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The simulation of stochastic reaction–diffusion systems using fine-grained
representations can become computationally prohibitive when particle
numbers become large. If particle numbers are sufficiently high then it may
be possible to ignore stochastic fluctuations and use a more efficient coarse-
grained simulation approach. Nevertheless, for multiscale systems which
exhibit significant spatial variation in concentration, a coarse-grained approach
may not be appropriate throughout the simulation domain. Such scenarios
suggest a hybrid paradigm in which a computationally cheap, coarse-grained
model is coupled to a more expensive, but more detailed fine-grained model,
enabling the accurate simulation of the fine-scale dynamics at a reasonable
computational cost. In this paper, in order to couple two representations of
reaction–diffusion at distinct spatial scales, we allow them to overlap in a
‘blending region’. Both modelling paradigms provide a valid representation
of the particle density in this region. From one end of the blending region
to the other, control of the implementation of diffusion is passed from one
modelling paradigm to another through the use of complementary ‘blending
functions’which scale up or down the contribution of eachmodel to the overall
diffusion. We establish the reliability of our novel hybrid paradigm by
demonstrating its simulation on four exemplar reaction–diffusion scenarios.
1. Introduction
Many biological and physical systems are inherently multiscale in nature [1–6].
The modelling of such systems, therefore, requires multiscale representations
which, by their nature, are not well captured using a single modelling para-
digm. There is a trade-off between, on the one hand, ensuring that models
are sufficiently detailed that they accurately capture known biological and
physical phenomena of interest and, on the other, achieving model outputs in
a timely manner.

The appropriate representation of travelling waves of cells in developmental
or maintenance contexts is a classic example of a multiscale phenomenon
for which the trade-off between cheap-but-coarse and expensive-but-accurate
modelling paradigms is evident. For a pulled wavefront, the wave speed is
determined by the low-density dynamics at the front of the wave [7]. It is, there-
fore, important to represent cell movement and proliferation dynamics at the
front using an appropriately detailed model. A model that is too coarse may
neglect important features of the real process. Behind the wave, cell density is
higher, making a fine-grained representation more computationally expensive.
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Since the fine details are less important in this region, we can
substitute the more detailed model for a cheaper, coarser
representation. Coupling modelling regimes at different
scales is an open question to which a variety of solutions
have previously been proposed [1,8–33]. For more details
on the different types of hybrid methods available, we
direct the interested reader to Smith & Yates [34].

In this paper, we focus on the three main modelling
paradigms used for representing reaction–diffusion systems.
At the coarsest scale (which we refer to as the macroscopic
scale), we represent the concentration of reactant species by
partial differential equations (PDEs) [35–41]. For validity,
these models typically require high concentrations since
assumptions underlying the use of PDEs break down for low
copy numbers. Continuum models such as these can usually
be simulated extremely efficiently using a wide variety of
well-established numerical methods; however, they lack the
realism of finer-scale models.

At the next level down, the mesoscopic scale, reactant
species are represented as individual particles and are
compartmentalized into contiguous, non-overlapping subdivi-
sions of space [4,42–48]. Particles are assumed to bewell-mixed
within a compartment and can interact with others in their
compartment. These models can capture stochasticity in the
behaviour of the particles and can be simulated efficiently
when copy numbers are low. However, when particle numbers
become large, simulations can become prohibitively slow in
comparison to macroscale representations. They also lack the
accuracy of more fine-grained models since the individual
particle identities and positions are not retained.

The finest representation we consider is a Brownian
dynamics model at the microscopic scale [49–52]. In these
models, the trajectories of all particles are simulated (typically
using a discrete fixed time-step paradigm) in continuous space
[49,53–55]. For a system of N particles, an appropriate simu-
lation algorithm must generate ZN Gaussian random
variables (where Z is the dimension of the system) in order to
update the particle positions. For simulations incorporating
pairwise interactions, N2 pairwise distances must also be
updated at each time step.1 Consequently, these methods can
be extremely computationally intensive. They do, however,
provide a comprehensive and accurate individual represen-
tation capable of incorporating stochasticity into particle
positions and interaction times. More details on the specific
implementation of each of these three modelling paradigms
will be given in the next section.

In general, the aim of a hybrid method is to exploit the
complementary advantages and negate the complementary
weaknesses of models at different scales. Using a coarse, cheap
representation in a region of space in which particle density is
high allows for significant computational savings in comparison
to the purely fine-scale simulation. Conversely, implementing a
fine-scale individual-based representation in regions in which
low-copy-number effects are of paramount importance can
give significant improvements in accuracy in comparison to
coarser models. Consequently, one way to achieve accurate
simulations that are also computationally tractable is to combine
the models’ strengths in a hybrid representation.

In this paper, we propose a novel hybrid method for coup-
ling PDEs at the macroscale to compartment-based models at
the mesoscale and a related novel hybrid method for coupling
compartment-based models at the mesoscale to Brownian
dynamics models at the microscale. In each case, the coarser
regime is coupled to the finer regime through an overlap
region. In this overlap region, which from now on we will
refer to as the blending region, both representations of the
reaction–diffusion dynamics are valid. In the blending
region, the strength of diffusion for each model is determined
by a spatially varying blending function, which is prescribed
to be unity on one end of the overlap region and zero on the
other. The blending functions for the two models are comp-
lementary so that the sum of the two blending functions at
any point in the domain is equal to unity. These functions con-
trol the relative contribution of each model to the diffusion
dynamics. This approach is reminiscent of that taken by
Duncan et al. [57] in a non-spatial context. In Duncan et al.
[57], two different non-spatial models for stochastic chemical
kinetics were coupled in copy-number space through a
blending region in which both models coexisted.

The remainder of the paper is organized as follows. In §2,
we describe the individual reaction–diffusion models that we
couple together and provide a brief justification for why the
models can be considered ‘equivalent’ and hence are suitable
candidates for coupling. In §3, we present the mechanics of
the two-hybrid blending methods and prove their effective-
ness, in §4, by simulating a number of test scenarios and
determining whether any bias is introduced by the blending
methods. We conclude in §5 with a short summary of our
findings and suggestions for extensions to this work.
2. Modelling at different scales
Within this section, we describe the three different modelling
scales that we will couple in order to create two distinct
spatially coupled hybrid methods. In §2.1, we describe a gen-
eral macroscale PDE for reaction–diffusion systems with a
single species, as well as different numerical approaches for
its solution. Section 2.2 contains a discussion of mesoscale
compartment-based models and their simulation, while in
§2.3 we introduce the microscale individual-based dynamics.
In §2.4, we briefly discuss how each of these representations
of reaction–diffusion processes at different scales might be
considered to be equivalent in an appropriate limit.
2.1. Macroscopic representation
Partial differential equations, the macroscale models we
employ in this paper, can be considered to be appropriate
representations of the mean behaviour of particles at high
concentrations. The primary advantage of the PDE represen-
tation is that there exists a wide range of well-established
and well-understood tools for their numerical simulation.
In rare, simple cases, PDEs are amenable to mathematical
analysis. However, they typically fail to model low-copy-
number behaviour.

A generic PDE which describes the spatio-temporal
evolution of the concentration of a single species, c(x, t), at
position x and time t takes the form

@c
@t

(x, t) ¼ r � (D(x)rc(x, t))þR(c(x, t), x, t),

x [ RZ, t [ [0, T], (2:1)

where consistent initial and boundary conditions need also to
be specified. Here, reactions are represented by the function
R, Z is the dimension of space and T is the final time to
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which we wish to evolve the solution. Note that the spatially
varying diffusion coefficient, represented by D(x), sits inside
the first derivative, but not the second. As noted by van
Kampen [58], there is no canonical choice of operator describ-
ing spatially dependent diffusion. In physical applications,
the form of the macroscopic diffusion equation should be
dictated by the underlying microscopic or mesoscopic
process. Since the spatial dependence of the diffusion
coefficient in our hybrid methods is introduced purely as a
modelling convenience and does not correspond to any
microscopic or mesoscopic ground truth, we are effectively
free to choose the form of the diffusion operator. We adopt
the form considered by Benson et al. [59] (see equation
(2.1)). We choose the transition rates in the corresponding
compartment-based representation (see §2.2) and the drift
and diffusion coefficients of the corresponding microscopic
position evolution equation (see §2.3) so that diffusion in
the overlap regions of the hybrid methods satisfies the
same form of non-constant coefficient diffusion equation.

For the majority of this paper, we focus on the following
one-dimensional PDE in the region Ω = [a, b]:

@c
@t

¼ @

@x
D(x)

@c
@x

� �
þR(c(x, t)), (2:2)

with constant flux boundary conditions

D(a)
@c
@x

���
x¼a

¼ Ja, D(b)
@c
@x

���
x¼b

¼ Jb: (2:3)

For a discussion of the implementation of the numerical
solution of the PDEs employed in this paper please refer to
appendix A. Note that there is no explicit spatial dependence
in the reaction term in equation (2.2).
2.2. Compartment-based representation
Compartment-based methods are coarse-grained stochastic
representations. The spatial domain is typically divided
into compartments, each of size h, in which particles are
assumed to be well-mixed. The reaction–diffusion dynamics
are characterized by a set of possible events. Events are
either reactions, in which particles can interact with others
within their own compartment according to some prespeci-
fied reaction rates, or jumps to adjacent compartments with
rates which depend on the macroscopic diffusion coefficient,
D(x), and the compartment size, h. Specifically, in order to
capture diffusion which corresponds to the macroscopic
equation (2.1) we must choose the rates of jumping to be
different depending on the direction of the jump (see
equations (B 1) and (B 2) for more detail).

Throughout this paper, we refer to models at this scale as
mesoscopic or compartment-based. For a discussion of the
implementation of the numerical simulation of the compart-
ment-based models employed in this paper please refer to
appendix B.
2.3. Brownian-based representation
Individual-based methods require the recording and
updating of large numbers of particles’ positions. Relative
positions for each pair of particles must also be maintained
at every step if higher-order reactions (higher than first
order) or volume exclusion are to be modelled. For large par-
ticle numbers, N, the O(N2) computational complexity means
that individual-based simulation algorithms can become
extremely expensive.2

In what follows we employ a fixed-time-step algorithm,
although we note that continuous-time algorithms for
Brownian reaction–diffusion dynamics are also available
[55]. The evolution of particle i’s position, yi(t), between
times t and t + Δtb in the case of space-dependent diffusion
(corresponding to PDE (2.2) and compartment-based jump-
rates given by equations (B1) and (B2)) can be simulated
according to the following discrete-time update equation:

yi(tþ Dtb) ¼ yi(t)þ Dtb
dD(x)
dx

�����
x¼yi(t)

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D(yi(t))Dtb

p
ji, (2:4)

where ξi∼N(0, 1) is a Gaussian random variable with mean 0
and variance 1. If required, reactions can be implemented
according to a variety of different algorithms [53,55]. In this
paper, we employ the l�r method [51]. If two eligible
particles come within a reaction radius, ρ, of each other
they interact with a given rate, λ, according to the appropriate
reaction pathway.

We refer to these models at this scale as off-lattice,
microscopic or individual-based models in what follows.
2.4. Connections between models at different scales
In attempting to couple together representations of the
same phenomenon at different scales we need to ensure
that, under certain assumptions, they are representations of
the same process. Pioneering work in establishing the con-
nection between stochastic and deterministic models was
undertaken by [60–62]. In this section, we conci-
sely summarize the ways in which the models outlined
above can be considered to be equivalent and direct
the interested reader to resources which contain more
detailed arguments.

In order to transition from the mesoscale to the macroscale,
we can first use the reaction–diffusion master equation to
derive the deterministic mean-field representation of the
compartment-based particle numbers [42,51,63]. It should be
noted that for second- and higher-order reactions, the mean-
field equations are only approximations of the true mean
behaviour of the stochastic system [64]. Taking the diffusive
limit of the mean-field equations gives a corresponding
reaction–diffusion PDE.

The Fokker–Planck equation can be used to connect a
microscale stochastic differential equation (SDE) model of
diffusion to a macroscale model describing the evolution
of the probability density of a particle’s position [64,65]. For
example, the canonical diffusion equation is the macroscopic
Fokker–Planck equation corresponding to non-interacting
particles undergoing simple Brownian motion.

Although we do not use this macroscopic–microscopic
coupling directly in this work, we employ it indirectly in
order to link the microscopic and mesoscopic descriptions
together through their connection to the same PDE. Alterna-
tively, first-passage time theory can be applied to a particle
which moves subject to a given SDE in order to derive
jump rates between neighbouring compartments in a com-
partment-based representation [47,66]. Connections between
the models at microscale and mesoscale are stated more
rigorously by Isaacson [67].
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3. Hybrid blending algorithms
In this section, we discuss the two main algorithms of this
paper. In particular, in §3.1, we present the central unifying
idea behind both of our hybrid methods. The methods can
both be understood as operator-splitting algorithms in which,
in a central overlap region between the two regimes, diffusion
is dealt with by both regimes using spatially varying diffusion
coefficients.Wediscuss how to couple themethods discussed in
§2 in order to accommodate this split-diffusion paradigm. In
§3.2, we give the specific details of how to convert mass from
onemodelling regime to another to ensure bothmodels are syn-
chronized and valid representations of the particle density in
the blending region. We then present, in §3.3, a generic algor-
ithm for coupling the PDE with the compartment-based
approach, as well as a similarly general algorithm for coupling
the compartment-based approach with Brownian dynamics.
We emphasize that the generic methods we present for
coupling two regimes are independent of the numerical
implementations chosen to simulate each regime. However,
for ease of use and reproducibility, we have provided details
of the numerical implementationswe chose in appendices A–C.
563
3.1. Hybrid modelling interpreted as a splitting
algorithm

In order to illustrate the conceptual framework behind our
algorithms, we consider the following constant coefficient
diffusion PDE in Ω = [a, b]:

@c
@t

¼ @

@x
D
@c
@x

� �
, (3:1)

with the following zero-flux boundary conditions:

D
@c
@x

���
x¼a

¼ D
@c
@x

���
x¼b

¼ 0: (3:2)

Divide the domain, Ω, into three subdomains Ω1 = [a, I1],
Ω2 = [I1, I2], Ω3 = [I2, b] and write the constant diffusion
coefficient D =D1(x) +D2(x), where

D1(x) ¼
D, a � x , I1,
f1(x), I1 � x , I2,
0, I2 � x � b

8<
: (3:3)

and

D2(x) ¼
0, a � x , I1,
f2(x), I1 � x , I2,
D, I2 � x � b,

8<
: (3:4)

where f1 and f2 are monotonically decreasing/increasing
functions, respectively, with f1(x) =D− f2(x) and f1(I1) = f2(I2) =
D and f1(I2) = f2(I1) = 0 in order to ensure continuity of D1 and
D2 across Ω.

Equation (3.1) can now be written as

@c
@t

¼ @

@x
D1(x)

@c
@x

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

1

þ @

@x
D2(x)

@c
@x

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

2

, (3:5)

with corresponding boundary conditions

(D1(x)þD2(x))
@c
@x

���
x¼a

¼ D
@c
@x

���
x¼a

¼ 0 and

(D1(x)þD2(x))
@c
@x

���
x¼b

¼ D
@c
@x

���
x¼b

¼ 0:
(3:6)
In addition, we specify the initial condition c(x, 0) = c0(x). It is
straightforward to show that, because D1(x) = 0 in [I2, b], the
operator indicated by 1 in equation (3.5) does not influence
the concentration of c in that region. In a similar way, because
D2(x) = 0 in [a, I1], the operator indicated by 2 in equation (3.5)
does not influence the concentration of c in that region. Now let
fð1Þ
t , fð2Þ

t be the flow maps associated with the propagation of
the operators 1 and 2 in equation (3.5) until time τ. Specifically,
this means that the solution of the following equations:

@c(1)

@t
¼ @

@x
D1(x)

@c(1)

@x

� �
,

D1(a)
@c(1)

@x

���
x¼a

¼ D1(I2)
@c(1)

@x

���
x¼I2

¼ 0
(3:7a)

and

@c(2)

@t
¼ @

@x
D2(x)

@c(2)

@x

� �
,

D2(I1)
@c(2)

@x

���
x¼I1

¼ D2(b)
@c(2)

@x

���
x¼b

¼ 0,
(3:7b)

subject to initial conditions c(i)(x, 0) ¼ c(i)0 (x), can be written as
c(i)(x, t) ¼ f(i)

t (c
(i)
0 )(x), for i ¼ 1, 2, respectively.3

The idea behind splittingmethods is that one can nowobtain
an approximation for the solution of equation (3.5) at time τ by
using an appropriate composition of the flow maps f(1)

t and
f(2)
t . In particular, the simplest splitting method is given by

c(x, t) � (f(1)
t � f(2)

t )(c0)(x), (3:8)

where we note that the ordering of the composition is
unimportant.

At first glance, this seems like an unnecessarily complicated
approach for obtaining an approximation for the solution of
equation (3.1). However, choosing the flow maps fð1Þ

t and fð2Þ
t

to represent propagation operators for two different model
types allows us to seamlessly blend the distinct numerical
update rules of the different modelling regimes described in
§2. For example, when coupling the PDE to the compartment-
based model, fð1Þ

t might represent an update operator for the
numerical solution of thePDEup to time τ, whilefð2Þ

t might rep-
resent steps of the position-jumpMarkov processes described in
§2.2 up until time τ.

Owing to the properties of the diffusion functions Di(x),
the two models only coexist in the blending region [I1, I2].
Therefore, in applying the operator splitting update illustrated
in equation (3.8), we only need toworry about how the concen-
tration of the numerical solution of the PDE in the blending
region translates to particle numbers for the compartment-
based approach and vice versa. We must ensure that any PDE
solution update in the blending region implemented by oper-
ator fð1Þ

t is also reflected in the compartment-based solution.
Equivalently, any update to the compartment-based solution
in the blending region implemented via fð2Þ

t must be reflected
in the PDE solution. In a similar way, when coupling the com-
partment-based model to Brownian dynamics, one need only
worry about how the particle numbers for the compartment-
based approach in the blending region impact on the particle
positions of the off-lattice Brownian dynamics and vice versa.
Outside the two blending regimes, the two representations
are effectively decoupled in terms of their update operators.
In figure 1, we provide a schematic representation of (a) the
PDE–compartment hybrid and (b) the compartment–Brownian
hybrid for illustrative purposes.



a I1 I2 b a I1 I2 b

(a) (b)

Figure 1. Schematic of (a) the PDE–compartment hybrid and (b) the compartment–Brownian hybrid. In (a), the green curve in the green region [a, I1] represents the
PDE solution in the purely PDE region of the domain. The red curve and the red boxes represent equivalent PDE- and compartment-based representations of the mass in
the red blending region. The blue boxes in the blue region of the domain represent the number of particles in each compartment in the purely compartment region of
the domain. In (b), the blue boxes in the blue region of the domain represent the number of particles in each compartment in the purely compartment region of the
domain. The red boxes and the red circles represent equivalent compartment- and Brownian-based representations of the mass in the red blending region. The yellow
circles in the yellow region of the domain represent individual particles in the purely Brownian region of the domain. Note that we have given each Brownian particle a
different height to aid clarity of visualization, but in reality all particles lie on the x-axis in these one-dimensional simulations.
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3.2. Conversion rules
In this section, we illustrate how to couple two distinct rep-
resentations of reaction–diffusion processes in the blending
region. First, we tackle a PDE–compartment-based hybrid
pairing, followed by a coupling between compartment-based
and Brownian-based particle dynamics.

3.2.1. Conversion between PDE and compartment-based model
We assume that the numerical solution of the PDE is calculated
on the discrete mesh4 (see figure 7 in appendix A for an illus-
tration) of size Δx in [a, I2] and that compartment-based
dynamics are simulated with compartments of size h in [I1, b].
It is natural to assume that h≥ Δx, as a fine discretization of
the PDE mesh is required in order to minimize the error
between the numerical solution and the exact solution it
approximates. Note, however, that this is not a limitation of
our algorithm and that h≤ Δx would also be possible. There
are n1 = (I2− I1)/Δx PDE solution voxels in the overlap region
[I1, I2] and n2 = (I2− I1)/h compartments in the same region,
where n1, n2 [ N. For ease of computation, we assume that
n1 = γn2, with g [ N so that there are an integer number
of PDE solution voxels per compartment. There are also
np= (I1− a)/Δx PDE solution voxels in the purely PDE region,
[a, I1], and nc= (b− I2)/h compartments in the purely compart-
ment-based regime, [I2, b]. The numerical solution of the PDE
in voxel i is labelled qi for i= 1,…, np+ n1 and the number of
particles in compartment i is labelled Ci for i= 1,…, n2 + nc.

In each time interval of length Δtp we assume, without loss
of generality, that the PDE solution is updated first and the
compartment-based solution second. After the propagation
of the discrete PDE solution operator in the time interval [t,
t + Δtp], assume that the concentrations in PDE voxels of the
blending region have changed. Consequently, it is necessary
to modify the corresponding compartment-based description
in the blending region [I1, I2] before propagating the compart-
ment-based model in the region [I1, b]. More precisely, for
compartment i in the blending region, set

Ci ¼
Xg
j¼1

qnpþg(i�1)þjDx: (3:9)
Because we are required to synchronize the representations of
the solutions in the two regimes according to equation (3.9),
the number of particles contained in the i-th compartment in
the blending region is no longer an integer. Nevertheless,
when it comes to performing the stochastic simulation algor-
ithm, we work with these non-integer values to calculate the
time until the next event. This could potentially be an issue
when the copy numbers in a compartment are low, but
arguably this would imply that we were using the PDE
description to represent concentrations in a region of the
domain for which this is not appropriate. A similar synchroni-
zation is implemented once the compartment-basedmodel has
been propagated and the number of particles in the blending
region has changed. In particular, if δCi corresponds to the
integer change in particle numbers in the compartment i in
the blending region, then one adds uniformly δCi/γΔx to the
PDE solution in each of the PDE voxels, i.e.

qnpþgiþj ¼ qnpþgiþj þ dCi

gDx
, j ¼ 1, . . . , g: (3:10)

Reactions in the blending region are always implemented
according to the compartment-based paradigm. If reactions
occur then particle numbers in compartments are updated
and the corresponding change is also implemented in the
appropriate PDE voxels, as in equation (3.10).
3.2.2. Conversion between compartment-based and individual
particle models

Without loss of generality assume that the compartment-
based model is employed in [a, I2] and the Brownian-based
model is employed in [I1, b] with the two models being
simultaneously employed in the blending region [I1, I2].
Compartment-based dynamics are simulated with compart-
ments of size h in [a, I2]. There are nc = (I1− a)/h
compartments in the purely compartment-based region,
[a, I1], and n2 = (I2− I1)/h compartments in the overlap
region, [I1, I2]. The number of particles in compartment i is,
as before, labelled Ci for i = 1,…, nc + n2. Brownian particles
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are simulated off-lattice with positions updated according to
the discretized SDE (2.4) in [I1, b].

In each time interval of length Δtb assume, without loss of
generality, that the compartment-based solution is updated
first, followed by the Brownian-based dynamics. During the
propagation of the compartment-based solution, it is likely
that the numbers of particles in the compartments of the blend-
ing region have changed. Consequently, we need to alter the
positions of Brownian particles in the blending region. If a par-
ticle jumps from compartment i to a neighbouring
compartment j in the hybrid region, then we select a Brownian
particle uniformly at random from among the particles which
currently reside in compartment i and move it a distance ±h
with the sign of the displacement corresponding to the direction
of the compartment-based particle’s jump, i.e.

yk ¼ yk + h, (3:11)

where k indexes the randomly selected Brownian particle from
compartment i.

If a particle in compartment nc + 1 (the first compartment in
the blending region) jumps leftwards out of the blending region
(according to the compartment-based jump rates) and into the
purely compartment-based region then a Brownian particle in
the compartment nc + 1 is selected uniformly at random and
removed from the simulation (as well as particle numbers in
the affected compartments being updated). Conversely, if a
compartment-based particle jumps to the right, out of the last
compartment in the purely compartment-based regime into
the first compartment in the blending region, then a Brownian
particle is added with its position chosen uniformly at random
in this compartment, [I1, I1 + h] (as well as particle numbers in
the affected compartments being updated). Note that the
jump rates in the compartment-basedmodel, which implement
diffusion corresponding to equation (2.2), are such that, with
our chosen blending diffusion coefficients, the rate of jumping
to the right out of the final compartment is zero, so that no com-
partment-based particles can erroneously jump into the purely
Brownian regime. Similarly, the diffusion coefficient of the
Brownian particles at the pure-compartment/blending region
interface is zero. Technically, with our finite time-step
implementation of diffusion it might be possible for Brownian
particles to erroneously jump over the interface into the
purely compartment-based regime.5 On the rare occasions
that a Brownian particle is chosen to jump over the interface
(as an artefact of the numerical implementation) we simply
reflect it back into the blending region. Since the diffusion coef-
ficient is low in the boxes close to the interface this very rarely
happens, and when it does the error caused by reflecting the
particle is minimal.

Once the particle-based method has been propagated, it is
usually necessary to update the number of particles in the com-
partments of the blending region, Ci for i = nc + 1,…, nc + n2.
Rather than tracking every Brownian particle movement to
see whether it has crossed over a compartment boundary,
instead we simply sum the number of Brownian-based
particles in each compartment at the end of the Brownian
update to find the numbers of particles in each compartment
of the blending region,

Cncþi ¼
XN
k¼1

Iyk[[I1þ(i�1)h,I1þih], for i ¼ 1, . . . , n2, (3:12)

where Iy[[I1þ(i�1)h,I1þih] is the indicator function which takes
the value 1 if the Brownian particle lies in the (nc + i)th
compartment and 0 otherwise.

Reactions in the blending region (similarly to the PDE–
compartment hybrid method) are always implemented
using the compartment-based paradigm. If a reaction
occurs in the hybrid region then the appropriate Brownian
particles are added (with positions chosen uniformly at
random across the corresponding compartment) or removed
(with the particle(s) selected uniformly at random from
among those in the compartment).
3.3. Coupling algorithms
Having established the conversion rules in the previous
section, we are now in the position to present two-hybrid
algorithms. In particular, algorithm 1 is the algorithm that



Algorithm 2. Coupling a compartment-based approach with Brownian dynamics.
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couples diffusion in the PDE and compartment-based models,
while algorithm 2 is the algorithm that couples diffusion in the
compartment-based models with Brownian-based dynamics.
We have presented both of these algorithms with maximum
generality in order to emphasize that the specific simulation
methodologies are not important. In the next section, we
implement these algorithms with a finite-volume PDE solver,
the spatial Gillespie algorithm for compartment-based
dynamics and the λ− ρ Brownian reaction–diffusion paradigm
for the Brownian dynamics, in order to provide concrete
examples of their implementation. Algorithms for the
implementation of these threemethods are given in appendices
A, B and C, respectively.
4. Results
In this section, we demonstrate that our proposed algorithms
correctly simulate four test problems of increasing complex-
ity. The first two problems are simulations of pure diffusion
with different initial conditions, demonstrating that the
fluxes over the interface of the hybrid model are consistent
with the expected behaviour of the finer-scale representation
in each hybrid model. The third problem, one of morphogen
gradient formation, evidences the successful implementation
of reactions in our hybrid algorithms. Finally, in the fourth
test problem, we implement a second-order reaction system
in three dimensions, demonstrating the applicability of the
method to more complicated scenarios.

For each of the first three test problems, the one-
dimensional domain we employ is Ω = [a, b] = [0, 1], with I1 =
1/3 and I2 = 2/3. The remainder of the parameter values for
examples 1 and 2 are specified in table 1, for example 3 in
table 2 and for example 4 in table 3. The blending functions
for these three problems (and by simple extension for the
fourth problem) are defined as the simple linear functions

f1(x) ¼ 2� 3x (4:1)
and

f2(x) ¼ 3x� 1, (4:2)

which scale the contribution of each method to the diffusion
coefficient linearly between 0 and 1 across the blending
region. These, in conjunction with equations (3.3) and (3.4),
define the diffusion coefficients for both regimes across the
whole domain. For each of the first three examples and for
both couplings, we will quantify the qualitative comparisons
(provided by density comparison snapshots) with error plots
displaying the evolution of the difference between the aver-
aged profiles of our hybrid methods and the mean-field
PDE (see equations (4.3)–(4.6)). In the fourth example (for
which the PDE is not an exact description of the mean behav-
iour of the individual-based methods), we will compare the
averaged profiles of our hybrid methods with the averaged
profiles of the finer-scale ‘ground truth’ (e.g. mesoscale or
miscroscale) simulations (see equations (4.15)–(4.20)).
4.1. Test problem 1: uniform distribution
The first test of our hybrid algorithms is to determine
whether, when simulating diffusion, they are capable of
maintaining the uniform steady-state distribution across the
domain without introducing any bias. We initialize particles
uniformly across the domain and implement zero-flux
boundary conditions.

In figure 2 (as well as for figures 3 and 4), the top three
figures are for the PDE–compartment coupling and the
bottom three figures for the compartment–Brownian coup-
ling. The left-most panels display the density profile of the
hybrid methods at time t = 0.1 and the middle panels
the density profile at t = 1. In both left and middle panels,
the mean behaviour of the stochastic model simulated
across the whole of the domain is displayed as a black,
dashed line for comparison. The right–most panels display
the evolution through time of the relative mass error (RME)



Table 1. Parameter values used for the pure diffusion simulation of test
problems 1 and 2.

parameter value description

N 1000 number of particles

Ω [0, 1] spatial domain

D 1 diffusion coefficient

K 20 number of compartments

h 1/30 compartment width

Δx 1/300 PDE voxel width

Δtp 10−4 PDE time step

Δtb 10−4 Brownian time step

M 500 number of repeats

Table 2. Parameters for the morphogen gradient simulation (test problem
3).

parameter value description

N(0) 1000 initial number of particles

Ω [0, 1] spatial domain

D 1 diffusion coefficient

J 10 000 rate of influx at the left boundary

μ 10 rate of particle decay

K 20 number of compartments

h 1/30 compartment width

Δx 1/300 PDE voxel width

Δtp 10−4 PDE time step

Δtb 10−4 Brownian time step

M 1000 number of repeats

Table 3. Parameters for the bimolecular reaction simulation (4.10) (test
problem 4).

parameter value description

N(0) 465 initial number of particles

Ω [0, 10] × [0, 1] ×

[0, 1]

spatial domain

D 1 diffusion coefficient

κ1 0.1 rate of degradation reaction

(see system (4.10))

κ2 89.7 rate of production reaction

(see system (4.10))

ρ 0.06 particle interaction radius

Δtb 10−4 Brownian time step

Pλ 2.5 × 10−5 probability of reaction when

inside the interaction radius

K 20 number of compartments

hx 1/3 compartment width

hy 1 compartment depth

hz 1 compartment height

Δx 1/300 PDE voxel width

Δtp 10−4 PDE time step

M 500 number of repeats
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of each region of the domain: [a, I1], [I1, I2] and [I2, b]. For the
PDE–compartment coupling, the RME is the difference
between the average (over 500 repeats—unless otherwise
stated) number of particles in the given region in the
hybrid method and the corresponding number in the same
region in the analytical solution of the PDE, u(x, t), divided
by the number of particles in the relevant region of the
analytical solution of the PDE (to normalize),

RMEP(t) ¼
Ð
VP

�c(x, t) dx� Ð
VP

u(x, t) dxÐ
VP

u(x, t) dx
, (4:3)

RMEH(t) ¼
P

i
�Ci(t)Ici[VH � Ð

VH
u(x, t) dxÐ

VH
u(x, t) dx

(4:4)

and RMEC(t) ¼
P

i
�Ci(t)Ici[VC �

Ð
VC

u(x, t) dxÐ
VC

u(x, t) dx
, (4:5)

where ΩP = [a, I1] is the purely PDE region of the domain,
ΩH = [I1, I2] is the blending region and ΩC = [I2, b] is the
purely compartment region of the domain. The averaged sol-
ution of the PDE component of the hybrid method at position
x at time t is denoted �c(x, t) and the averaged compartment
particle numbers in voxel i of the hybrid method are denoted
�Ci. The positions ci are the centres of the compartments.
For the compartment–Brownian coupling, the RME is
the difference between the average (over 500 repeats—
unless otherwise stated) number of particles in each
region given by the hybrid method and the number of par-
ticles in the analytical solution of the mean-field PDE
model in the corresponding region, divided by the number
of particles in the relevant region of the analytical solution
of the PDE (to normalize). In the pure compartment and
blending regions, these are given by equations (4.5) and
(4.4), respectively, with the altered definition of ΩC = [a, I1]
for equation (4.5). For the purely Brownian region, the RME
is given by

RMEB(t) ¼
�B� Ð

VB
u(x, t) dxÐ

VB
u(x, t) dx

, (4:6)

where ΩB = [I2, b] and �B represents the average number of
Brownian particles in the purely Brownian regime.

Figure 2 demonstrates that both of our hybrid blending
methods pass this most basic test of maintaining a uniform
distribution across the domain. The interfaces between
the different modelling regimes are effectively undetectable.
Qualitatively, the density plots all show good agreement
between the hybrid methods and the analytical solution to
the mean-field diffusion equation. This is confirmed by the
relative error plots (figure 2c,f), which demonstrate low
errors that fluctuate around zero with no discernible
long-term bias.
4.2. Test problem 2: particle redistribution
The second test problem is designed to determine whether
the hybrid methods can cope with high levels of flux across
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Figure 2. Density and error plots for test problem 1—pure diffusion with a uniform initial condition. (a–c) The PDE–compartment hybrid method and (d–f ) the
compartment–Brownian hybrid method. (a,d ) Snapshots at time 0.1, and (b,e) at time 1. In (a,b), the green line is the PDE part of the hybrid method, the red bars
represent the number of particles in each compartment in the blending region and the blue bars represent the number of particles in each compartment in the
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alization purposes) in the purely Brownian region. In all four density comparison panels, the black dashed line represents the analytical solution of the diffusion
equation with the given initial condition. Vertical red lines mark the position of the interfaces. (c) The relative error (described in the main text) between the density
given by the PDE–compartment hybrid method and the density given by the analytical solution of the diffusion equation with the same initial condition. Similarly,
( f ) shows the relative error (described in the main text) between the density given by the compartment–Brownian hybrid method and the density given by the
analytical solution of the diffusion equation with the same initial condition. Results shown are for N = 1000 particles and are averaged over 500 repeats. All other
parameters are given within table 1.
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errors, are as in figure 2.
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their interfaces. As with the previous example, we model
pure diffusion with no reactions, but this time with a different
initial condition. All the particles are distributed uniformly
within [a, I1] and the system is allowed to equilibrate. The
results of these simulations for both the PDE–compartment
hybrid and the compartment–Brownian hybrid are given in
figure 3.

In figure 3, we have initialized the particles uniformly
in the left-hand-most third of the domain, corresponding
to the purely PDE region in the PDE–compartment
hybrid and the purely compartment-based region in
the compartment–Brownian hybrid.6 As in test problem 1,
both of our hybrid methods correctly match the evolution
of the density of the mean-field diffusion equation,
as evidenced quantitatively by the relative error
plots 3c and f .

4.3. Test problem 3: a morphogen gradient
formation model

The formation of a morphogen gradient from a uniform initial
condition constitutes the third test of our hybrid simulation
algorithms. Particles are allowed to diffuse freely throughout
the domain and degrade at a rate μ. To counteract the degra-
dation and ensure a non-trivial steady state, particles are
introduced at the left-hand boundary, x = a = 0, with flux DJ,
and a zero-flux boundary condition is implemented at x =
b = 1. Since the reactions we have introduced are first order,
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the continuum mean-field model corresponding to the
described set-up is governed by the following PDE:

@c
@t

¼ D
@2c
@x2

� mc, for x [ (0, 1) and t [ (0, T), (4:7)

with boundary conditions

@c
@x

(0, t) ¼ �J,
@c
@x

(1, t) ¼ 0, t [ (0, T), (4:8)

and initial condition

c(x, 0) ¼ c0, for x [ [0, 1], where c0 ¼ DJ
m

: (4:9)

The initial condition is chosen so that we begin with the same
number of particles as there will be at steady state, but distrib-
uted uniformly across the domain.7 The parameterswe employ
for the simulations shown in figure 4 are given in table 2.
Specifically, influx parameter, J, and degradation parameter,
μ, are chosen to ensure an average of 1000 particles populating
the domain throughout the simulation.

Figure 4 illustrates the solutions of our two-hybridmethods
and those of the corresponding mean-field model (given by
equation (4.7)). As with the previous two test problems, quali-
tative density profiles are in close agreement and quantitative
error plots show low error and no sustained bias about zero.

4.4. Test problem 4: bimolecular production-
degradation

The final scenario we will use to demonstrate the accuracy of
our hybrid methods is a system of diffusing particles interact-
ing through the following pair of chemical reactions:

2A!k1 ;, ;!k2 A, (4:10)

which occur within the cuboidal domain V # R3 of volume
V, where Ω = [0, 10] × [0, 1] × [0, 1].

The blending hybrid method is extended to this three-
dimensional example in the natural way. As in the one-
dimensional test problems, the domain is divided into three
equally sized subdomains, this time with planar interfaces,
I1 at x = 10/3 and I2 at x = 20/3. The compartment-based
region for each hybrid method is divided into a lattice of
cuboidal compartments of size hx × hy × hz. The blending
region is itself a cuboidal region in which both the coarse
and fine models coexist as equivalent representations of the
mass in that region. For this translationally invariant
example, the blending functions are simply a function of x.
This means that only diffusion parallel to the x-axis is
impacted in the blending region. Of course, for differently
shaped domains and interfaces, the blending functions may
be functions of all three coordinates chosen to scale diffusion
as required, providing f1(x, y, z) + f2(x, y, z) =D for all
(x, y, z) [ B, the blending region, and both f1(I1) = f2(I2) =D
and f1(I2) = f2(I1) = 0 are satisfied, where I1 [ R3 and I2 [ R3

are surfaces specifying the interfaces which form the bound-
aries of the blending region.

The mean-field PDE that corresponds to the reaction
system (4.10) under the Poisson moment closure assumption
is given by

@c
@t

¼ Dr2c� k1c2 þ k2, (4:11)

with corresponding zero-flux boundary conditions on each of
the domain’s boundaries

@c
@n

����
@V

¼ 0: (4:12)

For the simulations whose results are displayed in figure 6,
we initialize the particles according to a linear gradient so
that the initial density decreases in the positive x-direction.
Explicitly particle density profiles are initialized according
to the following density profile:

c(x, y, z) ¼ 183� 18x
2

,

for (x, y, z) [ [0, 10]� [0, 1]� [0, 1], (4:13)

giving N = 465 particles initially. The PDE part of the hybrid
simulation can be initialized exactly according to this profile.
For the regions of the domain modelled by stochastic com-
ponents of the hybrid method (e.g. in compartment-based
regions or Brownian-based regions) the density profile is nor-
malized and used as a probability density function (PDF) to
assign positions to the appropriate number of particles corre-
sponding to that region of the domain. In the blending
regions, particles are initialized according to the finer-scale
simulation method and the coarse scale density is matched
appropriately. For example, in the compartment–Brownian
hybrid method, we initialize, on average, one-third of the



(a) (b)

Figure 5. Schematic of the two-dimensional (a) PDE–compartment hybrid and (b) compartment–Brownian hybrid. In (a), the green surface in the green region
represents the PDE solution in the purely PDE region of the domain. The red surface and the red columns represent equivalent PDE- and compartment-based
representations of the mass in the red blending region. The blue columns in the blue region of the domain represent the number of particles in each compartment
in the purely compartment region of the domain. In (b), the blue boxes in the blue region of the domain represent the number of particles in each compartment in
the purely compartment region of the domain. The red boxes and the red circles represent equivalent compartment- and Brownian-based representations of the
mass in the red blending region. The yellow circles in the yellow region of the domain represent individual particles in the purely Brownian region of the domain.
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Figure 6. Density and error plots for test problem 4 with an initial condition which exhibits a constant gradient. Descriptions, excluding definitions of relative errors,
are as in figure 2. All parameters are given in table 3.
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particles with y and z coordinates chosen uniformly at
random in [0, 1] and x-coordinates chosen from the PDF

P(x) ¼
0 for 0 � x , 10

3 ,
183�18x

310 for 10
3 � x , 20

3 ,

0 for 20
3 � x , 10:

8>><
>>: (4:14)

Once thepositions of the Brownian particles have been specified,
the particles can then be binned into compartments to determine
the compartment-based initial condition in that region.

The hybrid method in three dimensions proceeds in an
entirely analogous way to the one-dimensional algorithms
described above with full three-dimensional simulation of
the PDE, compartment-based method and Brownian-based
method. As before, in the blending region the two different
descriptions are kept in synchronization with each other at
every time step. Figure 5 provides a schematic of the two
coupling methods in two dimensions (in order to illustrate
how the method generalizes from one dimension).

The layout for figure 6 is the same as for figures 2–4. The
only difference is the calculation of the RME. For this final
example, which includes second-order reactions, the solution
of the mean-field PDE model will no longer match the mean
behaviour of either the compartment-basedmodel or the Brow-
nian-basedmodel. Consequently, in order to calculate the RME,
we use the average behaviour of the finest-scale model in each
hybrid representation (e.g. the compartment-based represen-
tation in the PDE–compartment model and Brownian-based
representation in the compartment–Brownian model) simu-
lated across the whole domain as the ground truth. For the
PDE–compartment coupling the RME is, then, the difference
between the average (over 500 repeats) number of particles in
the given region in the hybrid method and the corresponding
average (over 500 repeats) number in the same region in
the purely compartment-based simulation, divided by the
number of particles in the relevant region of the purely
compartment-based simulation (to normalize)

RMEP(t) ¼
Ð
VP

�c(x, y, z, t) dx�P
i,j,k

�Fi,j,k(t)Ici,j,k[VPP
i,j,k

�Fi,j,k(t)Ici,j,k[VP

, (4:15)

RMEH(t) ¼
P

i,j,k
�Ci,j,k(t)Ici,j,k[VH �P

i,j,k
�Fi,j,k(t)Ici,j,k[VHP

i,j,k
�Fi,j,k(t)Ici,j,k[VH

(4:16)

and RMEC(t) ¼
P

i,j,k
�Ci,j,k(t)Ici,j,k[VC �

P
i,j,k

�Fi,j,k(t)Ici,j,k[VCP
i,j,k

�Fi,j,k(t)Ici,j,k[VC

, (4:17)
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where, as before,ΩP is the purely PDE region of the domain,ΩH

is the blending region andΩC is the purely compartment region
of the domain. The averaged solution of the PDE component of
the hybrid method at position (x, y, z) at time t is denoted
�c(x, y, z, t), the averaged compartment particle numbers in
compartment (i, j, k) of the hybrid method are denoted �Ci,j,k

and the averaged compartment particle numbers in compart-
ment (i, j, k) of the fully compartment-based ‘ground truth’
simulation are denoted �Fi,j,k. The positions ci,j,k are the centres
of the compartments indexed (i, j, k).

For the compartment–Brownian coupling, the RME is the
difference between the average (over 500 repeats) number of
particles in each region given by the hybrid method and the
average number of particles in the same region in the purely
Brownian-based simulation, divided by the number of par-
ticles in the relevant region of the purely Brownian-based
simulation (to normalize):

RMEC(t) ¼
P

i,j,k
�Ci,j,k(t)Ici,j,k[VH � �EC(t)

�EC(t)
, (4:18)

RMEH(t) ¼
P

i,j,k
�Ci,j,k(t)Ici,j,k[VH � �EH(t)

�EH(t)
(4:19)

and RMEB(t) ¼
�B(t)� �EB(t)

�EB(t)
, (4:20)

where, as before, ΩB is the purely Brownian region of the
domain, �B(t) represents the mean number of Brownian par-
ticles in the purely Brownian region of the hybrid method
and �EC(t), �EH(t) and �EB(t) represent the mean number of
Brownian particles in ΩC, ΩH and ΩB, respectively, at time t
in the fully Brownian ‘ground truth’ simulations.

There are some special points to note about the models
which incorporate second-order reactions. Firstly, as noted
above, the solution of mean-field PDE, which we will
employ in the PDE region of the PDE–compartment hybrid
method, will not correspond to the mean behaviour of the
compartment-based method. This is a result of the moment-
closure approximation, which must be used in order to
derive a closed PDE for the mean behaviour. As a conse-
quence, we might expect some disparity between the
solution of the hybrid method and the solution of the fully
compartment-based simulation that we take to be the
ground truth in the PDE–compartment-based hybrid. Fortu-
nately, for our compartment–Brownian hybrid method,
Erban & Chapman [51] provide a method for matching reac-
tion rates in compartment-based simulations to those in
Brownian-based simulations, which we make use of.

We must also be careful to choose our parameters
carefully in the compartment–Brownian method. If compart-
ment sizes are too small in the compartment-based method
then particles can become too sparsely distributed and
second-order reactions lost. Erban & Chapman [51] provide
a way to alter the reaction rate (depending on the compart-
ment size) to maintain the same overall reaction rate as a
well-mixed system. This correction, however, only holds
down to a certain compartment size, beyond which second-
order reactions are irrevocably lost. It is worth noting that
Isaacson [46] postulated the convergent reaction–diffusion
master equation representation (in which particles can inter-
act with others in neighbouring boxes), which is consistent
with the spatially continuous Doi model for reaction–
diffusion even as box sizes become small. Hellander et al.
[69] numerically approximate mesoscopic reaction rates that
are consistent with the popular Smoluchowski Brownian
dynamics model up to a given lower limit on mesh size.

In the Brownian-based method, we need to ensure that
the time step is chosen to be sufficiently small that particles
do not jump ‘too far’ between position updates. If particles
jump large distances in each time step then it is possible
that particles which should have been given the opportunity
to react with each other may not come into close enough
proximity and some second-order reactions may be lost.
Choosing the reaction radius of particles to be large may
help to mitigate this somewhat, but brings its own problems.
The size of the interaction radius is calculated by considering
particles in free space [51]. In reality, in our simulations, par-
ticles are often close to boundaries. The proportion of the
particle’s interaction radius that overlaps the exterior of
the domain is not able to interact with particles inside the
domain, so the rate of second-order reactions is again effec-
tively reduced. Since, for a given reaction rate, the size of
the interaction radius increases with the time step, reducing
the time step is often sufficient to solve both of these pro-
blems. We note that, with the exception of the PDE not
matching the mean behaviour of the compartment-based
method, these issues are all inherent to the individual mod-
elling paradigms we have chosen to couple, and are not
specific to the hybrid methods we have developed. With sen-
sible simulation parameter choices these issues can be
overcome.

The results of our simulations are plotted in figure 6.
In figure 6d,e, which compares densities for the compart-
ment–Brownian hybrid paradigm, we have good qualitative
agreement with the ground truth (the ubiquitously Brow-
nian-based model). These qualitative results are further
corroborated in figure 6f, in which the low and unbiased
RME over time are demonstrated.

The density plots in figure 6a,b for the PDE–compartment
hybrid coupling also appear to demonstrate good qualitative
agreement. However, when considering the RME in the differ-
ent regions, in figure 6c, we observe that, although low, the
RMEs appear to be biased. This, as discussed above, should
not be a surprise since the mean-field PDE does not capture
the mean behaviour of the compartment-based model, which
we assume to be the ground truth for the RME calculations.
The overall mass expected in the fully compartment-based
model at equilibrium would exceed that predicted by the
mean-field PDE. In agreement with this expectation, we find
that the total mass in all three regions of the domain is less
than it would be in the fully compartment-based simulations
with the problem being particularly acute in the PDE region.
A simple comparison of the expected densities at time t = 1
shows that the maximum magnitude of the PDE relative
error with respect to the compartment-based model is roughly
3 × 10−2, demonstrating that the size of the relative error we
find between our hybrid method and the solution of the fully
compartment-based simulations is of an appropriate order or
magnitude, as it is similar to the difference in the concentration
when comparing the equilibrium profile of the full PDE to the
fully compartment-based method, adjusted for the specific
voxel size.

5. Discussion
When modelling multiscale phenomena it is often the case
that concentrations vary spatially to such a degree that in
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one region of the domain a coarse, computationally inexpen-
sive model can be tolerated, whereas in another region of the
domain a more accurate, but more expensive representation
is required.

In this paper, we have proposed a general hybrid
blending mechanism which facilitates the spatial coupling
of two reaction–diffusion modelling paradigms at different
levels of detail in order to accommodate the modelling of
such multiscale phenomena. Our method employs a blending
region and a corresponding blending function. The blending
function scales up or down (respectively) the relative contri-
bution to diffusion of a coarse or fine (respectively)
representation of the reaction–diffusion process across the
blending region such that diffusion is handled to a different
degree by each modelling representation.

Specifically, we have developed an algorithm which
couples a PDE representation of a reaction–diffusion process
to a compartment-based representation and, separately, an
algorithm which couples a compartment-based representation
at the coarse scale to a Brownian-based representation at the
fine scale. Other algorithms exist to achieve such couplings
[12,14,16,33]. Some of these algorithms are conceptually
complex—relying variously on artificially introduced
‘psuedo-compartments’, ‘ghost cells’ and ‘overlap regions’—
technically challenging to implement and strongly parameter
dependent—working only in specific parameter regimes. We
believe our blending method provides a conceptually simple
and easily implementable coupling methodology—requiring
only an intuitively defined blending function to couple the
two regimes together. This methodology might be readily
employed to couple other modelling regimes (for example,
PDE and Brownian modelling regimes) to form novel hybrid
methods under a unified framework or implemented simply
by non-experts for physical and biological applications.

We have demonstrated, through four representative
examples, that both of our coupling algorithms are able to
handle a wide range of reaction–diffusion processes from
simple diffusion through to reaction–diffusion processes incor-
porating first- and second-order reactions. The hybridmethods
are capable of representing these processes accurately (low
error) and without bias (in the situation for which there is no
discrepancy between mean-field behaviour of the coupled
models) or with the expected bias (when such a discrepancy
exists). Owing to the computational savings afforded by coup-
ling a cheap coarse model with an expensive fine-scale model,
we can scale up particle numbers in our simulations in order to
demonstrate that the hybrid algorithms perform arbitrarily
well in comparison to the full finest-scale model. For this
reason, we do not provide explicit time comparisons of our
methods, but rather focus on their accuracy.

There are several directions in which we intend to extend
this work, but which are not appropriate for inclusion in this
initial proof-of-principle paper. Firstly, and perhaps most
straight-forwardly, we would like to extend these hybrid
methods to deal with more complex domain geometries.
Although we have demonstrated that our blending hybrid
methods can cope with three-dimensional reaction–diffusion
processes, in real biological scenarios boundaries are likely to
be curved and there is the potential for the requirement that
interfaces between coarse and fine regimes are non-planar.

Secondly, the dynamic nature of many biological pro-
cesses mean that concentrations change significantly over
time. If we are to ensure that the coarse modelling regime
represents regions of high concentration and the fine model-
ling regime regions of low concentration, then it is
necessary for interfaces that border the blending region and
the blending region itself to be dynamic. The main challenge
associated with dynamic interfaces is the conversion of one
particle type into another. Fortunately, this challenge has
been overcome previously by a number of different hybrid
methods, whose dynamic interface methodologies we might
readily adapt to our hybrid paradigm in follow-up work
[19,26,30]. Related concerns are the need for the creation or
removal of multiple interfaces in scenarios in which particle
concentrations oscillate in space and time. Similarly, reac-
tion–diffusion simulations in which more than just a single
species are interacting may require different interfaces for
each of the different species. This raises potentially difficult
questions about how to carry out reactions between species
represented by distinct modelling paradigms in the same
region of space.

A final direction inwhichwewould like to extend thiswork
is by considering entirely new hybridization methods. For
example, rather than having the two distinct modelling para-
digms representing the same particles (as we have in the
blending region), requiring both regimes to be updated when
one changes, it might be practicable to have the two modelling
paradigms coexisting across the whole of the domain, but
representing different proportions of the particles depending
on the concentration. Such amethodwould remove the require-
ment for interfaces between the regions of the domain,
effectively doing away with many of the concerns related to
dynamically and spatially changing concentrations raised ear-
lier in this section.

Since biological and physical experiments can be carried
out at increasingly high levels of detail, we are gaining
more intricate and specific information about a wide variety
of multiscale processes. In order to test experimentally gener-
ated hypotheses about such processes, we need to have
modelling frameworks which are capable of replicating
experimental behaviour to a high degree of accuracy. The
blending hybrid methods presented in this paper provide a
straightforward way to couple modelling paradigms with
different levels of detail, which will facilitate more accurate
and more efficient multiscale modelling. Consequently, we
expect that both our own future work and the work of
others, building on just such hybrid paradigms, will enable
biochemical simulations which go beyond what is tractable
with current approaches.
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Endnotes
1Note that by a careful partitioning of space the number of comparisons
can be reduced dramatically to almost O(N) when particles are only
compared with others in their local neighbourhood [56].
2As previously noted some of this complexity can be offset by a care-
ful partitioning of space, allowing particles to be compared only with
others in their local neighbourhood [56].
3Note that, because of the choice of blending functions, the boundary
conditions at I2 in (3.7a) and at I1 in (3.7b) are automatically satisfied.
4Note that we describe the coupling between the two regimes in the
blending region using the terminology of the finite-volume PDE dis-
cretization that we employ in our numerical examples (see §4).
However, we also note that finite-volume voxels can be substituted
for finite-difference or finite-element mesh points in a straightfor-
ward manner.
5While there do exist integrators for diffusion processes which can
guarantee that this situation does not happen [68], implementing
such an approach is beyond the scope of the article.
6We see similarly agreeable results when particles are initialized in
the third of the domain [I2, b] corresponding to the purely compart-
ment or purely Brownian regions, respectively.
7Note that we have chosen this initial condition to ensure that the
PDE–compartment algorithm functions appropriately. While the
compartment-to-Brownian algorithm can deal naturally with low
particle numbers, as noted earlier, there is the potential for low
particle numbers to break the PDE–compartment algorithm.
Potentially, when particle numbers are low in the blending
region, fractional particle numbers in a compartment could cause
a particle to be chosen to jump out of one compartment even
though there is not sufficient mass for this to occur. The solution
to this problem, as will be proposed in the Discussion, is to intro-
duce adaptive blending regimes, which ensure that the PDE
representation is only employed in regions of the domain where
particle concentrations are sufficiently high to justify its use.
8We employed a fully implicit method (i.e. θ = 1) for the test problems
with linear reaction terms. For the test problem with nonlinear reac-
tion terms, we integrated the dynamics explicitly (i.e. θ = 0).
9It should be noted that the rate of second- and higher-order reactions
depends, non-trivially, on the compartment size, h, and that the
desired rate of such higher-order reactions may not be implementable
for some particularly small compartment sizes [51].
Appendix A. Numerical simulation of the
probability density function
We now provide more details on the specifics of the
macroscopic model that we employ throughout the paper,
including an algorithm for its implementation. There exist a
number of well-developed, efficient numerical methods for
the solution of such reaction–diffusion PDEs [70–73]. Typi-
cally to implement these algorithms, we discretize the PDE
on a spatial mesh. This results in a system of ordinary differ-
ential equations (ODEs). These ODEs can then be integrated
forwards in time using standard numerical techniques.

For the PDE (2.2), we start by dividing [a, b] into M voxels
each of size Δx = (b− a)/M and we define xj = Δx( j− 1/2), so
that xj is the centre of the voxel j (figure 7).Typically, the grid
spacing of the PDE solution method is very fine (much finer
than the discretization of space in the compartment-based
method) in order to mimic the true continuous-space PDE
solution as closely as possible. We discretize the PDE using
the finite-volume method over the grid in figure 7. For time
integration, we use the simple θ-method [72].

Belowwe provide a detailed implementation algorithm for
the finite-volume PDE simulationmethodwhich is designed to
replace line 3 in algorithm 1. We start by introducing

q j(t) ¼ 1
Dx

ðx jþ1=2

x j�1=2

c(t, x) dx, (A 1)

which corresponds to the average concentration per voxel, and
Dj =D(xj), where we note that j is not necessarily integer
valued. By integration of PDE (2.2) over the finite-volume
voxels, we then obtain the semi-discrete approximation,

dq
dt

¼ Aqþ bþ R(q), (A 2)

where
A ¼ 1
Dx2

�D1=2 D1=2
D1=2 �(D1=2 þD3=2) D3=2

. .
. . .

. . .
.

DM�5=2 �(DM�5=2 þDM�3=2) DM�3=2
DM�3=2 �DM�3=2

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

,

b = Δx−1(− Ja, 0,…, 0, Jb) and q(t) ¼ (q0(t), q1(t), . . . , qTM�1(t)).
We now solve the semi-discrete approximation using the
θ-method.8 The complete method is described in algorithm 3.

Appendix B. Simulation of the compartment-
based method
We now provide more details on the specifics of the meso-
scopic model that we employ throughout the paper,
including an algorithm for its implementation. More pre-
cisely, we have used an event-driven approach in order to
simulate our compartment-based dynamics. The most com-
monly used event-driven algorithm for simulating Markov
processes is the Gillespie direct method [74]. Each event is
characterized by a propensity function which specifies the
rate parameter of the exponentially distributed waiting time
until the next ‘firing’ of that event. It can be shown that the
time until the next reaction of any type (i.e. the minimum
waiting time) is also exponentially distributed with a rate
which is the sum of the rates of the individual reactions.
Gillespie’s algorithm first generates an exponentially distributed
minimum waiting time and subsequently, with probabilities
proportional to their propensity functions, chooses a
reaction to fire. Alternatively, time-driven algorithms can be
employed, in which a sufficiently small time step is chosen
such that the probability of more than one reaction/
movement event firing in that time interval is negligible.
Time-driven algorithms tend to be inefficient owing to the



Algorithm 3. An algorithm for the numerical solution of equation (2.2) using a first-order finite-volume method.
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Figure 8. Schematic illustrating the jump rates, d+i , between compartments when simulating the mesoscopic reaction–diffusion paradigm on the domain [a, b]
with compartment size h.
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Figure 7. Schematic illustrating a spatial discretization of the one-dimensional domain [a, b], which is used to simulate equation (2.2) numerically. Δx represents
the size of the voxels and xi for i = 0,…, M− 1 represent their centres.
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small time step required during which, typically, no change to
the state is implemented. Consequently, exact event-
driven algorithms tend to be favoured for the simulation of
compartment-based dynamics.

Here, we discuss the implementation of a compartment-
based reaction–diffusion model in one dimension with a
spatially varying diffusion coefficient. Although we present
our algorithm in one dimension it is straightforward to
extend it to higher dimensions with planar interfaces. We
give one such three-dimensional example in §4.4.

We first discretize the region [a, b] into K compartments,
each of size h = (b− a)/K. In order to replicate the density-
dependent diffusion specified in the macroscopic model
described by equation (2.2), we require that the rates at which
particles jump to the left and the right are not equal in regions
in which the diffusion coefficient is non-constant. Specifically,
we must evaluate the jump rates based on the diffusion
coefficient at compartment boundaries [75]. This is visualized
in figure 8, where we denote the jumping rate of a particle in
compartment i into compartment i + 1 with dþi , while we
denote the jumping rate of a compartment i particle into com-
partment i− 1 with d�i . Without loss of generality, assuming
that the left-hand boundary of the compartment-based regime
is at a, the left jump rate for compartment i is given by

d�i ¼ D(aþ (i� 1)h)
h2

, for i ¼ 2, . . . , K, (B 1)

and the right jump rate is given by

dþi ¼ D(aþ ih)
h2

, for i ¼ 1, . . . , K � 1: (B 2)

Jump rates d�1 and dþK at the boundaries can be chosen in order
to replicate the chosen boundary conditions [76]. In the case of
zero-flux boundary conditions (equivalent to setting Ja = Jb = 0



Algorithm 4. Simulating the spatial Gillespie algorithm for a time interval Dt.
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in equations (2.3)), these jump rates are simply chosen to be
d�1 ¼ dþK ¼ 0. Reaction propensity functions are specified to
bring about the desired reaction rate.9 Once all the event rates
have been specified then one can simulate the system using
Gillespie’s direct method [74].

We next provide a detailed implementation for the spatial
Gillespie algorithm over a time interval of size Δt. This algor-
ithm is designed to replace line 5 of algorithm 1 and line 3 of
algorithm 2. Without loss of generality assume the compart-
ment-based region occupies [a, I2], as in the compartment–
Brownian hybrid method. However, we note the caveat that
for the PDE–compartment hybrid method the compart-
ment-based region would occupy [I1, b]. As already noted,
left and right jumping rates from compartment i are different
and given in equations (B 1) and (B 2), respectively.

Note that the Gillespie algorithm steps forwards in dis-
crete time steps. However, the time steps themselves are
drawn from a continuous distribution so that the solution
time points of the Gillespie algorithm do not match up
with those of the fixed time-step algorithms for PDE and
Brownian-based simulation. Consequently, our technique to
couple the two simulation methodologies is to simulate the
compartment-based dynamics until such a time as Δt is
exceeded for the first time. Since a PDE or Brownian
update step is due at time Δt we do not implement the
final Gillespie reaction whose time step took us over the Δt
time limit. Instead, we implement a PDE or Brownian
update step accordingly and correspondingly update the
propensity functions ready to begin algorithm 4 again.

Appendix C. Simulation of Brownian dynamics
In this appendix, we provide a provide a detailed implemen-
tation algorithm for Brownian-based dynamics, which is
designed to replace line 5 in algorithm 2.

For zeroth- and first-order reactions, respectively, reaction
probabilities, Pz and Pf, respectively, are calculated simply by
multiplying the rate of reaction by the time step, Δtb. The calcu-
lation of Ps for second-order reaction, s, is somewhat more
complicated and depends on the choice of reaction radius, ρs.
For more details on this and the placement of new particles
after reaction, see [51]. Note that Brownian reactions are only
implemented in the region [I2, b], since outside this region reac-
tions are implemented using the compartment-based regime.

In theory, the fact that the diffusion coefficient of the
Brownian-based particles falls to zero at I1 should mean
that particles cannot cross the interface there, rendering the
implementation of reflecting boundary conditions at I1 in



Algorithm 5. Simulating a Brownian update step of length Dtb.
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step 2 redundant. However, in practice, the finite time step we
use to update the Brownian particles means that, with low
probability, particles can jump across the interface and must
consequently be reflected back.
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