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Colorectal cancer (CRC) manifests as gastrointestinal tumors with high intratumoral
heterogeneity. Recent studies have demonstrated that CRC may consist of tumor cells
with different consensus molecular subtypes (CMS). The advancements in single-cell RNA
sequencing have facilitated the development of gene regulatory networks to decode key
regulators for specific cell types. Herein, we comprehensively analyzed the CMS of CRC
patients by using single-cell RNA-sequencing data. CMS for all malignant cells were
assigned using CMScaller. Gene set variation analysis showed pathway activity differences
consistent with those reported in previous studies. Cell–cell communication analysis
confirmed that CMS1 was more closely related to immune cells, and that monocytes
and macrophages play dominant roles in the CRC tumor microenvironment. On the basis
of the constructed gene regulation networks (GRNs) for each subtype, we identified that
the critical transcription factor ERG is universally activated and upregulated in all CMS in
comparison with normal cells, and that it performed diverse roles by regulating the
expression of different downstream genes. In summary, molecular subtyping of single-
cell RNA-sequencing data for colorectal cancer could elucidate the heterogeneity in gene
regulatory networks and identify critical regulators of CRC.
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INTRODUCTION

Colorectal cancer (CRC) is a widespread cancer that accounts for almost 10% of all cancer-related
deaths (Sung et al., 2021). CRC is characterized by gastrointestinal tumors with high intratumoral
heterogeneity (Budinska et al., 2013), and previous studies have identified important clinical
subtypes using the accumulated gene-expression profile data (Schlicker et al., 2012; De Sousa
et al., 2013; Marisa et al., 2013; Sadanandam et al., 2013). For instance, the mesenchymal-like
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subgroup shows a high degree of stromal infiltration and a poor
response to standard chemotherapy (De Sousa et al., 2013;
Sadanandam et al., 2013; Song et al., 2016; Trinh et al., 2017),
resulting in a poor prognosis (Isella et al., 2015). On the basis of
gene-expression analysis of nearly 4,000 primary tumors,
Guinney et al. (2015) classified CRC into four consensus
molecular subgroups (CMS1 to CMS4), and these
categorizations have received extensive attention. CMS1 shows
high immune infiltration and activation levels, along with
microsatellite instability (MSI-H). CMS2 is defined by WNT
and MYC pathway activation with poor intratumoral immune-
cell infiltration. CMS3 is associated with KRAS mutations and
reflects metabolic dysregulation with higher activity in
glutaminolysis and lipidogenesis (Stintzing et al., 2016). CMS4
presents with the highest stromal infiltration and activation of
epithelial–mesenchymal transition (EMT), making it resistant to
chemotherapy. Recent studies have demonstrated that these
tumors are highly heterogeneous, and that a single patient
sample may consist of cells with multiple subtypes (Yeo and
Guan, 2017). Thus, the intratumoral heterogeneity of CRC should
be investigated to facilitate precision medicine.

Single-cell RNA sequencing (scRNA-seq) can help quantify
the transcriptome status of tumor tissue at a single-cell resolution,
facilitating evaluations of genetic heterogeneity. For example,
Karaayvaz et al. (2018) adopted scRNA-seq to reveal a distinct
subpopulation of epithelial cells in the tumor microenvironment
(TME) that could be associated with the long-term survival of
triple-negative breast cancer (TNBC) patients. Zhang et al. (2020)
performed scRNA-seq analyses on the stromal and immune
populations from patients with CRC and identified specific
conventional dendritic cells (cDCs) and macrophage subsets as
key mediators of cellular crosstalk in the tumor
microenvironment. scRNA-seq analysis has also ushered in
considerable development. Using scRNA-seq data, Iacono
et al. (2019) constructed gene regulation networks (GRNs)
with a global regulatory model, which could be helpful for
elucidating the heterogeneity of gene regulatory networks and
identifying critical regulators.

In this study, we comprehensively analyzed the CMS of CRC
patients by using single-cell RNA-seq data. The malignant cells
were identified by inferred copy number variation (CNV), and
the CMS were assigned using CMScaller for all malignant cells.
Gene set variation analysis (GSVA) showed consistent pathway
activity differences among subtypes in previous studies. Cell–cell
communication analysis based on ligand–receptor interactions
confirmed that the CMS1 was more closely related to immune
cells, and monocytes and macrophages play dominant roles in the
CRC tumor microenvironment. On the basis of the constructed
GRNs for each subtype, we identified that the critical
transcription factor (TF) ERG was universally activated and
upregulated in all CMS in comparison with normal cells. The
dysregulation of ERG exerts diverse effects by regulating the
expression of different downstream genes, which could be
associated with the gene regulatory network heterogeneity and
tumor progression of CRC. Further analysis of The Cancer
Genome Atlas (TCGA) dataset confirmed the worse
prognostic phenotype of CMS4 and the immune infiltration

status of CMS1 and revealed the high heterogeneity of the
bulk tumor sample.

MATERIALS AND METHODS

Data Collection and Processing
We downloaded the scRNA-seq data of nine CRC patients
(P0825, P1212, P1228, P0104, P0305, P0411, P0413, P0720,
and P0728) from the GEO dataset (https://www.ncbi.nlm.nih.
gov/geo/) with the accession ID GSE146771 (Zhang et al., 2020).
The data were then normalized according to the flowchart
mentioned by Sun et al. (2021) The gene-expression profiles
and clinical information of TCGA CRC patients were
downloaded from the UCSC Xena Browser (https://
xenabrowser.net/datapages/). The proteome data of the CRC
patients were downloaded from the CPTAC dataset (https://
cptac-data-portal.georgetown.edu/).

Identification of Malignant Epithelial Cells
and CMS
We inferred the CNVs for 1,123 epithelial cells from the scRNA-
seq dataset by using the “infercnv v1.6.0” R package (https://
github.com/broadinstitute/infercnv). Cells derived from normal
samples were used as a control reference for CNV inference. After
inferring the CNVs for all cells, the cells were clustered into two
subgroups, and the cluster with the higher CNV standard
deviation was renamed as malignant cells. Then, we classified
the malignant cells into four subtypes based on their expression
profiles by using the R package “CMScaller v2.0.1.” (Eide et al.,
2017) The cells that could not be assigned to any subgroup were
removed.

Cell–Cell Communication Analysis
The immune and stromal-cell annotations were curated from a
previous study (Zhang et al., 2020). To investigate the
communications among all cell types, including the four
subtypes of tumor cells, immune cells, and stromal cells, we
applied the Python package “CellPhoneDB” (Efremova et al.,
2020) to estimate the potential ligand–receptor pairs. The pairs
with p < 0.05 were considered to show significant interactions
between 2 cell types and were evaluated for further analysis.

GSVA Analysis and Pathway Enrichment
Analysis
The cancer hallmark and KEGG pathways were downloaded
from the MSigDB (Liberzon et al., 2015). GSVA analysis for
each cell was performed using the R package “GSVA v1.38.2.”
(Hänzelmann et al., 2013) Pathway enrichment analysis of a
specific set of genes was performed by using the R package
“clusterProfiler v3.18.1.” (Yu et al., 2012).

Construction of GRNs
We constructed subtype-specific GRNs for normal
endothelial cells and the four CMS. First, we identified the
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significantly co-expressed TF-target pairs based on gene-
expression profiles, and then, we removed genes that were
not enriched in the binding motifs of the corresponding TF for
each TF-target pair. To minimize the false-discovery rate, we
used only the remaining TF-target pairs with an ES > 1. The
co-expression analysis and motif-enrichment analysis were
performed using the Python package “pySCENIE.” (Aibar
et al., 2017) The GRN network was visualized by
“Cytoscape” software (Shannon et al., 2003).

Critical Regulator Identification
To identify the critical regulators that play important roles in
the GRN of each subtype, we adopted five measurements to

evaluate the centrality of each node, as mentioned previously
(Iacono et al., 2019). These measurements were PageRank,
degree, eigenvalue, betweenness, and closeness. Then, we
transferred the scores of each measurement into rank
levels. The final score of each node was defined as the sum
of all five sorted indicators. A lower score indicated higher
centrality, which represented the importance of a
selected node.

Survival Analysis
The log-rank test that compares the survival differences of two
groups at each observed event time was performed by the R
“survival v3.2-11” package (https://cran.r-project.org/web/

FIGURE 1 |Cell composition of CRC patients (A) Heatmap of the inferred CNVs across 1,123 epithelial cells (B) Standard deviation of the CNVs of the cells in each
cluster (C) t-SNE plot of the scRNA-seq data (D) CMS composition of each CRC patient (E) Heatmap of the markers’ expression in each subgroup.
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packages/survival). Kaplan-Meier analysis was applied to obtain a
survival curve plot of CRC subtypes.

Immune-Cell Abundance and Tumor Purity
CIBERSORT (Chen et al., 2018) was used to retrieve the immune-
cell components in CRC samples on the basis of the gene-
expression profiles of TCGA samples. The immune
infiltration, stromal infiltration, and tumor purity were
evaluated using the R package “estimate v1.0.13.” (Yoshihara
et al., 2013).

RESULTS

CMS of CRC Patients
Using the gene-expression profile data and metadata from the
scRNA-seq dataset, we inferred the CNVs for 1,123 epithelial
cells. These epithelial cells were then classified into 913 malignant
and 211 non-malignant cells. As shown in Figures 1A,B, the
malignant cells displayed a relatively higher standard deviation of
the CNV than the non-malignant cells. Next, we applied
t-Distributed Stochastic Neighbor Embedding (t-SNE) to

FIGURE 2 | Cell-cell interaction and pathway activity analysis (A) Cell-cell interaction network of different cell types. The node size represents the number of
interactions. The width of the edge represents the number of significant ligand-receptor interactions in the 2 cell types (B) Cell-cell interaction network of CMS and other
cells (C) Differences in the enrichment of the pathways across the five molecular subtypes (D) Violin plots of GSVA enrichment scores of the EMT pathway of the four
molecular subtypes.
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perform dimension reduction for all cells derived from these
patients, and the immune-cell and stromal-cell annotation were
curated from a previous study (Zhang et al., 2020). Malignant
cells showed distinct boundaries with the other cells (Figure 1C).
As expected, B-cells highly expressedmarkers such asMS4A1 and
CD79A; T cells exhibited significant upregulation of markers
such as CD3E, CD4, CD3G and CD8A; CD33, and CD14 were
significantly elevated in monocytes and macrophages
(Supplementary Figure S1).

We then assigned CMS for all malignant cells by using
CMScaller. Malignant cells were classified into four well-
known molecular subtypes: CMS1, CMS2, CMS3, and CMS4
(Supplementary Table S1). A total of 659 cells were assigned to
the different subgroups, and 254 cells did not belong to any
subgroup. We found that genes that showed significantly
different expression levels in different subtypes had a certain
degree of commonality, but many genes also belonged to distinct
subtypes (Figure 1D and Supplementary Figure S2). After
mapping the cells to the patients, we found that almost none
of the patients contained only one subtype of cells (Figure 1E and
Supplementary Figure S2). As shown in the figure, P0825 and
P0413 exhibited relatively higher numbers of CMS1 cells, while
P0411 and P0728 showedmore CMS2 cells. These results confirm
that CRC is a highly heterogeneous tumor, and that a patient
sample may consist of cells with multiple subtypes.

The Python CellPhoneDB package was used to investigate the
cell–cell crosstalk in the tumor microenvironment of CRC
(Figure 2A). The number of ligand–receptor pairs presented
in Figure 2B and Supplementary Figure S3 suggests that
monocytes and macrophages play dominant roles in the CRC
tumor microenvironment (Supplementary Table S3). The CMS1
subtypes are more closely related to immune cells than the other
subtypes (Chi-square test p-value, CMS1:CMS2 � 1.40e-20;
CMS1:CMS3 � 1.54e-13; CMS1:CMS4 � 7.38e-25), consistent
with the definition that CMS1 shows high immune infiltration
and activation levels. To reveal the cells’ activity in the hallmark
and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene
sets, we performed GSVA analysis for each cell to evaluate the
pathway activities (Supplementary Table S4). As shown in
Figure 2C, CMS1 was defined by microsatellite instability
(MSI-H) status, and CMS1 subgroup cells showed significantly
higher DNA repair pathway activity. CMS2 was defined by WNT
and MYC pathway activation with poor intratumoral immune-
cell infiltration, and the WNT signaling activity was elevated in
the CMS2 subgroup. CMS4 showed the highest stromal
infiltration, and the activation of the EMT pathway made it
resistant to chemotherapy, with the EMT pathway activity
score being significantly higher than those in the other
subgroups (Figure 2D).

Construction of GRNs for Each Subgroup
The TF-target regulation network could help researchers clarify
potential dysfunctional regulators in cancer. To identify the key
regulators that play critical roles in CRC, we constructed subtype-
specific GRNs for normal epithelial cells and four CMS. We
identified the significantly co-expressed TF-target pairs based on
gene-expression profiles and removed genes that were not

enriched in the binding motifs of the corresponding TF for
each TF-target pair. To minimize the false-discovery rate, we
only used the remaining TF-target pairs with an enrichment score
(ES) of >1 (Supplementary Table S5). The occurrences of TFs
and the constructed GRNs for each subtype are shown in
Supplementary Figures S4,5. We found that different
subtypes share some of the same target genes and TF-target
pairs; they also have their own specific regulatory relationships
(Supplementary Figure S6). The key regulators of each subtype
are also specific and shared. As shown in Figure 3A, the results
identified 29, 38, 30, and 42 specific regulators for the CMS1,
CMS2, CMS3, and CMS4 subgroups, respectively, and 28
regulators were shared by all subtypes. To define the key
regulators in CRC, we adopted five methods to calculate the
importance of genes in the GRNs for each subtype and normal
cells (Supplementary Table S6). The combined value and GRNs
of the four subtypes are displayed in Figures 3B,C. Many well-
known regulators are ranked in the top 10. ELK3 elevates the
expression of HIF-1α and promotes the migration of liver cancer
stem cells (Lee et al., 2017). The constitutive NF-κB signaling
pathway has already been proven to serve as a regulator of the
immune response in several cancers (Horst et al., 2009; Sakamoto
et al., 2009).

As shown in the figure, ERGwas ranked the highest among the
four subtypes, and it was not dominant in normal cells, indicating
its potential oncogenic function in CRC. ERG shows nuclear and
cytoplasmic expression in several tissues, which has been
identified as a key factor for prostate cancer (Adamo and
Ladomery, 2016). We found that ERG regulated diverse genes
in different subtypes. KEGG pathway enrichment analysis
revealed that the targets of ERG in different subtypes
participated in diverse roles (Figure 3D). Based on the
scRNA-seq dataset, we found that the expression level and
regulon activity were significantly downregulated in normal
cells (Figure 3E). Furthermore, we evaluated the expression of
the ERG gene based on the CRC proteome profile in the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) and found a
significantly higher expression level in tumor samples than in
normal samples (Figure 3E). On the basis of the clinical
information and gene-expression data in the TCGA dataset,
we performed survival analysis to show that higher expression
of ERG was associated with a poorer prognosis (Figure 3F). In
conclusion, the dysregulation of ERG influences diverse targets in
different CRC subtypes, which may be responsible for the
intratumoral heterogeneity in CRC. Moreover, ERG gene
expression was negatively correlated with patient outcomes,
indicating that ERG might be a potential drug target for CRC.

The CMS Index Functions as a Biomarker
of CRC
Using the markers of each subtype calculated by the scRNA-
seq data, we performed GSVA analysis to determine the
relative abundance of each of the CMS in TCGA samples,
which we named as CMS index. On the basis of the relative
CMS scores, we classified the TCGA samples into CMS1,
CMS2, CMS3, and CMS4 subgroups (Supplementary Table
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S7); the CMS4 subgroup had the worst overall survival, as
shown in Figure 4A, which is consistent with the findings of
previous studies. CMS1 was defined by microsatellite
instability (MSI-H) status, and we found a significantly
higher tumor mutation burden (TMB) in the CMS1
subgroup (Figure 4B). We then estimated the relative
immune-cell abundance of TCGA samples by using the
CIBERSORT software. The CMS1 subgroup displayed
significantly higher infiltration of CD8+ T cells, natural
killer cells, and M1 macrophages, while CMS4 displayed a
higher level of M2 macrophages (Figure 4C and
Supplementary Figure S7). Previous studies have shown
that CMS1 is immune-activated and CMS4 is immune-
inflamed with the expression of multiple immune
checkpoint inhibitors, while CMS2 shows an immune
desert status and CMS3 excluded immune cells. On the
basis of the ESTIMATE algorithm, we quantified the scores
for stromal infiltration and immune infiltration (Figures
4D–F). CMS4 exhibited a higher level of stromal-cell
infiltration, whereas CMS1 showed a high level of immune-
cell infiltration. We further evaluated the functional role of the
CMS index in CRC prognosis. As shown in Figure 5, the CMS
scores were significantly higher in the corresponding
identified CMS, and a higher CMS4 score was associated
with poorer clinical outcomes. These results further
confirmed the poor prognostic phenotype of CMS4 and the

immune infiltration status of CMS1, and elucidated the high
heterogeneity of the bulk tumor sample.

DISCUSSION

CRC is a gastrointestinal tumor with high intratumoral
heterogeneity (Budinska et al., 2013). Previous studies have
identified important clinical subtypes based on accumulated
data from gene-expression profiles (Schlicker et al., 2012; De
Sousa et al., 2013; Marisa et al., 2013; Sadanandam et al., 2013). In
this study, we comprehensively analyzed the CMS of CRC
patients by using single-cell RNA-sequencing data. Malignant
cells were extracted based on CNV status and then assigned to
different CMS by using CMScaller. The fact that almost none of
the patients showed only one subtype of cells indicated that CRC
is a highly heterogeneous tumor, and a patient sample may
consist of cells with multiple subtypes. GSVA analysis showed
consistent pathway activity differences among the subtypes in
previous studies. In the present study, cell–cell communication
analysis based on ligand–receptor interactions confirmed that
CMS1 subtypes are more closely related to immune cells, and that
monocytes and macrophages play dominant roles in the CRC
tumor microenvironment. On the basis of the constructed GRNs
of each subtype, we identified that the critical TF ERG was
universally activated and upregulated in all CMS in

FIGURE 3 | Functional diversity of ERG (A) Venn plot of functional TFs of the four CMS (B) The importance of TFs among all four subtypes (C) The gene regulation
network of CRC samples (D) KEGG annotation of ERG-regulated genes in each subtype (E) Expression level and activity of ERG in normal samples and tumor samples
(F) Survival analysis of CRC patients on the basis of ERG expression. Lower expression of ERG was associated with a better clinical outcome.
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comparison with normal cells. The dysregulation of ERG
performs diverse roles by regulating the expression of different
downstream genes, which could be associated with the
heterogeneity of the gene regulatory networks and the

progression of CRC. Further analysis of the TCGA dataset
confirmed the poor prognostic phenotype of CMS4 and the
immune infiltration status of CMS1 and revealed the high
heterogeneity of the bulk tumor sample.

FIGURE 4 | Immune status among the four subgroups (A)Overall survival for the four CMS (B) Tumor mutation burden among the three subtypes (C) Immune-cell
infiltration among the three subtypes (D–F) The immune microenvironment among the three groups.

FIGURE 5 | Survival analysis based on the CMS index (A) CMS index of each CMS subgroup (B) Survival analysis of CRC patients based on the CMS index.
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Tumor heterogeneity has been the subject of many recent
studies and remains a topic of interest in cancer-related
research (McGranahan and Swanton, 2015; Andor et al.,
2016). Although the different mutation statuses in CRC
samples have been evaluated in some studies (Kim et al.,
2015; Sottoriva et al., 2015), research on molecular
heterogeneity within tumors remains limited. Previous
studies have revealed four CMS of CRC (Guinney et al.,
2015); however, the key regulators of these subtypes remain
unresolved. In this study, we constructed subtype-specific
GRNs to identify reliable key regulators. The findings
revealed that the ERG gene was ranked the highest among
the four subtypes, and it was dismissed in normal cells,
indicating its potential oncogenic function in CRC. ERG
shows nuclear and cytoplasmic expression in several
tissues, and has been identified as a key factor in prostate
cancer (Adamo and Ladomery, 2016). KEGG pathway
enrichment analysis revealed that the targets of ERG in
different subtypes participated in diverse roles. The
dysregulation of ERG influences diverse targets in different
CRC subtypes, which may be responsible for the intratumoral
heterogeneity in CRC. Moreover, ERG gene expression was
negatively correlated with patient outcome, indicating that
ERG might be a potential drug target for CRC.

Revealing molecular abnormalities and the regulatory
mechanisms in tumors based on single-cell sequencing
data analysis is a major trend in future research (Stuart
and Satija, 2019), and is something we have been working
towards. We have made some findings based on existing data
and identified a potential biomarker ERG gene, our article
still has some limitations. Although ERG gene was supported
as a key factor by experimental data in other cancer types,
more robust experimental validation is needed in CRC. We
will further validate the potential of ERG genes as drug
targets in CRC based on comprehensive experiments.
There is also some correlation between CMS subtypes and
clinical information as previous reported (Guinney et al.,
2015), but due to the limitations of single-cell data, the
number of patients is too small to correlate CMS subtypes
and clinical features well, and judgments from individual
patients alone are prone to bias. We will continue to collect
newly published data on single-cell sequencing of CRC and
integrate different datasets for a more comprehensive
analysis.
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