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ICER is requisite for Th17 differentiation
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Inducible cAMP early repressor (ICER) has been described as a transcriptional repressor

isoform of the cAMP response element modulator (CREM). Here we report that ICER is

predominantly expressed in Th17 cells through the IL-6–STAT3 pathway and binds to the Il17a

promoter, where it facilitates the accumulation of the canonical enhancer RORgt. In vitro

differentiation from naive ICER/CREM-deficient CD4þ T cells to Th17 cells is impaired but

can be rescued by forced overexpression of ICER. Consistent with a role of Th17 cells in

autoimmune and inflammatory diseases, ICER/CREM-deficient B6.lpr mice are protected

from developing autoimmunity. Similarly, both anti-glomerular basement membrane-induced

glomerulonephritis and experimental encephalomyelitis are attenuated in ICER/CREM-defi-

cient mice compared with their ICER/CREM-sufficient littermates. Importantly, we find ICER

overexpressed in CD4þ T cells from patients with systemic lupus erythematosus.

Collectively, our findings identify a unique role for ICER, which affects both organ-specific and

systemic autoimmunity in a Th17-dependent manner.
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T
he role of cAMP-response element modulator (CREM) in
T-cell differentiation is complex and not completely
understood. CREM has many alternatively spliced tran-

script variants, and their relative expression affects T-cell
differentiation. A relationship between CREM and Th17 cells
has been proposed1. Genome-wide analyses of Th17 transcription
regulatory network revealed the induction of CREM among other
genes, and silencing of CREM was associated with reduced Th17
differentiation2.

Numerous reports have claimed that interleukin (IL)-17 has an
important role in the pathogenesis of autoimmune diseases,
including systemic lupus erythematosus (SLE)1,3–5. Expression of
CREMa, a repressor isoform of CREM, is increased in CD4þ

T cells from SLE patients, and forced expression of CREMa in
human T cells enhances IL-17A expression6. Moreover,
mice overexpressing CREMa in T cells display increased
IL-17 production and severe skin inflammation, as well as mild
lupus-like disease7.

Inducible cAMP early repressor (ICER) is a splice variant of
CREM8. In contrast to other isoforms of CREM, ICER has an
alternative transcription initiation site and is induced by a unique
alternative promoter (P2)9. Because ICER has no transcriptional
activation domains, it functions as a powerful repressor of cAMP-
induced CRE-mediated transcription. Previous papers have
shown that ICER inhibits T-cell activation, Th1/Th2 cell
differentiation and suppresses the production of proinfla-
mmatory cytokines10,11; however, whether ICER is involved in
the generation of Th17 cells is not known.

Here we demonstrate that ICER is the predominant CREM
isoform expressed in Th17 cells in both mice and humans. ICER
is induced by IL-6 via STAT3 signalling and enhances RORgt
accumulation on the Il17a promoter. Mice deficient in ICER/
CREM develop less anti-glomerular basement membrane-
induced glomerulonephritis (AIGN) and experimental encepha-
lomyelitis (EAE), and B6.lpr ICER/CREM-deficient mice develop
less autoimmunity and lupus nephritis. The relevance of these
new findings in human disease is underscored by the increased
expression of ICER in T cells from SLE patients. Overall, ICER
controls organ-specific and systemic autoimmunity by controlling
IL-17 production.

Results
ICER is induced in Th17-polarized murine CD4 T cells. To
further understand the role of CREM in Th17 differentiation, we
asked which CREM isoforms are expressed during in vitro
Th17-polarizing conditions. Using western blotting we investi-
gated the expression of CREM isoform induction in ICER/
CREM-sufficient and -deficient T cells cultured under
Th17-polarizing conditions. We noted a o20 kDa CREM band to
be induced by day 3 (Fig. 1a, left) in ICER/CREM-sufficient but
not in ICER/CREM-deficient T cells (Fig. 1a, right first and
second lanes) pointing that this band was an isoform of CREM.
Because the size of the detected CREM was o20 kDa, we
assumed that it represented ICER. Because CREM has various
isoforms and it is impossible to identify specific isoform(s) by
conventional mass spectrometry, we generated plasmids that
overexpress each of the two typical ICER isoforms, that is, ICER
and ICERg. When we transfected these plasmids into HEK-293T
cells and compared the size of those molecules with the o20 kDa
CREM, both overexpressed ICER bands (majority ICERg) fit
perfectly to the o20 kDa CREM (Fig. 1a, right). We conclude
that the o20 kDa CREM induced in Th17 cells is an isoform of
ICERg or perhaps ICER.

Next we polarized T cells under Th17, Th1, Th2 and Treg
conditions, and we noted that ICER was present in significant

amounts only when cells were driven towards Th17 rather than
any of the other three conditions (Fig. 1b). To confirm that ICER
is induced under Th17 conditions, we cultured T cells from
B6.IL-17GFP mice under the same Th17 culture conditions and
sorted green fluorescent protein (GFP)-positive (IL-17A produ-
cing) and GFP-negative (IL-17A non-producing) cells. As seen in
Fig. 1c, ICER is expressed primarily by IL-17A-producing cells
and not by non-IL-17A-producing cells (Fig. 1c). We asked
whether IL-17A-producing T cells from MRL/lpr mice before
in vitro polarization also express ICER as a result of ongoing
stimulation in vivo. Indeed, as shown in Fig. 1d, IL-17A-
producing T cells from MRL/lpr mice expressed more ICER than
naive CD4 MRL/Mpj mice.

ICER/CREM deficiency reduces in vitro Th17 differentiation.
Although ICER is known to affect Th1 and Th2 in vitro polar-
ization, it remains unclear how ICER/CREM deficiency
contributes to Th17 and Treg differentiation. We assessed the
impact of ICER expression in T cells cultured in vitro under Th1,
Th2, Th17 and Treg polarized conditions. As shown in Fig. 2a,
IL-17A-producing cells were reduced in Th17-polarized
cells from ICER/CREM-deficient compared with those from
ICER/CREM-sufficient cells, yet, we could not see any significant
differences in T cells cultured under other polarizing conditions.
We determined the expression of each master transcription
factor, Gata3, Tbet, Rorc and Foxp3 in T cells cultured under Th1,
Th2, Th17 and Treg, respectively. We did not find any differences
in the expression of Tbet and Foxp3 but we found increased
expression of Gata3 and decreased Rorc gene expression in
ICER/CREM-deficient mice (Fig. 2b). These data are in agree-
ment with a previous report according to which ICER/CREM-
deficient T cells tend to differentiate towards Th2 more than
ICER/CREM-sufficient T cells11,12. Decreased numbers of
IL-17A-producing cells among Th17-polarized ICER/
CREM-deficient T cells were conserved when several IL-6
concentrations were used (Fig. 2c). When we measured the
expression of Th17-related genes, ICER/CREM-deficient T cells
displayed less Il23r, Il17a and Il17f expression (Fig. 2d).

To prove further the role of ICER in Th17 differentiation we
transfected ICER/CREM-deficient T cells with ICER and ICERg
expression vectors and polarized them under Th17 conditions. As
seen in Fig. 2g, transfection of either of the ICER isoforms
resulted in increased IL-17 GFPþ T-cell induction relative to
those that received empty plasmid, providing further support that
ICER promotes Th17 differentiation. Taken together, these data
indicate that ICER/CREM promotes Th17 differentiation,
whereas it inhibits Th2 differentiation and does not affect
Th1 and Treg differentiation.

ICER is induced by IL-6 through STAT3 signalling. Combi-
nation of IL-6 and transforming growth factor beta (TGFb) can
differentiate T cells into Th17 cells, where transduction of IL-6
receptor activity occurs through STAT3 and that of TGFb
through SMAD3 (refs 4,13). To address the relative impact of
these stimuli we added to anti-CD3 and anti-CD28 Ab-stimulated
T cells IL-6, TGFb, or IL-6 and TGFb. ICER was induced only if
IL-6 was present in the culture (Fig. 3a). This finding was
confirmed by blocking IL-6 or TGFb signal transduction by
adding STAT3 or SMAD3 inhibitors in T cells cultured under
polarizing conditions. The presence of STAT3 inhibitor inhibited
the induction of ICER in a dose-dependent manner while the
presence of a SMAD3 inhibitor had no effect (Fig. 3b). Further-
more, when we cultured naive CD4þ T cells from CD4creþ

STAT3fl/fl mice under Th17-polarizing conditions we could not
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detect any ICER induction proving the importance of STAT3
signalling in the induction of ICER.

To follow-up on this data, we searched for defined STAT3-
binding sites in the ICER/CREM gene. Within the
91 kbp sequence (chr18: 3,251,045–3,342,901) spanning �
15 kbp upstream to þ 5.2 kb downstream from the ICER/CREM
locus (MGI: 88495) one putative STAT3-binding sequence
(BS1: þ 586/þ 594, 30-TTCCTGGAA-50 from the ICER
transcription start site) was identified by using the match
module of gene regulation (http://www.gene-regulation.com).
To investigate whether STAT3 regulates ICER expression at the
transcriptional level we cloned the ICER promoter into a

luciferase reporter system. This promoter region includes a
CRE-binding site in the p2 promoter (� 116/� 53), two
putative CRE-binding sites (þ 573/þ 580; þ 639/þ 646) and
a putative STAT3-binding site (þ 586/þ 594) in the first intron
(Fig. 3d). As shown in Fig. 3e, the cloned promoter region that
defines the STAT3-binding site possessed significantly
increased transcriptional activity when the cells were cultured
under Th17-polarizing conditions compared with Th0-non-
polarized conditions. This activity was completely abrogated in
cells transfected with a mutated STAT3 site-mutated promoter
(Dþ 586) (Fig. 3d,e), indicating that IL-6 induces ICER
expression directly through STAT3 signal transduction.
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Figure 1 | ICER is expressed in IL-17-producing murine T cells. (a, left) CREM and b-actin expression in Th17-polarized ICER/CREMþ /þ murine CD4þ

T cells was measured by western blotting at the indicated time points. (a, right) CREM expression on day 3 in Th17-polarized ICER/CREMþ /þ murine

CD4þ T cells (right, far left), Th17-polarized B6.ICER/CREM� /� mice CD4þ T cells (right, second left), empty plasmid transfected HEK-293T cells (right,

third left), ICER-overexpressing plasmid-transfected HEK-293T cells (right, third right) or ICERg-overexpressing plasmid-transfected HEK-293Tcells (right,

second right) was measured by western blotting. Data are representative of four experiments. (b) ICER/CREM and b-actin expression on day 3 of Th0-,

Th1-, Th17- and Treg-polarized ICER/CREMþ /þ mice CD4þ T cells was measured by western blotting. Data are representative of three experiments.

(c) ICER/CREM and b-actin expression of FACS-sorted GFPþ (IL-17A-producing cells) or GFP� (IL-17A-non-producing cells) in Th17-polarized B6. IL-17A

GFP ICER/CREMþ /þ CD4þ T cells on day 3 were measured by western blotting. Data are representative of three experiments. (d) ICER and b-actin

expression of FACS-sorted IL-17A-producing cells from 18-week-old MRL/lpr mice or naive CD4 T cells from 18-week-old MRL/Mpj control mice was

determined by western blotting. A representative (of three) blot is shown (left) and densitometric readings from three experiments are shown on the right

(*Po0.05; mean±s.e.m., n¼4). See Supplementary Fig. 1 for uncropped scans of the western blot.
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Figure 2 | Compromised Th17 cell differentiation in ICER/CREM� /� mice. Naive CD4þ T cells from B6.ICER/CREMþ /þ mice or B6.ICER/CREM� /�

mice were polarized for 3 days as indicated condition. (a) Representative flow plots of intracellular expressions of IFNg or IL-4 and IL-17A (left), the

percentages of cells (right) and polarized in indicated condition were measured by flow cytometry (*Po0.05; mean±s.e.m., n¼ 3). See Supplementary

Fig. 2A for FACS gating strategy. (b) Real-time PCR analysis of indicated gene expressions in those differentiated cells, relative to b-actin (n¼ 3) (*Po0.05;

mean±s.e.m., n¼ 3). (c) The percentage of IL-17-producing cells in Th17-polarized T cells with different concentrations of IL-6. Cumulative results of four

independent experiments are shown (****Po0.0001, *Po0.05; mean±s.e.m., two-way analysis of variance (ANOVA)). (d–f) Real-time PCR analysis of

(d) Il17a, (e) Il17f and (f) Il23r in Th17-polarized T cells on day 3. A profile representative of three mice is shown (*Po0.05; mean±s.e.m., n¼ 3). (g) Empty

vector (Empty), ICER-expressing (ICER) or ICERg-expressing (ICERg) plasmids were transfected to Th17-polarized T cells from indicated strains of IL-17A

reporter mice on day1, and the percentage of IL-17-producing cells was measured by flow cytometry. A profile representative of three mice is shown on the

right (*Po0.05; mean±s.e.m., two-way ANOVA, Bonferroni, #Po0.05 two-tailed t-test, n¼ 3). See Supplementary Fig. 2B for FACS gating strategy.
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ICER enhances RORct accumulation. Because previously we
had shown that CREMa, which is a suppressive isoform of
CREM, bound directly to human IL-17A promoter and increased
human IL-17A promoter activity14, we considered that
ICER could affect similarly Il17a promoter activity. To this end
we generated FLAG-tagged ICER-overexpressing plasmids
(FLAG-ICER and FLAG-ICERg) and transfected them into
ICER/CREM-deficient T cells, which we polarized under Th17
conditions. Transfection of either of the ICER isoforms resulted
in increased IL-17 GFPþ T-cell induction compared with those
that received empty plasmid (Supplementary Fig. 2).
Furthermore, as shown in Fig. 3f, ICER accumulated at the
Il17a promoter region. The promoter activity of IL-17A decreased
after disruption of the CRE-binding site (� 116/� 109) in the
IL-17A promoter, suggesting the importance of this site in the
il-17A gene transcription (Fig. 3g,h). Finally, we asked whether
ICER binding influenced RORgt accumulation at the ROR-
binding element (� 116/� 111). We found that RORgt
accumulation at the ROR-binding element was increased when
we introduced ICERg-overexpressing vector compared with
empty vector (Fig. 3i). Collectively, in the process of Th17 cell

differentiation in vitro, ICER is induced by IL-6 though a STAT3
signalling pathway, binds directly to the CRE-binding site
of the IL-17A promoter and enriches RORgt accumulation at
the ROR-binding element.

ICER/CREM deficiency limits AIGN in mice. Given that
ICER/CREM deficiency had greatly impacted on in vitro Th17
cell differentiation, we proceeded to evaluate the relevance of
ICER/CREM expression in IL-17-dependent inflammatory
conditions. Because the development of kidney damage in AIGN
depends on Th17 cells, and IL-17 determines the severity of this
induced disease13,15, we induced AIGN disease in 9- to 11-week-
old male ICER/CREM-deficient and -sufficient mice. As shown in
Fig. 4a,b, histological sections from ICER/CREM-deficient mice
showed less glomerulonephritis, tubulointerstitial inflammation,
vasculitis and less protein cast formation compared with those in
ICER/CREM-sufficient mice. Accordingly, a significant reduction
in proteinuria was observed in ICER/CREM-deficient mice
compared with wild-type counterparts (Fig. 4c). Furthermore,
when we examined cell infiltration in the diseased kidney, ICER/
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CREM-deficient mice had fewer infiltrating CD4þ T (CD45þ

CD90.2þCD4þ cells; Fig. 4d), IL-17A- (CD45þCD90.2þ

CD4þ IL-17Aþ cells; Fig. 4e) and interferon gamma (IFNg)-
(CD45þCD90.2þCD4þ IFNgþ cells; Fig. 4f) producing cells
than ICER/CREM-sufficient mice. Collectively, ICER/CREM
deficiency protects against disease progression in a model of
AIGN.

ICER/CREM deficiency ameliorates EAE. To further document
the role of ICER/CREM in in vivo IL-17-dependent pathology, we
induced EAE in 9- to 11-week-old ICER/CREM-sufficient and
-deficient mice by immunizing them with myelin oligodendrocyte
glycoprotein (MOG35–55). Disease progression in ICER/CREM-
deficient mice was remarkably reduced including lower clinical
scores and less body weight changes in ICER/CREM-deficient
mice compared with wild-type littermates (Fig. 5b,c). Histological
sections of spinal cords showed significantly decreased cell infil-
tration and demyelization in ICER/CREM-deficient mice
(Fig. 5a). The reduction of infiltrating cells was confirmed by flow
cytometry analysis of T cells extracted from spinal cords of
diseased mice. Since the number of infiltrated T cells was reduced
in spinal cord of ICER/CREM-deficient mice, the absolute
numbers of CD4þ (CD45þCD90.2þCD4þ ; Fig. 5d), IL-17A-

(CD45þCD90.2þCD4þ IL-17Aþ ; Fig. 5e) and IFNg-producing
cells (CD45þCD90.2þCD4þ IFNgþ ; Fig. 5f) were reduced in
the spinal cords from ICER/CREM-deficient mice as compared
with those from the spinal cords from ICER/CREM-sufficient
counterparts, which reflects the decreased disease severity of
ICER/CREM-deficient mice. To confirm that this difference is
IL-17-related, we immunized ICER/CREM-sufficient and -defi-
cient mice with MOG35–55 and draining lymph nodes were
extracted on day 8. Isolated cells from the lymph nodes were
further cultured in ex vivo with MOG for 3 days. IL-17A/F and
IFNg concentration were measured by enzyme-linked immuno-
sorbent assay. As shown in Fig. 4, IL-17A/F production was
decreased in ICER/CREM-deficient mice, whereas IFNg
production was not significantly different (Fig. 5g,h). This further
points to the importance of ICER/CREM in the generation of
Th17 cells and the production of IL-17.

ICER/CREM deficiency abrogates lupus disease in B6.lpr mice.
CREMa, another repressor isoform of CREM, when over-
expressed in lupus-prone mice leads to increased lupus-like
autoimmune disease in a Th17-related manner7,16. Since ICER/
CREM deficiency affected Th17 differentiation in vitro and in two
different Th17-related disease models, we considered that ICER/
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CREM deficiency would delay or protect lupus-prone mice form
developing disease. We examined the effect of genetic ICER/
CREM depletion on the development of spontaneous lupus by
crossing ICER/CREM-deficient mice with lupus-prone B6.MRL-
Faslpr/J (B6.lpr) mice (both in the C57BL/6J background). We
studied female ICER/CREM-deficient B6.lpr mice at 28 weeks of
age and found that they displayed smaller spleens and cervical
lymph nodes compared with ICER/CREM-sufficient B6.lpr mice
(Fig. 6a,b). Immunostaining analysis revealed less deposition of
complement 3 (C3) in the glomeruli of ICER/CREM-deficient
B6.lpr compared with that in ICER/CREM-sufficient B6.lpr mice
(Fig. 6c). Serum levels of anti-dsDNA antibody, proteinuria and
double-negative T cells (CD3þCD4�CD8� cells), and serum

IL-17 were also significantly reduced in the ICER/CREM-
deficient mice (Fig. 6d–g). When we examined cell infiltration
in the kidneys, ICER/CREM-deficient mice had fewer
CD45þ -infiltrating lymphocytes (CD45þ per 105 events),
T cells (CD45þCD90.2þ ) and IL-17A-producing cells
(CD45þCD90.2þ IL-17Aþ ) than ICER/CREM-sufficient mice
(Fig. 6h). Furthermore, as shown in Fig. 6i, the survival curve
indicated a significantly prolonged lifespan in B6.lpr.ICER/
CREM-sufficient mice (median survival day; 279.5 days for
ICER/CREM-sufficient mice and 361.0 days for ICER/CREM-
deficient mice; P¼ 0.0044, Gehan–Breslow–Wilcoxon test).
Collectively, ICER/CREM deficiency rescues multiple lupus
characteristics and extends the lifespan of B6.lpr mice.
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ICER is increased in human Th17 cells and SLE T cells. Since
we found that ICER controls Th17-related experimental inflam-
mation and affects lupus-like manifestations of lupus-prone mice,
we sought evidence that it impacts inflammatory mechanisms in
human autoimmunity. We sorted peripheral blood mononuclear
cells from healthy donors into memory Th1 cells, memory Th2
cells, memory Th17 cells and Treg cells by flow cytometry and
compared ICER expression in each population (Fig. 7a). We did
not detect ICER expression in any of the T-cell subsets before

stimulation (Supplementary Fig. 4). However, after 12 h of acti-
vation with anti-CD3 and anti-CD28 Ab, ICER was present at
statistically significant amounts only in Th17 cells and not in any
of the other three subsets (Fig. 7b). Finally, we stimulated CD4þ

T cells with anti-CD3 and anti-CD28 Ab for 4 days and deter-
mined the levels of ICER expression by western blotting. As seen
in Fig. 7c, SLE T cells express more ICER than normal T cells.
Collectively these data suggest that ICER is induced not only in
murine but also in human Th17 cells and that its levels are
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increased in T cells from SLE patients, suggesting a role of ICER
in human disease.

Discussion
Although the canonical second messenger cAMP was first
described as a potent negative regulator of T-cell immune
function17, recent reports have shown conflicting effects of
cAMP-related transcription factors on signal transduction and
T-cell differentiation. For example, CREB, a well-characterized
cAMP-responding transcription factor, has been proposed as a
Th17-promoting factor18 while other studies have emphasized its
ability to enhance regulatory T-cell differentiation and Foxp3
transcription19,20. CREM, another important cAMP-related
transcription factor, is tightly regulated at the epigenetic and
post-transcriptional levels. Alternative splice variants of the
primary CREM gene generate isoforms that exert opposing
effects on target gene expression compared with the full-length
proteins17. It appears though that the relative abundance of
CREM splice variants in different tissues and organs accounts for
specificity of the control of target gene expression. Understanding

the expression and the function of the different CREM isoform(s)
during the development of an immune response is thus
warranted.

Here we demonstrate a novel important role of ICER in the
generation of Th17 cells and in the development of IL-17-
related diseases in mice, including AIGN, EAE and SLE.
Although previous reports suggested that ICER exerts a
suppressive function in effector T cells10,11, we provide
evidence demonstrating that ICER is the most prevalent
CREM splice variant expressed during Th17 differentiation
and is preferentially expressed during Th17 generation
compared with other T helper subsets. We show that ICER is
involved in Th17 T-cell generation and is implicated in Th17/
IL-17-dependent autoimmune diseases.

Th17 differentiation requires the presence of IL-6 and its
transducing signalling partner STAT3. Our findings provide
evidence showing that ICER is a downstream partner of the IL-6/
STAT3 signalling pathway. Moreover, induction of ICER during
Th17 differentiation is independent of TGFb. This suggests that
ICER may be involved in the induction of pathogenic Th17 T
cells, which are generated in the absence of TGFb (ref. 21).
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IL-17 is important for the development of human and murine
inflammatory pathology4,22–24. Here we present strong evidence
that ICER/CREM is required for the expression of both organ-
specific and systemic autoimmunity. Lack of ICER/CREM
mitigates the development of AIGN as measured histologically
and clinically. Importantly, the number of IL-17-producing cells
in the kidney of ICER/CREM knockout mice is significantly
diminished. Similarly, lack of ICER/CREM decreases EAE clinical
and histopathologic severity, as well as the frequency of
peripheral IL-17-producing cells. Of interest, T cells from
draining lymph nodes of ICER/CREM-deficient mice display
normal IFNg production, but a limited production of IL-17,
pointing out a predominant effect of ICER/CREM on Th17
differentiation. In the absence of ICER/CREM, B6.lpr lupus-
prone mice display less systemic autoimmunity (anti-dsDNA
antibody) and renal pathology. This phenotype is linked to
decreased serum levels of IL-17 levels and to reduced numbers of
IL-17-producing cells in the kidney. These results underscore the
importance of ICER/CREM in the production of IL-17 and
autoimmune disease pathogenesis25–27.

In humans we show that Th17 CD4þ T-cell-differentiated
subset express higher level of ICER than Th1, Th2 and Treg
subsets. More importantly, we observed increased expression of
ICER in CD4þ T cells isolated from SLE patients, underscoring
the translational value of our finding. SLE patients display
increased serum levels of IL-17A, expanded frequency of IL-17-
producing T cells in the peripheral blood and a massive
infiltration of Th17 cells in organs involved by the disease, like
the kidneys28,29. Furthermore, IL-17A levels correlate with SLE
disease activity. Sera from patients with SLE show increased levels
of IL-6 (ref. 30), and STAT3 (ref. 31) is elevated in SLE T cells,
abnormalities that could account for the augmented expression of
ICER.

Robust activation of the cAMP-related signalling pathway
inhibits T-cell activation17 while precise control of the ratio of
cAMP-related transcription factors favours a differentiation
towards a Th17 phenotype18. Since ICER negatively regulates
cAMP-related transcription, ICER may play a major role in this
fine-tuning process. Since it has been reported that levels of
cAMP are increased in ICER/CREM-deficient mice32, and cAMP
is known to regulate glycolysis and glycolysis plays a critical role
in Th17 cell differentiation, we speculate that ICER/CREM affects
the glycolysis pathway. In SLE, both CREMa overexpression and
induced ICER act in concert to promote a pro-inflammatory
Th17 phenotype, by allowing increased RORgt accumulation.

In conclusion, we have identified ICER as a novel requisite
determinant of Th17 cell generation. It acts downstream of
STAT3, and after its binding to the IL-17 promoter, it enhances
the accumulation of the canonical Il17 transcription factor
RORgt. Importantly, genetic elimination of all ICER/CREM
isoforms suppressed the development of organ-specific and
systemic autoimmunity. The translational importance of our
work is highlighted by our findings showing that ICER expression
is increased in SLE T cells, as well as in human Th17 memory
cells. Our findings identify a unique role for ICER, which impacts
both organ-specific and systemic autoimmunity in a Th17-
dependent manner.

Methods
Human samples and cell lines. Patients who fulfilled the criteria for the diagnosis
of SLE as set forth by the American College of Rheumatology33 and healthy
individuals were enrolled. The BIDMC Institutional Review Board approved the
study protocol (2006-P-0298). Informed consent was obtained from all study
subjects. The disease activity for each patient was calculated using the clinico-
laboratory index SLE Disease Activity Index 34. Age-, sex- and ethnicity-matched
healthy individuals were chosen as controls (Supplementary Table 1). Peripheral
venous blood was collected in heparin-lithium tubes, and total human T cells were

purified as described previously35. In short, T cells were isolated by negative
selection (RosetteSep, Stem Cell Technologies) before density gradient purification
(Lymphoprep, Nycomed). HEK-293T cells were purchased from American Type
Culture Collection (ATCC; Manassas, VA) and has been tested for mycoplasma by
ATCC.

Mice. SV129/Bl6.ICER/CREM� /�mice were originally cloned by Guenther
Schuetz, DKFZ Heidelberg36. Animals were crossed to C57BL/6J mice for over nine
generations to transfer the ICER/CREM� /� locus to the B6 background. Female
B6.MRL-Faslpr/J (B6.lpr), C57BL/6-Il17atm1Bcgen/J (IL-17GFP), STOCK Tg
(Cd4-cre)1Cwi/BfluJ (CD4creþ ), MRL/MpJ-Faslpr/J and B6.129S1-Stat3tm1Xyfu/J
(STAT3fl/fl) mice were purchased from The Jackson Laboratory. B6.lpr.ICER/
CREM� /� mice were made by crossing B6.ICER/CREM� /� mice with B6.lpr
mice. CD4creþ . STAT3fl/fl mice were made by crossing STAT3fl/fl mice with
CD4creþ mice. B6.ICER/CREM� /� .IL-17GFP mice were made by crossing
B6.ICER/CREM� /� mice with IL-17GFP mice. Animals were killed at the end of
their 8–12 weeks of life for in vitro culture experiments and indicated week for
in vivo experiments. All mice were maintained in an SPF animal facility (Beth Israel
Deaconess Medical Center). Experiments were approved by the Institutional
Animal Care and Use Committee of BIDMC. All mice were genotyped to validate
claimed strain.

Single-cell isolation. Spleens and lymph nodes were excised and single-cell
suspensions were obtained. Kidneys were perfused with PBS and digested with
collagenase type IV (100 mg ml� 1) (Worthington Biochemical) in Hank’s balanced
salt solution (HBSS) for 30 min (37 �C). Infiltrating lymphocytes in spinal cords
were isolated as previously described37. Briefly, spinal cords were digested with
collagenase type IV (100 mg ml� 1) in HBSS for 20 min (37 �C). Cell suspensions
from digested spinal cords were subjected to density separation using Optiprep
density gradient medium (Sigma-Aldrich) followed by flow cytometry.

In vitro T-cell differentiation. Naive CD4þ T cells were purified by mouse
CD4þCD62Lþ T Cell Isolation Kit II (Miltenyi Biotec). Purified naive T cells were
stimulated with plate-bound goat anti-hamster antibodies, soluble anti-CD3
(0.25 mg ml� 1,145-2C11; Biolegend) and anti-CD28 (0.5 mg ml� 1, 37.51; Biole-
gend) for Th0-non-polarized condition culture. In addition to Th0-non-polarized
condition, following stimulation was used for each polarized condition: IL-12
(20 ng ml� 1; R&D Systems) and anti-IL-4 (10mg ml� 1, C17.8; Biolegend) for Th1;
IL-4 (100 ng ml� 1; R&D Systems), anti-IL-12 (10 mg ml� 1; Biolegend) and anti-
IFNg (10mg ml� 1, XMG1.2; Biolegend) for Th2; IL-6 (3 ng ml� 1 or indicated
concentration; R&D Systems), TGF-b1 (0.3 ng ml� 1; R&D Systems), anti-IL-4
(10 mg ml� 1, C17.8; Biolegend) and anti-IFNg (10 mg ml� 1; XMG1.2; Biolegend)
for Th17; and IL-2 (20 ng ml� 1; R&D Systems), TGF-b1 (3 ng ml� 1; R&D
Systems), anti-IL-4 (10 mg ml� 1, C17.8; Biolegend) and anti-IFNg (10 mg ml� 1,
XMG1.2; Biolegend) for Tregs. For signal transduction studies, STA21 (STAT3
inhibitor; Santa Cruz Biotechnology) and SMAD3 inhibitor (SIS3; Santa Cruz
Biotechnology) were added to cultures on day 0.

Western blotting. Cell lysate was separated on NuPAGE 4–12% Bis-Tris Gel
(Life Technologies) and proteins were transferred to a nitrocellulose membrane.
Following antibodies were used: anti-CREM1 Ab (clone X-12, Santa Cruz, 1:500);
Stat3 Mouse mAb (clone 124H6, Cell Signaling, 1:500); Phospho-Stat3 (Tyr705)
Mouse mAb (clone 3E2, Cell Signaling, 1:500); anti-b-actin (clone AC-74, Sigma-
Aldrich, 1:10,000); goat anti-mouse IgG coupled with horseradish peroxidase
(catalogue# sc-2005, Santa Cruz, 1:3,000); and goat anti-rabbit IgG coupled with
horseradish peroxidase (catalogue# sc-2004, Santa Cruz, 1:3,000). The ECL system
(Amersham) was used for detection.

Flow cytometry. Following antibodies were used for flow cytometry analysis: for
mouse, CD4 (clone GK1.5); CD8a (clone 53-6.7, 1:100); CD19 (clone 605, 1:100);
CD25 (clone PC61, 1:100); CD44 (clone IM7, 1:100); CD45 (clone 30-F11, 1:100);
CD62L (clone MEL-14, 1:100); CD90.2 (clone 53-2.1, 1:100); IL-17A (clone JC11-
18H10.1, 1:50); IFNg (clone XMG1.2, 1:50); and IL-4 (clone 11B11, 1:50) were
purchased from BioLegend. CD3a (clone 17A2, 1:100) and Foxp3 (clone FJK-16s,
1:50) were purchased from eBioscience. For human, CD45RA (clone HI100, 1:100),
CD25 (clone BC96, 1:100), CD127 (clone A019D5, 1:100), CCR4 (clone L291H4,
1:100), CCR6 (clone G034E3, 1:100) and CXCR3 (clone G025H7, 1:100) were
purchased from BioLegend. A CD4 (clone SK3, 1:100) was purchased from
eBioscience. A 7AAD (surface) or a Zombie Aqua Fixable Viability Kit (intracel-
lular) staining was performed for eliminating dead cells (BioLegend). Surface
staining was performed on ice for 20–30 min. Absolute cell numbers were
calculated on the basis of the percentage of each cell population. For intracellular
staining, collected cells were stimulated for 4 h in culture medium with phorbol
myristate acetate (500 ng ml� 1; Sigma-Aldrich), ionomycin (1.4 mg ml� 1; Sigma-
Aldrich) and monensin (1 ml ml� 1; BD Biosciences), except Foxp3 detection.
Cytofix/Cytoperm and Perm/Wash buffer (BD Biosciences; for IL-17A/IL-4/IFNg
staining) or Mouse Regulatory T-cell staining kit (eBioscience; for Foxp3 staining)
were used for fixation and permeabilization. All flow cytometry data were acquired

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12993

10 NATURE COMMUNICATIONS | 7:12993 | DOI: 10.1038/ncomms12993 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


on a BD LSRII and analysed with FlowJo. All procedures were performed according
to the manufacturer’s instructions.

Western blotting for formalin-fixed and FACS-sorted cells. Cells from
18-week-old MRL/lpr mice and MRL/Mpj mice spleen and lymph node were
stimulated in culture medium contains phorbol myristate acetate (500 ng ml� 1;
Sigma-Aldrich), ionomycin (1.4 mg ml� 1; Sigma-Aldrich) and monensin
(1ml ml� 1; BD Biosciences) for 3 h. Collected cells were stained by a Zombie Aqua
Fixable Viability Kit, CD4, CD8, CD90.2, CD19, CD62L antibodies (for surface)
and IL-17A antibodies (for intracellular) as described before. After staining,
ZA-CD19-CD62L-CD8-Th1.2þ IL-17þ cells (for IL-17-producing cells) and
ZA-CD19-CD62LþCD8-CD4þTh1.2þ IL-17- cells (for naive CD4 T cells) were
subsequently sorted by BD FACS Aria II (five lasers 355, 405, 488, 561 and 640 nm;
BD Bioscience). Sorted cells were washed with PBS, then lysed in Extraction
Buffer EXB Plus (Qproteome FFPE Tissue Kit, Qiagen), which contains 6%
b-mercaptoethanol (Sigma-Aldrich), on ice for 5 min, followed by heat denatura-
tion at 100 �C for 20 min. Then samples were incubated at 80 �C for 2 h with
vortexing every 2 min, followed by centrifuging them for 15 min in cold room.
A volume of 5 ml of NuPAGE LDS Sample Buffer (4� ) (Invitrogen) was added to
the supernatant containing the extracted proteins.

ELISA. Following ELISA kits were used: ELISA MAX Deluxe SET Mouse IL-17A/F;
IFN-g and IL-2 (BioLegend); mouse anti-dsDNA IgG ELISA (Alpha Diagnostic
Intl. Inc.); Parameter Creatinine Kit (R&D Systems); and Mouse Albumin ELISA
Quantitation Set (Bethyl Laboratories). All procedures were performed according to
the manufacturer’s instructions.

RNA isolation and quantitative PCR. Total RNA was prepared using the Qiagen
RNeasy Mini kit (Qiagen) and RNA was reverse transcribed into cDNA using the
EcoDry Premix (Oligo dT) (Clontech) according to the manufacturer’s instruc-
tions. Quantitative PCR was performed by using LightCycler 480 SYBR Green
I Master (Roche). Target genes were detected using intron-spanning primers.
Gene expression was assessed by comparative CT method. Primers information is
described in the Supplementary Table 2.

ICER subset-overexpressing vectors. Plasmid contains wild-type ICER coding
sequence (corresponding to GenBank. AJ311667.1) was kindly gifted by Dr Shogo
Endo38, and subcloned into pIRES2-DsRed-Express vector (Clontech Laboratories
Inc.). Following oligonucleotide sequences were used: 50-TGATCTCGAGCATGG
CTGTAACTGGAGATG-30 ; and 50-TGCTGGATCCCGTTACTCTACTTTATGG
CAAT-30 . ICERg overexpression vector and N0-FLAG-tagged overexpressing
vectors were generated using Q5 site-directed mutagenesis kit (New England
Biolabs). Following oligonucleotide sequences were used: 50-CTGCCACAGGT
GACATGCCAAC-30 ; and 50-CAGTTTCATCTCCAGTTACAGC-30 . For
generating N0-FLAG-tagged overexpressing plasmid, FLAG sequence
(DYKDDDDK) were inserted N0 terminal of ICER-overexpressing plasmid or
ICERg-overexpressing plasmid. Following oligonucleotide sequences were used:
50-GACGATGACAAGGCTGTAACTGGAGATGAAAC-30; and 50-ATCCT
TGTAGTCCATCCTCGAGATCTGAG-30 . All constructs were validated by DNA
sequencing. All procedures were performed according to the manufacturer’s
instructions.

Transfection of overexpressing vectors. For transfection to HEK-293T cells,
plasmids were transfected to 60–80% confluent HEK-293T cells by poly-
ethylenimine ‘Max’ (Polysciences, Inc.) according the manufacturer’s protocol and
cultured 2 days in culture media. For ICER-overexpressing experiments in murine
primary T cells, cells were collected 1 day after starting culture and empty vector,
ICER-overexpressing plasmid, or ICERg-overexpressing plasmid were transfected
using the Amaxa Mouse T Cell Nucleofector Kit with the X-001 programme
(Amaxa) according to the manufacturer’s protocol. The supernatant of each culture
was saved in 4 �C during transfection and recovery. After 4 h recovery at 37 �C,
cells were again cultured in those supernatant for 2 days. The efficacy of the
transfection always exceeds 10%.

Luciferase reporter constructs. To generate the mouse ICER P2 promoter
luciferase promoter construct, we TA-cloned the p2 promoter from genomic
DNA of C57BL/6 mouse using KOD XL DNA Polymerase (Thomas Scientific)
and pGEM-T easy Vector System (Promega). Following primers were used:
Ms_pICER_F, 50-CACTGTGGAGCCTGGTATGT-30 ; and MS_pICER_R, 50-CCC
ACTTGTCACTAGGCAGG-30 . Using TA-cloned mouse ICER P2 promoter, a
PCR was performed with primers Mlu1_mpICER_F; 50-GTTAACGCGTCACTG
TGGAGCCTG-30 and Bgl_mpICER_R; 50-CGATAGATCTCCCACTTGTCA
CTAG-30 for adding restriction enzyme sites (Mlu1 and Bgl2 for 50-end and 30-end,
respectively). Then this amplicon was ligated into pGL3 vector using T4 DNA
Ligase (M202; New England BioLabs) to generate ICER_p2_pGL3_vector.
Q5 site-directed mutagenesis kit (New England BioLabs) was used for site-directed
mutagenesis. Following DNA oligonucleotide was used for site-directed

mutagenesis at the þ 586/þ 594 STAT3-binding site (TTCCTGGAA) within
ICER_p2_pGL3_ vector; 50-TCGTGTTTCAGCGGGGAA-3 and 50-ATGTAA
TGACGTCAGCCC-30 . The pGL4 mIL-17A promoter (pGL4 mIL-17 0.6 kb
promoter) was a gift from Warren Strober (Addgene plasmid # 20126)39. Q5
site-directed mutagenesis kit (New England BioLabs) was used for site-directed
mutagenesis. Following DNA oligonucleotide was used for site-directed
mutagenesis at the � 116/� 109 CRE site (TGACCTCA) within pGL4 mIL-
17A_vector; 50-TTTGAGGATGGAATCTTTACTCAAATG-30 and 50-
GCACAGAACCACCCCTTT-30. All Sequences were verified (Genewiz). All
procedures were performed according to the manufacturer’s instructions.

Luciferase assay. Luciferase reporter plasmid was transfected using the Amaxa
Mouse T Cell Nucleofector Kit with the X-001 programme (Amaxa) on day 2 of
culture. Each reporter experiment included 200 ng renilla luciferase construct as an
internal control. Luciferase activity was quantified using the Promega Dual Luci-
ferase Assay System (Promega) on day 3 of culture according to the manufacturer’s
instructions.

Chromatin immunoprecipitation assays. Freshly isolated naive CD4þ T cells
from B6. ICER/CREM� /� mice were cultured in Th17 polarizing condition for 3
days. Plasmids were transfected as described above on day 1. Collected cells were
lysed and ChIP assay was performed using MAGnify Chromatin Immunopreci-
pitation System (Invitrogen). For RORgt immuno-precipitation, Ds-Redþ vector-
transfected cells were sorted by flow cytometry before ChIP assay. ANTI-FLAG
antibody produced in rabbit (Sigma-aldrich), and anti-Human/Mouse ROR
gamma (t) Purified AFKJS-9; eBioscience) were used for immunoprecipitation.
Following primer pairs were used: 50-CGTCATAAAGGGGTGGTTCT-30 and
50-TTACGTCAAGAGTGGGTTGG-30 for CRE/ROR-binding element; and
50-GAACTGGAAATGAAACCTTTGG-30 and 50-TTTCATCACAGCAACCCT
TC-30 for non-CRE site. All procedures were performed according to the
manufacturer’s instructions.

AIGN model. A volume of 50 ml Freund’s Incomplete Adjuvant (Thermo Scien-
tific), 250 mg HR37a Mycobacterium tuberculosis powder (Difco) and 0.1 mg ml� 1

Rabbit IgG (Pierce) were emulsified and injected in each flank subcutaneously in
8-week-old male mice 3 days before starting the experiment. On day 0, 100 ml
Rabbit anti-mouse GBM serum (kindly gifted from T. N. Mayadas, Pathology of
Harvard medical school, Boston) was injected intravenously. Urine samples were
collected on day 0, 7, 14 and 21 of the experiment, and urinary albumin and
creatinine were quantified by ELISA as above. On day 21, kidneys were excised
from the mice and processed for flow cytometry and histology. Clincial and
histologic scores were evaluated in a blind manner.

EAE disease model. On day 0, 8-week-old male mice were immunized
subcutaneously with 50 mg MOG35–55 peptide emulsified in complete Freund’s
adjuvant (Sigma) containing 4 mg ml� 1 M. tuberculosis extract (H37Ra; Difco)
distributed between the two hind flanks. On days 0 and 2, 150 ng per mouse
pertussis toxin (List Biological Laboratories) was given by intraperitoneal injection.
Mice were monitored and weighted daily until day 28 of the experiment, and
clinical scores were given as follows: 1, limp tail; 2, hindlimb paresis; 3, hindlimb
paralysis; 4, tetraplegia; and 5, moribund. Clinical and histologic scores were
evaluated in a blind manner.

Priming assay for MOG immunizations. Mice were immunized with 50 mg
MOG35–55 peptide emulsified in complete Freund’s adjuvant into both flanks. Eight
days after the immunization, inguinal lymph nodes were excised.

Histological staining and analysis. For EAE models, sections from 10% formalin-
fixed spinal cords were stained with haematoxylin and eosin and luxol fast blue.
Histology was scored by an investigator blinded to experimental group. Spinal cord
sections were scored by an investigator blinded to experimental group as follows: 0,
no infiltration (o50 cells); 1, mild infiltration of nerve or nerve sheath (50–100
cells); 2, moderate infiltration (100–150 cells); 3, severe infiltration (150–200 cells);
and 4, massive infiltration (4200 cells). For AIGN model and B6.lpr mice, sections
from 10% formalin-fixed kidneys were stained with periodic acid-schiff. Renal
lesions were evaluated blindly by a nephro-pathologist as described previously14 for
B6.lpr mice or criteria described in http://www.bolderbiopath.com/systemic-lupus-
erythematosus-sle/ for AIGN model. Sections of frozen kidneys were stained with
Hoechst 33258 (Life technologies; 1:1,000) and Fluorescein-conjugated goat IgG to
mouse complement C3 (MP Biomedicals; 1:200). Then specimens were analysed
with a Nikon Eclipse Ti confocal microscope. Images were analysed with EZ-C1
v.3.7 and Image J.

Assessment of ICER expression from isolated human T cells. Isolated
T cells from SLE patients and healthy controls were stimulated with pre-coated
1 mg ml� 1 anti-CD3 (clone OKT3, BioXcell) and 1 mg ml� 1 anti-CD28 (clone 28.2,
BioLegend) for 4 days.
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Human primary CD4þ lymphocyte subset sorting. Peripheral blood mono-
nuclear cells were isolated from Trima-collar (Blood Donor Center, Boston
Children Hospital) by density gradient centrifugation (Lymphoprep, Nycomed).
CD4þ T cells were enriched using CD4þ T-cell isolation kit II (Miltenyi Biotec).
After staining, primary lymphocyte subsets were subsequently sorted by BD FACS
Aria II (five lasers 355, 405, 488, 561 and 640 nm; BD Bioscience).

Statistics. Samples sizes were chosen based on previous experience in our
laboratory. Statistical analyses were performed in GraphPad Prism version 6.0
software. Statistical significance was determined by t-tests (two-tailed) for two
groups or one-way analysis of variance with Bonfferoni’s multiple comparisons
tests for three or more groups. For AIGN model and EAE model, clinical scores
and body weight changes of each treatment group were compared using two-way
analysis of variance. P values of o0.05 were considered statistically significant. No
data were excluded from the statistical analysis.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.

References
1. Crispin, J. C. & Tsokos, G. C. Interleukin-17-producing T cells in lupus. Curr.

Opin. Rheumatol. 22, 499–503 (2010).
2. Ciofani, M. et al. A validated regulatory network for Th17 cell specification. Cell

151, 289–303 (2012).
3. Harrington, L. E. et al. Interleukin 17-producing CD4þ effector T cells

develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat.
Immunol. 6, 1123–1132 (2005).

4. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V. K. IL-17 and Th17 Cells. Annu.
Rev. Immunol. 27, 485–517 (2009).

5. Tsokos, G. C. Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110–2121
(2011).

6. Rauen, T., Hedrich, C. M., Juang, Y. T., Tenbrock, K. & Tsokos, G. C. cAMP-
responsive element modulator (CREM)alpha protein induces interleukin 17A
expression and mediates epigenetic alterations at the interleukin-17A gene
locus in patients with systemic lupus erythematosus. J. Biol. Chem. 286,
43437–43446 (2011).

7. Lippe, R. et al. CREMalpha overexpression decreases IL-2 production, induces
a T(H)17 phenotype and accelerates autoimmunity. J. Mol. Cell Biol. 4,
121–123 (2012).

8. Foulkes, N. S. & Sassone-Corsi, P. More is better: activators and repressors
from the same gene. Cell 68, 411–414 (1992).

9. Foulkes, N. S., Borrelli, E. & Sassone-Corsi, P. CREM gene: use of alternative
DNA-binding domains generates multiple antagonists of cAMP-induced
transcription. Cell 64, 739–749 (1991).

10. Bodor, J., Spetz, A. L., Strominger, J. L. & Habener, J. F. cAMP inducibility of
transcriptional repressor ICER in developing and mature human T
lymphocytes. Proc. Natl Acad. Sci. USA 93, 3536–3541 (1996).

11. Bodor, J. et al. Suppression of T-cell responsiveness by inducible cAMP early
repressor (ICER). J. Leukoc. Biol. 69, 1053–1059 (2001).

12. Verjans, E. et al. The cAMP response element modulator (CREM) regulates
TH2 mediated inflammation. Oncotarget 6, 38538–38551 (2015).

13. Crispin, J. C. et al. Cutting edge: protein phosphatase 2A confers susceptibility
to autoimmune disease through an IL-17-dependent mechanism. J. Immunol.
188, 3567–3571 (2012).

14. Koga, T. et al. CaMK4-dependent activation of AKT/mTOR and CREM-alpha
underlies autoimmunity-associated Th17 imbalance. J. Clin. Invest. 124,
2234–2245 (2014).

15. Pisitkun, P. et al. Interleukin-17 cytokines are critical in development of fatal
lupus glomerulonephritis. Immunity 37, 1104–1115 (2012).

16. Ohl, K., Wiener, A., Schippers, A., Wagner, N. & Tenbrock, K. Interleukin-2
treatment reverses effects of cAMP-responsive element modulator alpha-over-
expressing T cells in autoimmune-prone mice. Clin. Exp. Immunol. 181, 76–86
(2015).

17. Mosenden, R. & Tasken, K. Cyclic AMP-mediated immune regulation—
overview of mechanisms of action in T cells. Cell. Signal. 23, 1009–1016 (2011).

18. Hernandez, J. B. et al. The CREB/CRTC2 pathway modulates autoimmune
disease by promoting Th17 differentiation. Nat. Commun. 6, 7216 (2015).

19. Kim, H. P. & Leonard, W. J. CREB/ATF-dependent T cell receptor-induced
FoxP3 gene expression: a role for DNA methylation. J. Exp. Med. 204,
1543–1551 (2007).

20. Ogawa, C. et al. TGF-beta-mediated Foxp3 gene expression is cooperatively
regulated by Stat5, Creb, and AP-1 through CNS2. J. Immunol. 192, 475–483
(2014).

21. McGeachy, M. J. et al. TGF-beta and IL-6 drive the production of IL-17 and
IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat. Immunol.
8, 1390–1397 (2007).

22. Ooi, J. D., Kitching, A. R. & Holdsworth, S. R. Review: T helper 17 cells: their
role in glomerulonephritis. Nephrology (Carlton) 15, 513–521 (2010).

23. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by
producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

24. Kim, J. & Krueger, J. G. The immunopathogenesis of psoriasis. Dermatol. Clin.
33, 13–23 (2015).

25. Moulton, V. R. & Tsokos, G. C. T cell signaling abnormalities contribute to
aberrant immune cell function and autoimmunity. J. Clin. Invest. 125,
2220–2227 (2015).

26. Amarilyo, G., Lourenco, E. V., Shi, F. D. & La Cava, A. IL-17 promotes murine
lupus. J. Immunol. 193, 540–543 (2014).

27. Apostolidis, S. A., Lieberman, L. A., Kis-Toth, K., Crispin, J. C. & Tsokos, G. C.
The dysregulation of cytokine networks in systemic lupus erythematosus.
J. Interferon Cytokine Res. 31, 769–779 (2011).

28. Kyttaris, V. C., Zhang, Z., Kuchroo, V. K., Oukka, M. & Tsokos, G. C. Cutting
edge: IL-23 receptor deficiency prevents the development of lupus nephritis in
C57BL/6-lpr/lpr mice. J. Immunol. 184, 4605–4609 (2010).

29. Crispin, J. C. et al. Expanded double negative T cells in patients with systemic
lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181,
8761–8766 (2008).

30. Abdel Galil, S. M., Ezzeldin, N. & El-Boshy, M. E. The role of serum IL-17 and
IL-6 as biomarkers of disease activity and predictors of remission in patients
with lupus nephritis. Cytokine 76, 280–287 (2015).

31. Harada, T. et al. Increased expression of STAT3 in SLE T cells contributes
to enhanced chemokine-mediated cell migration. Autoimmunity 40, 1–8
(2007).

32. Vang, A. G. et al. Regulatory T-cells and cAMP suppress effector T-cells
independently of PKA-CREM/ICER: a potential role for Epac. Biochem. J. 456,
463–473 (2013).

33. Hochberg, M. C. Updating the American College of Rheumatology revised
criteria for the classification of systemic lupus erythematosus. Arthritis Rheum.
40, 1725 (1997).

34. Bombardier, C., Gladman, D. D., Urowitz, M. B., Caron, D. & Chang, C. H.
Derivation of the SLEDAI. A disease activity index for lupus patients.
The Committee on Prognosis Studies in SLE. Arthritis Rheum. 35, 630–640
(1992).

35. Sunahori, K., Juang, Y. T. & Tsokos, G. C. Methylation status of CpG islands
flanking a cAMP response element motif on the protein phosphatase 2Ac alpha
promoter determines CREB binding and activity. J. Immunol. 182, 1500–1508
(2009).

36. Blendy, J. A., Kaestner, K. H., Weinbauer, G. F., Nieschlag, E. & Schutz, G.
Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature
380, 162–165 (1996).

37. Nguyen, H. X., Beck, K. D. & Anderson, A. J. Quantitative assessment of
immune cells in the injured spinal cord tissue by flow cytometry: a novel use for
a cell purification method. J. Vis. Exp. 50, e2698 (2011).

38. Han, W. et al. [Reduced locomotor sensitization induced by methamphetamine
and altered gene expression in ICER overexpressing mice]. Nihon Shinkei
Seishin Yakurigaku Zasshi 31, 79–80 (2011).

39. Zhang, F., Meng, G. & Strober, W. Interactions among the transcription factors
Runx1, RORgammat and Foxp3 regulate the differentiation of interleukin
17-producing T cells. Nat. Immunol. 9, 1297–1306 (2008).

Acknowledgements
This work was supported by NIH grant (NIAID #R37AIO49954 to G.C.T., and
#R01AR060849 to V.K.), 2011 Japan Sumitomo Life Welfare and Culture Foundation
Subsidy for Invitation of Overseas Scientists (to N.Y.), 2013 Japan Society for the
promotion of science postdoctoral fellowships for research abroad (to N.Y.) and SICPA
Foundation grant (to D.C.). We thank Lucia Novelli and Robin Bosse for technical
assistance. We thank Cox Terhorst for reviewing the manuscript critically and providing
constructive comments.

Author contributions
N.Y. designed all research studies, conducted experiments, acquired data, analysed data
and wrote the manuscript; G.C.T. designed research studies, conducted experiments and
wrote the manuscript; D.C. and M.P.K. acquired and analysed human data; M.M., K.O.,
T.K. and M.K. acquired in vivo murine data (EAE, B6.lpr); F.R. and J.C.C. acquired and
analysed data for the AIGN experiment; T.N.M. provided rabbit anti-mouse GBM serum
and analysed AIGN data; V.C.K. provided CD4creþSTAT3fl/fl mice and human samples;
K.T. provided ICER/CREM-deficient mice; S.J.B. generated vectors and edited the
manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12993

12 NATURE COMMUNICATIONS | 7:12993 | DOI: 10.1038/ncomms12993 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications


Competing financial interests: The authors declare no competing financial
interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Yoshida, N. et al. ICER is requisite for Th17 differentiation.
Nat. Commun. 7, 12993 doi: 10.1038/ncomms12993 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12993 ARTICLE

NATURE COMMUNICATIONS | 7:12993 | DOI: 10.1038/ncomms12993 | www.nature.com/naturecommunications 13

http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	ICER is induced in Th17-polarized murine CD4 T cells
	ICERsolCREM deficiency reduces in™vitro Th17 differentiation
	ICER is induced by IL-6 through STAT3 signalling

	Figure™1ICER is expressed in IL-17-producing murine T cells.(a, left) CREM and beta-actin expression in Th17-polarized ICERsolCREM+sol+ murine CD4+ T cells was measured by western blotting at the indicated time points. (a, right) CREM expression on day 3 
	Figure™2Compromised Th17 cell differentiation in ICERsolCREM-sol- mice.Naive CD4+ T cells from B6.ICERsolCREM+sol+ mice or B6.ICERsolCREM-sol- mice were polarized for 3 days as indicated condition. (a) Representative flow plots of intracellular expression
	ICER enhances RORgammat accumulation
	ICERsolCREM deficiency limits AIGN in mice

	Figure™3ICER is induced by IL-6 via STAT3 and, binds to the IL-17A promoter.(a-c) CREM and beta-actin expression in (a) B6 naive CD4+ T cells cultured in the presence of indicated stimulations on day2, (b) Th17-polarized B6 naive CD4+ T cells cultured in 
	ICERsolCREM deficiency ameliorates EAE
	ICERsolCREM deficiency abrogates lupus disease in B6.lpr mice

	Figure™4ICERsolCREM-sol- mice are resistant to AIGN.Mice were immunized with rabbit IgG in complete FreundCloseCurlyQuotes adjuvant (CFA) (day -3) and then injected intravenously with 200thinspmgrl of rabbit nephrotoxic serum (day 0). (a) Representative i
	Figure™5ICERsolCREM-sol- mice are resistant to EAE.EAE was induced in ICERsolCREM+sol+ and ICERsolCREM-sol- mice by immunization with MOG35-55 emulsified in CFA. (a) Spinal cord collected at day 14 from indicated mice were stained with haematoxylin and eo
	ICER is increased in human Th17 cells and SLE T cells

	Figure™6B6.lpr.ICERsolCREM-sol- mice display less autoimmunity.(a) B6.lpr.ICERsolCREM+sol+ (n=7) and B6.lpr.ICERsolCREM-sol- (n=8) mice were killed at 28 weeks of age. Kidney, spleen (n=7 and 8 mice, respectively) and cervical lymph nodes (n=6 per group) 
	Discussion
	Figure™7Human Th17 cells and SLE T cells express increased amounts of ICER.(a) The gating strategy used to define and sort the primary lymphocytes memory subsets: Th1 (CD4+CD45RA-CXCR3+); Th2 (CD4+CD45RA-CCR6-CCR4+CXCR3-); Th17 (CD4+CD45RA-CCR6+CCR4+); an
	Methods
	Human samples and cell lines
	Mice
	Single-cell isolation
	In vitro T-—cell differentiation
	Western blotting
	Flow cytometry
	Western blotting for formalin-fixed and FACS-sorted cells
	ELISA
	RNA isolation and quantitative PCR
	ICER subset-overexpressing vectors
	Transfection of overexpressing vectors
	Luciferase reporter constructs
	Luciferase assay
	Chromatin immunoprecipitation assays
	AIGN model
	EAE disease model
	Priming assay for MOG immunizations
	Histological staining and analysis
	Assessment of ICER expression from isolated human T cells
	Human primary CD4+ lymphocyte subset sorting
	Statistics
	Data availability

	CrispinJ. C.TsokosG. C.Interleukin-17-producing T cells in lupusCurr. Opin. Rheumatol.224995032010CiofaniM.A validated regulatory network for Th17 cell specificationCell1512893032012HarringtonL. E.Interleukin 17-producing CD4+ effector T cells develop via
	This work was supported by NIH grant (NIAID #R37AIO49954 to G.C.T., and #R01AR060849 to V.K.), 2011 Japan Sumitomo Life Welfare and Culture Foundation Subsidy for Invitation of Overseas Scientists (to N.Y.), 2013 Japan Society for the promotion of science
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




