the currently available human and mouse
liver matrices.

While the overall percentage of hepatocytes was unchanged,
C188-9 treatment resulted in the reduction of pericentral hepa-
tocytes and concomitant expansion of periportal hepatocytes.
Certain liver injuries are zone-dependent, with NAFLD for
example, originating in pericentral regions of the lobule in
adults.49 NAFLD and NASH/cirrhosis initially develop in peri-
central cells and progress toward periportal regions. Pericentral
hepatocytes have increased expression of HPC markers and can
replace most hepatocytes in the lobule during homeostatic
renewal. LSECs in pericentral regions are also more susceptible to
damage associated with cirrhosis compared to periportal LSECs.

Whether these findings are specific to patients with NAFLD or
reflect a general mechanism of disease progression should be
investigated in follow-up studies. Understanding in particular,
the common and distinct molecular and cellular determinants of
liver fibrosis progression in the context of NAFLD, alcoholic
steatohepatitis and viral hepatitis, would be highly valuable.

This study strongly increases our understanding of the spatial
dependence of main signaling pathways such as STAT3 in NASH
and liver fibrosis progression. It also increases our understanding
of the role of specific cell types, such as HPCs, in liver fibrosis
progression. Such information could improve targeted treatment
approaches. In addition, future digital spatial profiler experi-
ments would benefit from using different sets of liver cell type
markers, such as HSC, HPC and SEC markers.
Abbreviations
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