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Diabetic kidney disease (DKD) is a major cause of chronic kidney disease (CKD) in many
developed and developing countries. Pyroptosis is a recently discovered form of
programmed cell death (PCD). With progress in research on DKD, researchers have
become increasingly interested in elucidating the role of pyroptosis in DKD pathogenesis.
This review focuses on the three pathways of pyroptosis generation: the canonical
inflammasome, non-canonical inflammasome, and caspase-3-mediated inflammasome
pathways. The molecular and pathophysiological mechanisms of the pyroptosis-related
inflammasome pathway in the development of DKD are summarized. Activation of the
diabetes-mediated pyroptosis-related inflammasomes, such as nucleotide-binding
oligomerization domain-like receptor protein 3 (NLRP3), Toll-like receptor 4 (TLR4),
caspase-1, interleukin (IL)-1b, and the IL-18 axis, plays an essential role in DKD lesions.
By inhibiting activation of the TLR4 and NLRP3 inflammasomes, the production of
caspase-1, IL-1b, and IL-18 is inhibited, thereby improving the pathological changes
associated with DKD. Studies using high-glucose–induced cell models, high-fat diet/
streptozotocin-induced DKD animal models, and human biopsies will help determine the
spatial and temporal expression of DKD inflammatory components. Recent studies have
confirmed the relationship between the pyroptosis-related inflammasome pathway and
kidney disease. However, these studies are relatively superficial at present, and the
mechanism needs further elucidation. Linking these findings with disease activity and
prognosis would provide new ideas for DKD research.

Keywords: pyroptosis-related, inflammasome pathway, pathogenesis, diabetic kidney disease, targeted inhibition
INTRODUCTION

Cell death includes pyroptosis, apoptosis, necroptosis, necrosis, and autophagy, depending on
different biochemical mechanisms and signal transduction pathways (1–5). In 2001, Cookson et al.
(6) described a form of cell death in macrophages that depends on caspase-1, which was
accompanied by the release of many pro-inflammatory factors. The term “pyroptosis” comes
from the Greek “pyro” meaning fire or fever and “ptosis” meaning falling, to describe the pro-
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inflammatory properties of this cell death process and its
relationship with the release of mature interleukin (IL)-1b and
IL-18. Pyroptosis is a form of inflammation that is activated by
bacteria, pathogens, or their endotoxins, leading to the
subsequent activation of caspase-1, accompanied by cell
swelling, cell membrane pore formation, cell membrane
rupture, cell-permeable dissolution, DNA lysis, inflammasome
activation, as well as the release of cell contents and
inflammatory mediators, resulting in a robust inflammatory
response. This response leads to programmed cell death (PCD)
(7, 8). The immune response of the innate immune system after
pathogen invasion plays a vital role in maintaining tissue
homeostasis and the immune response. Pyroptosis is involved
in the innate immune response and protects the body from
infection by pathogenic microorganisms (9–11); however,
excessive pyroptosis can lead to a variety of autoinflammatory
and immune diseases such as massive cell death, tissue damage,
organ failure, and even septic shock (12, 13). Recent studies have
shown that scorch death plays a vital role in diseases such as liver
disease (14), atherosclerosis (15), diabetes mellitus (16), gout
(17), epilepsy (18), and tumors (19, 20).

Diabetes is a major global public health problem. The number
of people with diabetes increased from 108 million in 1980 to 422
million in 2014 (21), and diabetes is among the leading causes of
kidney failure. Diabetic kidney disease (DKD) causes glomerular
hypertrophy, basal membrane thickening, glomerular sclerosis,
Kimmelstiel-Wilson nodules, an increased glomerular filtration
rate (GFR), clinical proteinuria, hypertension, and edema, and is
often associated with diabetic retinopathy (22, 23). DKD leads to
a decline in the quality of life and shortening of the survival time
of patients, thus leading to heavy social and economic burdens.
Fernández-Real (24) reported that innate immunity is related to
the production of inflammatory cells, and development of
obesity, insulin resistance, and other diabetic complications.
Microinflammation and extracellular matrix amplification are
common pathways for the progression of DKD. Various
molecules associated with the inflammatory pathway in DKD
include proinflammatory cytokines, chemokines, and Toll-like
receptors (TLRs). As an essential innate immune response in the
body, pyroptosis is closely related to the progression of DKD
owing to the involvement of various pro-inflammatory factors in
its activation pathway.

This review focuses on the three pathways of pyroptosis
generation. The molecular and pathophysiological mechanisms
of pyroptosis-related inflammasomes pathway in the
development of DKD are summarized. With this review, we
attempted to provide new insights for researchers regarding the
development of potential therapies for DKD.
ENZYMES AND PROTEINS ASSOCIATED
WITH PYROPTOSIS

Caspase Family
Caspase is a family of cysteine proteases with a primary function
in mediating cell death, including apoptosis and pyroptosis (25).
Frontiers in Immunology | www.frontiersin.org 2
Caspase plays a vital role in embryonic development and in
maintaining adult tissue balance. The sub-members of this
family include caspase-1, caspase-11, and caspase-12 from
mouse sources; and caspase-1, caspase-4, caspase-5, and
caspase-12 of human origin. Their common features are
control of the inflammatory response of host cells to pathogen
invasion and the stimulation of damage by the host cell
cytoplasm. Pro-caspases are inactive monomers that are not
activated until they are subjected to specific stimuli (26). Pro-
caspases become activated once they are absorbed into the multi-
protein complex of the inflammasome, and then cleave the
inactive pro-IL-1b and pro-IL-18 into active IL-1b and IL-18
during the pyroptosis process (27, 28). Caspase-11 can be
directly activated by sensing lipopolysaccharides (LPS) in cells
infected by various Gram-negative bacteria, thereby inducing
pyroptosis in macrophages (7, 29). Similar to caspase-11,
caspase-4 and caspase-5 both induce pyroptosis during LPS
sensing (30). Caspase-8 has always been considered an
apoptosis-related caspase. Subsequent studies showed that
caspase-8 can directly regulate the cleavage and activation of
gasdermin proteins under specific conditions to induce
pyroptosis (31, 32). However, caspase-8 has significantly
weaker processing power on gasdermin D (GSDMD) than
caspase-1 (33). Recent studies have found that caspase-8 may
be an important molecular switch that controls apoptosis,
necroptosis, and pyrolysis, and prevents tissue damage (34,
35). Caspase-12 is also an inflammatory caspase, although its
function is unknown (36).

Gasdermin Family
Six members of the gasdermin family have been identified in
humans: gasdermin A (GSDMA), gasdermin B (GSDMB),
gasdermin C (GSDMC), GSDMD, gasdermin E (GSDME, also
known as DFNA5), and pejva-kin (PJVK, also known as
DFNB59). Seven members of the gasdermin family have been
identified in mice: GSDMAs (GSDMA1–3) and GSDMCs
(GSDMC1–4) (37–39). The entire gasdermin family has a
common membrane-targeting mechanism (40). Among them,
GSDMD is currently the gasdermin protein that has been most
strongly associated with pyroptosis. The N-terminal and C-terminal
domains are formed after cleavage by caspase. The N-terminal
domain can be connected to phosphatidylinositol, phosphatidic
acid, and phosphatidylserine on the cell membrane, resulting in
their aggregation and insertion into the cell membrane to form
membrane-spanning pores. GSDM pores are large, non-selective
pores with an external diameter of 32 nm and an internal
diameter of 10–20 nm (41, 42). This pore size is sufficient to
allow for the inflow of H2O and Ca2+ to cause cell swelling. When
the cell swells to a certain degree, it disintegrates. The cell
contents such as K+, IL-1b, IL-18 (about 4–8 nm in diameter),
and other small cytosolic proteins flow out, ultimately resulting
in pyroptosis (43–49). The C-terminal domain (GSDMD-CT) is
removed, and it is hypothesized to fold back on the N-terminal
domain of gasdermin (GSDMD-NT) to inhibit N-terminal
function, thereby inhibiting the formation of cell membrane
pores and blocking the process of pyroptosis (42, 43). The pore-
forming activity of GSDMD plays a vital role in the downstream
February 2021 | Volume 12 | Article 603416
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pathway of pyroptosis mediated by inflammatory caspase (50).
GSDMD proteins have been reported to independently modulate
inflammatory mediators such as IL-1b release and cell
membrane breakdown (48). Given the above characteristics,
GSDMD is known as the executor of cell pyroptosis. In
addition to GSDMD, mutations in the hydrophobic core of the
C-terminal of GSDMA, GSDMA3, GSDMC, and GSDME can
cause pyroptosis (50). For example, caspase-3 releases the N-
terminal through proteolytic cleavage of GSDME, forming a hole
in the membrane, and then converts apoptosis induced by tumor
necrosis factor (TNF) or chemotherapy into pyrolysis (51–53).
Gasdermin family members are widely expressed in different
cells and tissues, but are mainly found in the gastrointestinal
tract, skin, and immune cells, indicating that they play an
essential role in the physical and mucosal barrier system, and
actively eliminate infected cells through pyroptosis (38, 54).
Recent studies have suggested that GSDMD pores formed on
the plasma membrane can enable Ca2+ influx and activate the
endosomal sorting complexes required for transport (ESCRT)
mechanism to initiate the repair of membrane pores (55, 56).
However, the specific detailed mechanism requires further study
and clarification.
INNATE IMMUNE PATTERN-
RECOGNITION RECEPTORS (PRRS)
RELATED TO PYROPTOSIS

The PRR family includes TLRs, C-type lectin receptors (CLRs),
retinoic acid-induced gene protein I (retinoic acid-induced
gene)-like receptors (RLRs), and nucleotide-binding
oligomerization domain-like receptors (NLRs). Some PRRs can
form oligomeric protein structures called inflammasomes,
promote the protein maturation of IL-1 family cytokines (i.e.,
IL-1 and IL-18), and mediate pyroptosis in inflammatory forms,
accompanied by the final secretion of downstream mediators of
inflammation, thereby mobilizing the recruitment of a large
number of host immune cells that have different immune
outcomes and promote acute inflammatory processes (40, 57).
We summarize two representative receptors in this section: TLRs
and nucleotide oligomerization domain (NOD)-like
receptors (NLRs).

TLRs
TLRs are the first family of innate immune receptors, described
as type I transmembrane proteins anchored to the plasma
membrane or endolysin membrane. The primary role of TLRs
is to recognize the PRR-mediated activation of pathogen-
associated molecular patterns (PAMPs) and host damage-
associated molecular patterns (DAMPs), and to induce
pyroptosis as a response. More than 10 TLRs have been
identified in humans and 12 TLRs have been identified in mice
(58). TLRs on the cell surface can recognize extracellular
pathogens, whereas microbial nucleic acids are sensed by TLRs
located in lysosomes. The changes in 1eucine-richrepeats (LRRs)
of different TLRs provide specificity for the ligands that they can
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recognize. Ligand binding causes most TLRs to form dimers. In
addition to forming homodimers, some TLRs can also recognize
other additional ligands by forming heterodimers, co-receptors,
or accessory proteins. In the presence of ligands, TLR dimers
undergo conformational changes such that the intracellular TLR
domain can join the downstream signal transduction pathway
for adaptor initiation (59, 60).

NLRs
NLRs are the largest family of cytoplasmic receptors and have a
common central NOD. The NLR family is divided into four
subfamilies: NLRAs, NLRBs, NLRCs (including NOD1, NOD2,
NLRC3, NLRC4, and NLRC5), and NLRPs (including NLRP1–
14). NLRs have a variety of immune functions, including
response to infection and the formation of inflammasomes
(NLRP1, NLRP3, and NLRC4) (61, 62), regulation of antigen
presentation (NLRC5, CIITA) (63, 64), regulation of homeostasis
in microbial clusters (NLRP6), and a regulatory role in the
responses of nuclear factor kappa B (NF-кB) (NLRP6,
NLRP12, and NLRC3), MAVS (NLRX1), and STING (NLRC3,
NLRX1) (65–68). NAIP/NLRC4 oligomeric polymers rely on the
CARD-CARD interaction to recruit apoptosis-associated speck-
like protein containing CARD (ASC), and then activate caspase-
1 and downstream effector functions. PRR activation (especially
those in the cytoplasm), in addition to the induction of cytokine
transcription, can also induce pyroptosis and stimulate
inflammatory responses. Intracellular bacteria are killed
directly by destroying the replicative niche of pathogens and
intracellular traps induced by holes, thereby enhancing the
immune defense function of pyroptosis (9, 11). NLRP3 is a key
member of the NOD-like receptor family, which recognizes
microbial and non-microbial risk signals, and induces aseptic
inflammation under different conditions (69). In the pyroptosis
pathway, NLRP3 can be combined with ASC to recruit pro-
caspase-1 to form inflammasomes, which are converted into
caspase-1 by hydrolysis. Previous studies have suggested that
NOD2, TLR2, TLR4, and NLRP3 inflammasome-mediated
inflammation participate in the persistence of DKD
inflammation (70, 71).
MOLECULAR MECHANISM
OF PYROPTOSIS

Canonical Inflammasome Pathway
Associated With Pyroptosis
Cells are stimulated by signals from bacteria and viruses, and
different cytoplasmic sensor proteins trigger responses to
pathogens and inflammatory factors. Dimerization occurs
through combination of the adaptor protein ASC or NLRC4
with the pro-caspase-1 monomer, which activates pro-caspase-1
to become mature caspase-1. Meanwhile, caspase-1 cleaves
GSDMD and activates the inactive precursor IL-1b into
mature IL-1b. After GSDMD is cleaved, the domains at both
ends of the NC are separated, and GSDMD-NT is released. The
released GSDMD-NT forms a pore in the cell membrane by
February 2021 | Volume 12 | Article 603416
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recognizing and binding phospholipid molecules on the cell
membrane. The formation of pores destroys cell potential
energy penetration, leading to cell swelling and eventually cell
pyroptosis. IL-1b is also released from cells through the pores,
causing a robust inflammatory response (43, 72, 73).

Non-canonical Inflammasome Pathways
Associated With Pyroptosis
In 2011, Kayagaki et al. (74) discovered non-canonical pyroptotic
pathways. In contrast to canonical pyroptotic pathways, the cell
wall LPS of Gram-negative bacteria bypasses TLR4 and directly
combines with the pro-caspase (-4 and -5 in humans and -11 in
murine) to form activated caspase-4/5/11. The activated caspase-
4/5/11 cleaves GSDMD and promotes the activation of pro-IL-
1b and pro-IL-18 into mature IL-1b and IL-18. Similarly,
GSDMD-NT forms a hole in the cell membrane, which causes
the release of IL-1b and IL-18 in the cell and induces pyroptosis
(29, 38, 75). This pathway does not involve caspase-1; in the
absence of caspase-1, human caspase-4/5 and murine caspase-11
can also induce pyroptosis with all associated morphological
characteristics (40).

From the perspective of these two inflammasome pathways
associated with pyroptosis, in the canonical inflammasome
pathway, inflammation sensors detect different microbial
signals and activate caspase-1 through ASC or NLRC adaptors.
In contrast, the non-canonical inflammasome pathway is
activated by caspase-4, caspase-5, and caspase-11, which are
directly combined with LPS (76). In addition, recent studies
have shown that caspase-11 directly binds to Leishmania
lipophosphoglycan (LPG) (77) and oxidized phospholipids
(oxPAPC) (78). Although the activation pathways are different,
the downstream signaling pathways are all activated caspases
that cleave GSDMD and release the N-terminal domain to form
membrane pores, eventually leading to pyroptosis. In other
words, GSDMD is a necessary downstream component of both
the canonical and non-canonical inflammasome pathways
associated with pyroptosis (41–43, 46, 47).
Caspase-3-Mediated Inflammasome
Pathway Associated With Pyroptosis
In addition, a new pyroptosis pathway was recently discovered.
Caspase-3 is well-known as an important effector associated with
apoptosis (79). Previous studies have suggested that caspase-3 is
not involved in pyroptosis (80). However, researchers recently
found that GSDME can convert caspase-3 induced apoptosis
into pyroptosis through TNF-a and some chemotherapeutic
drugs (52). Various death stimuli or viral infections can lead to
an increase in the permeability of the outer mitochondrial
membrane, causing the release of cytochrome C and binding
to apaf-1, thereby enabling the assembly of apaf-1 apoptotic
bodies and activation of caspase-9. The active caspase-9 then
cleaves pro-caspase-3 to generate the active caspase-3
heterodimer. In addition, caspase-3 can be activated through
the death receptor pathway, which is itself activated by the death
receptor ligand on the cell membrane, and then pro-caspase-8 is
activated to caspase-8. Active caspase-8 cleaves pro-caspase-3 to
Frontiers in Immunology | www.frontiersin.org 4
generate the active caspase-3 heterodimer (51). Caspase-3 cleaves
GSDME into the N-terminal fragment of GSDME (GSDME-NT)
and the C-terminal fragment of GSDME (GSDME-CT).
GSDME-NT forms membrane pores on the cell membrane
and induces pyroptosis (20, 52). In the course of this pathway,
although the apoptosis-related proteins in the cells are activated
at nearly the same time, the process of cell pyroptosis is faster;
therefore, the cells eventually appear as pyroptotic (52). For a
more intuitive understanding, we have summarized the three
kinds of inflammasome pathways associated with pyroptosis
along with graphical interpretations in Figure 1.
CORRELATION OF THE PYROPTOSIS-
RELATED INFLAMMASOME PATHWAY
WITH DKD

Some recent studies have demonstrated that IL-1b, an
inflammatory factor released by cells during pyroptosis, plays
an important role in the pathogenesis of type 2 diabetes mellitus
(T2DM) (81). Increased IL-1b has emerged as an essential factor
for predicting the occurrence of T2DM. DKD is a common
clinical complication in patients with diabetes, and is the leading
cause of chronic kidney disease (CKD) in many developed and
developing regions. Persistent aseptic inflammatory reactions in
the kidney tissue are the pathophysiological basis of diabetic
nephropathy (DN) that lead to glomerular capillary damage. The
clinical features of DN are a gradual decline in renal function,
abnormal levels of albumin (microalbuminuria) in the urine (30
mg/day or 20 g/min), and subsequent proteinuria and end-stage
renal disease (ESRD) (82, 83). Once ESRD develops, the
mortality rate is high, representing a critical clinical issue
(84, 85).

Reactive Oxygen Species (ROS)/
Thioredoxin-Interacting Protein (TXNIP)/
NLRP3 Inflammasome Signaling Pathway
With the expansion of research on DKD, there has been more
interest on the potential role of pyroptosis in DKD pathogenesis.
The hyperglycemia associated with DN is due to insufficient
insulin secretion or insulin resistance, which produces hypoxia
and causes excessive production of inflammatory cytokines. If
oxidative stress reactions persist, many inflammatory cells are
immersed in the matrix (86). The excessive activation of
inflammatory cytokines can promote the progression of renal
fibrosis (87, 88). Numerous studies have shown that activation of
inflammatory factors caused by hyperglycemia plays a crucial
role in the progression of DKD (89–91).

The NLRP3 inflammasome is involved in the pathogenesis of
various kidney diseases, including acute kidney injury, CKD,
DKD, and crystal-related nephropathy (92, 93). The NLRP3
inflammasome promotes disease occurrence and progression in
DKD in a high-glucose environment. The production of
mitochondrial ROS has been shown to initiate the activation of
NLRP3 inflammasomes under diabetic conditions (94–96),
February 2021 | Volume 12 | Article 603416
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further establishing a causal relationship between NLRP3
inflammasome activation and DKD. Inhibition of NLRP3 in
the kidney (via silencing of NLRP3 or the studies in NLRP3
knockout mice) may improve renal function, and attenuate
glomerular hypertrophy, glomerulosclerosis, mesangial
expansion, interstitial fibrosis, inflammation, and expression of
TGF-b1 and connective tissue growth factor (CTGF). Inhibition
of NLRP3 or caspase-1 inflammasome activation, thereby
inhibiting renal inflammation and fibrosis (at least in part), via
suppression of oxidative stress in DN imparts protective effects
on the kidney (97–99). By inhibiting NLRP3 upstream of the
pyrolysis-related inflammasome pathway, the downstream
expression of caspase-1, IL-1, and IL-18 can be progressively
inhibited. Notably, the NLRP3 inflammasome can be activated
via the canonical and non-canonical inflammasome pathways
associated with pyroptosis (100). These findings provide a solid
theoretical basis for how the NLRP3 inflammasome can be
activated by inducing caspase-1 as an essential mediator of
pro-inflammatory cytokine production (101, 102).
Frontiers in Immunology | www.frontiersin.org 5
Clinical studies have found that compared with diabetic and
non-diabetic patients without proteinuria, diabetic patients with
proteinuria have significantly higher expression levels of IL-1b,
IL-18, NLRP3, and serum IL-1b and IL-18 levels, with a
proteinuria-positive correlation (95, 102, 103). Clinical research
results also show that inhibiting IL-1b can prevent the
progression of T2DM (104). ASC and caspase-1 were found to
be highly expressed in a streptozotocin (STZ)-induced DN rat
model, accompanied by hyperuricemia and hyperlipidemia, and
IL-1b and IL-18 levels were elevated. The NLRP3
inflammasome-caspase-l-IL-1b/IL-18 axis is considered to play
a critical role in DKD. Likewise, animal experiments have found
that uric acid-lowering drugs (such as allopurinol and quercetin)
can reduce uric acid and blood lipid levels, inhibit the activation
of NLRP3 inflammasomes, and prevent kidney damage caused
by STZ (105). Another study found that significant inhibition of
NF-kB, and the decrease in IL-1b and TNF-a levels in diabetic
rats were related to reductions in TXNIP and NLRP3 expression
levels in diabetic kidneys (106). A clinical study showed that IL-18
FIGURE 1 | The three kinds of inflammasome pathways associated with pyroptosis. (1) Canonical inflammasome pathway associated with pyroptosis; (2) non-
canonical inflammasome pathway associated with pyroptosis; (3) caspase-3 mediated inflammasome pathway associated with pyroptosis. LPS, Lipopolysaccharide.
February 2021 | Volume 12 | Article 603416
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levels in the serum and urine of patients with T2DM were
positively correlated with the degree of proteinuria during
follow-up, indicating that IL-18 may also be a risk factor for
DKD (107). Insulin secretion disorders caused by pancreatic b-cell
dysfunction and impaired insulin action caused by enhanced
insulin resistance lead to hyperglycemia in T2DM (108). The
combination of guava (Psidium guajava), with demonstrated
antioxidant and anti-inflammatory effects, and trehalose on
protecting the kidney and pancreas from damage was explored
in a rat model of T2DM. The results showed that guava juice and
trehalose could inhibit the secretion of IL-1b in the pancreas
and kidneys caused by diabetes, and could prevent apoptosis and
pyroptosis (109). An et al. (110) administered punicalagin to a
mouse model of DN induced by a high-fat diet (HFD) and STZ.
After punicalagin intervention, blood urea nitrogen (BUN), serum
creatinine (CREA), and urine albumin-creatinine ratios (UACR)
Frontiers in Immunology | www.frontiersin.org 6
were significantly reduced, and the glomerular interstitial
hyperplasia and glomerular hypertrophy scores were reduced.
This treatment also reduced the expression levels of IL-1b,
caspase-1, GSDMD, and NLRP3. The authors also found that
punicalagin reduced the high-glucose–mediated protein
expression of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 4 (NOX4) and reduced mitochondrial
damage. Thus, by regulating activation of the NLRP
inflammasome, the expression of caspase-1 increases, promoting
the maturation and release of IL-1b and IL-18, thereby continuing
to produce inflammation that leads to kidney damage (Figure 2).

Previous studies have found that the A1 adenosine receptor
(A1AR) is widely distributed in the renal peritubular capillaries
(PTCs) and glomerular afferent arterioles. A1AR is considered an
essential regulator of renal tubular-glomerular feedback (TGF)
(111). Knockout of A1AR in mice aggravated proteinuria and
FIGURE 2 | Promotion of inflammasome pathways associated with pyroptosis of cells in the kidney (glomerular endothelial cells, tubular epithelial cells, podocytes,
tubular epithelial cells) under high-sugar or diabetes conditions, leading to diabetic kidney disease (DKD). In renal cells stimulated by high glucose (HG): (1) ROS/
TXNIP/NLRP3 inflammasome signaling pathway, (2) TLR4/NF-kB inflammasome signaling pathway, (3) AMPK/SIRT1/NF-kB inflammasome signaling pathway, or
(4) lncRNA)-related signaling pathways, they all activate pro-caspase-1 to become mature caspase-1. Caspase-1 cleaves GSDMD and activates the inactive pro
IL-1b and pro-IL-18 to become mature IL-1b and IL-18, and the released GSDMD-NT forms a pore in the cell membrane, ultimately leading to DKD. ROS, Reactive
oxygen species; TXNIP, Thioredoxin-interacting protein; AMPK, Adenosine 5’-monophosphate (AMP)-activated protein kinase; SIRT1, Silent information regulation 2
homolog1; NF-kB, Nuclear factor kappa-B.
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glomerular damage (112). Moreover, a recent study showed that
the A1AR agonist 2-chloro-N6 cyclopentyladenosine (CCPA)
plays a protective role in albuminuria related to the loss of
megalin in the proximal renal tubules by inhibiting caspase-1/IL-
18 signaling in DKD (113).

TLR4/NF-kB Inflammasome
Signaling Pathway
TLR4 usually signals through its downstream partner MyD88 to
activate the NF-kB pathway, leading to ROS and cytokine
production. In podocytes stimulated by high glucose, TLR4
activates NF-kB, and increases the release of pro-inflammatory
cytokines and chemokines (Figure 2) (114, 115). Wang et al.
(116) found that renal tubular damage in DKD patients
upregulated the expression of TLR4 and GSDMD in the
kidney tissue. In the paraffin-embedded sections of human DN
tissues, immunohistochemical staining showed that the
expression of GSDMD and TLR4 was positively correlated
with albuminuria, interstitial fibrosis, and tubular atrophy
scores, and was negatively correlated with the estimated
glomerular filtration rate. Injection of the TLR4 inhibitor
TAK-242 to db/db mice improved the brush border peeling
and atrophy of the kidney tubules, along with interstitial fibrosis.
Simultaneously, TLR4 inhibitors could reduce the expression
levels of GSDMD and IL-18 in the renal tubular cells of db/db
mice, the protein levels of caspase-1 and GSDMD-NT in the
renal cortex tissue, and the level of IL-1b in renal homogenates.
In addition, human renal tubular epithelial (HK-2) cells treated
with high glucose and TAK-242 or parthenolide (an inhibitor of
NF-kB) yielded similar results in western blotting, enzyme-
linked immunosorbent assay, and flow cytometry. Studies with
a diabetic mouse model and HK-2 cell experiments showed that
inhibiting TLR4/NF-kB signaling can reverse the increase in
GSDMD-NT expression in a high-glucose environment while
inhibiting the release of IL-1b. This finding indicates that TLR4
inhibitors significantly inhibited GSDMD-related pyroptosis and
reduced kidney damage in db/db mice. In addition, the
proteinuria, renal insufficiency, inflammation, and renal
fibrosis of STZ-induced diabetic mice with TLR4 knockout
were protected, and TLR4 inhibition prevented renal tubular
damage and reduced the loss of podocytes in DKD (117, 118).
Therefore, the TLR4/NF-kB signaling pathway is involved in the
expression of GSDMD in DKD (116).
AMPK/SIRT1/NF-kB Inflammasome
Signaling Pathway
Li et al. (119) found that geniposide can alleviate renal dysfunction
in DN mice induced by an HFD and STZ treatment, which is
manifested by reduced serum creatinine SCr) BUN, TNF-a, IL-6,
and IL-1b levels. Histological examinations showed that
geniposide could reduce glomerular basement membrane
thickening and inflammatory cell infiltration. Geniposide also
reversed the significant decrease in AMPK, p-AMPK, and SIRT1
levels in a podocyte model induced by high glucose. Geniposide
effectively blocked oxidative stress and inflammation, thereby
Frontiers in Immunology | www.frontiersin.org 7
inhibiting DN development. The mechanism was suggested to
involve the APMK/SIRT1/NF-kB pathway. Similarly, Chen et al.
(120) reported that catalpol could effectively inhibit oxidative
stress and inflammation in HFD/STZ-induced DN mice and in
a high-glucose–induced podocyte model, and that the mechanism
may be related to the AMPK/SIRT1/NF-kB pathway, indicating
that catalpol has potential value in the treatment of DN.
Long Non-coding RNA (lncRNA)-Related
Signaling Pathways
With recent research on lncRNAs, exploration of the roles of
non-coding RNAs in DN has intensified. Based on circRNA
microarray analysis in glucose-stressed HK-2 cells, circACTR2
was found to regulate the pyroptosis and fibrosis of proximal
renal tubular cells induced by high glucose. Knockout of
circACTR2 significantly inhibited high-glucose–induced IL-1b
release, and the production of collagen IV and fibronectin in HK-
2 cells. By clarifying the role of circRNAs in the renal tubular cell
pyroptosis-related inflammasome, new insights into the
pathogenesis and treatment strategies of DKD may be attained
(121). Li et al. (122) discovered that miR-23c, as a target of
metastasis-associated lung adenocarcinoma tran 1 (MALAT1),
directly inhibits the expression of embryonic lethal, abnormal
vision, Drosophila-like 1 (ELAVL1), thereby reducing the
expression of the downstream factors NLRP3, caspase-1, and
IL-1b. In addition, silencing KCNQ1OT1 was shown to inhibit
high-glucose–induced inflammation, oxidative stress, and
pyroptosis in HK-2 cells by upregulating the expression of
miR-506-3p (123). Considering that miR-452-5p is a potential
target of GAS5, overexpression of GAS5 could downregulate the
expression of mir-452-5p, thereby inhibiting NLRP3, caspase-1,
IL-1b, and GSDMD-NT expression in high-glucose–induced
HK-2 cells (Figure 2) (124).

Overall, the studies highlighted above found that
upregulation of pyroptosis-related inflammatory factors was
associated with DKD. Although angiotensin-converting
enzyme inhibitors (ACEIs) or angiotensin II receptor blockers
(ARBs) is often used to treat DKD clinically, it cannot reverse the
condition of DKD. Therefore, more and more molecular studies
on DKD are being conducted to seek for better methods to treat
DKD. These researches are summarized in Table 1. However, the
evidence obtained to date is not sufficient to clarify whether there
is a critical relationship between DKD and cell death, and the
underlying mechanism of this association. Thus, the key
discovery of the possible underlying mechanism linking
inflammatory factors and pyroptosis in DKD will provide new
insights to clarify and control the incidence and progression
of DKD.
CONCLUSIONS

In this review, we have summarized the mechanism of
pyroptosis, including the canonical, non-canonical, and
caspase-3-mediated inflammasome pathways associated with
February 2021 | Volume 12 | Article 603416
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pyroptosis. Research on the mechanism of pyroptosis regulation
in DKD is rapidly emerging in the field of renal disease and
immunology. The activation of diabetes-mediated related factors
such as TLR4, NLRP3, caspase-1, IL-1b, IL-18, and GSDMD-NT
plays a vital role in the pathophysiology of DKD. By inhibiting
the activation of TLR4 or the NLRP3 inflammasome and related
pathways, caspase-1, IL-1b, IL-18, and GSDMD-NT are
inhibited, leading to renal lesions associated with DKD. The
inflammasome is involved in the processes of activation,
including the activation of caspase-1, which finally orders the
terminal core protein GSDMD to perform its perforation effect
that causes the release of IL-1B/IL-18. These are essential links in
the process of pyroptosis. Recent studies have confirmed the
relationship between the pyroptosis-related inflammasome and
kidney disease. However, these studies are relatively superficial at
present, they do not prove that pyroptosis is necessarily related to
DKD and the mechanism needs further elucidation.

The detailed mechanism underlying the function of GSDMD
in DKD in the downstream pathway of pyroptosis remains
unclear. Small-molecule inhibitors targeting TLR4, NLRP3, and
other inflammatory components are potential therapeutic
options for DKD. However, there are still many unknown
pathways and targets, and corresponding inhibitors, related to
the occurrence and development of DKD related to pyroptosis
awaiting further exploration. Studies using high-glucose–
induced cell models, HFD/STZ-induced DKD animal models,
and human DKD patient kidney tissue biopsies will help
determine the spatial and temporal expression of DKD
inflammatory components, and link these findings with the
activity and prognosis of the disease. These insights may
provide research ideas for developing new mechanisms, drugs,
Frontiers in Immunology | www.frontiersin.org 8
and technologies for DKD. Based on the current summary, we
propose the following research targets.

First, according to molecular mechanisms related to
inflammasomes that have been discovered to date, molecular
biology methods could be used to further explore the specific
mechanisms of caspase, GSDMD, IL-1b, and IL-18 that
contribute to DKD, so as to clarify the pathways underlying
the role and relationship of pyroptosis-related inflammasomes
in DKD.

Second, based on the known signal activation of ROS, TLR4,
NLRP3, and lncRNAs, efforts should be made to discover more
small molecules or targeted drugs that can regulate the pathways
of DKD-related inflammasomes, thereby bringing new methods
and hope for the treatment of DKD.

Finally, more attention should be paid to the pathophysiology
of DKD, and to understand the possible potential pathways of
the pyroptosis-related inflammasome, which can offer new
methods and technologies for the clinical treatment of DKD.
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