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The DNA damage response (DDR) is an evolutionarily conserved signaling cascade
that senses and responds to double-strand DNA breaks by organizing downstream
cellular events, ranging from appropriate DNA repair to cell cycle checkpoints. In
higher organisms, the DDR prevents neoplastic transformation by directly protecting
the information contained in the genome and by regulating cell fate decisions, like
apoptosis and senescence, to ensure the removal of severely damaged cells. In addition
to these well-studied cell-autonomous effects, emerging evidence now shows that the
DDR signaling cascade can also function in a paracrine manner, thus influencing the
biology of the surrounding cellular microenvironment. In this context, the DDR plays an
emerging role in shaping the damaged tumor microenvironment through the regulation
of tissue repair and local immune responses, thereby providing a promising avenue for
novel therapeutic interventions. Additionally, while DDR-mediated extracellular signals
can convey information to surrounding, undamaged cells, they can also feedback onto
DNA-damaged cells to reinforce selected signaling pathways. Overall, these extracellular
DDR signals can be subdivided into two time-specific waves: a rapid bystander effect
occurring within a few hours of DNA damage; and a late, delayed, senescence-
associated secretory phenotype generally requiring multiple days to establish. Here,
we highlight and discuss examples of rapid and late DDR–mediated extracellular alarm
signals.

Keywords: DNA damage response, senescence, bystander effect, senescence secretome, inflammation,
microenvironment, tissue damage

The DNA damage response (DDR) signaling network is essential in the maintenance of genomic
stability, via the initiation and coordination of DNA repair mechanisms with appropriate cell
cycle arrest checkpoints (d’Adda di Fagagna, 2008; Jackson and Bartek, 2009). The DDR is initially
propagated by a series of effective and rapid post-translational modifications culminating in the
activation of nodal transcription factors like p53, which organize additional DDR transcriptional
responses (Harper and Elledge, 2007).

Briefly, a typical DDR cascade begins with the recruitment and activation of an apical DDR
kinase like ATM (ataxia-telangiectasia mutated) to DNA double-strand breaks (DSBs) by dam-
age sensors such as the MRN complex (MRE-11, Rad-51 and NBS-1 proteins). This leads to the
local phosphorylation of multiple ATM substrates in the chromatin surrounding the DNA lesion,
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almost always including the histone variant H2AX (phospho-
H2AX or γH2AX). These local chromatin modifications provoke
the further recruitment of additional DDR mediators at the
break, including 53BP1 and MDC1, which amplify chromatin
modifications over megabases of DNA generating macroscopic
structures called DNA damage foci (DDF; Rogakou et al., 1998;
Bonner et al., 2008) that allows for the direct visualization of
single DSBs in mammalian cell nuclei (Rogakou et al., 1999).
Simultaneously, the distal propagation of the DDR signal within
the cell promote cell cycle checkpoints and the activation of
p53 (Rodier et al., 2007). When DNA lesions are repairable, the
ensuing growth arrest is transient, eventually resulting in cell
cycle resumption, and a return to normality. In contrast, severe
or irreparable DNA lesions trigger prolonged DDR signaling,
resulting in apoptosis or senescence (permanent growth arrest;
Campisi and d’Adda di Fagagna, 2007).

The DDR Generates Extracellular
Signals

The DDR is mostly known for its role as a cell-autonomous,
intracellular signaling cascade that regulates DNA repair and cell
cycle checkpoints. However, in the context of higher organisms
with multicellular tissues, cells have developed intricate inter-
cellular communication mechanisms that the DDR employs to
trigger extracellular alarm signals. Conceptually, it is entirely
plausible that damaged cells can signal to other cells that their
genome has been compromised, essentially generating tissue-
wide stress responses. In fact, these DDR-mediated extracellular
alarm signals can be subdivided into at least two waves: rapid

and late. While we are still far from a complete understanding of
extracellular DDR signaling, it is already well established that spe-
cific communication mechanisms including cell surface bound
and soluble molecules are involved in this process (Figure 1).
Bystander responses received by cells adjacent to damaged cells
have been described, and more importantly, some soluble sig-
nals have been proposed to travel further in the body, creat-
ing additional potential therapeutic intervention opportunities
(Tchkonia et al., 2013; Havaki et al., 2014).

A Rapid Extracellular DDR Signal Reaches
Undamaged Bystander Cells
Accumulating experimental evidence shows that damaged cells
rapidly transmit a DDR-dependent stress signal to neighboring
healthy cells, provoking paracrine activation of stress responses
such as a bystander DDR. While not originally linked to the DDR
itself, this phenomenon was first described under conditions in
which only 1% of the cells in a population were irradiated by a
low dose of alpha-particles, yet 30% of the cells exhibited chro-
mosomal changes (Nagasawa and Little, 1992). This bystander
damage response could be an important mechanism used to
rapidly amplify the effect of low dose irradiation by transferring
DNA-damage signals from irradiated cells to non-irradiated ones.

It is now clear that non-irradiated cells can adopt com-
mon DNA damage-associated phenotypes from adjacent irradi-
ated cells, including micronuclei formation, altered expression
of stress-related genes, various epigenetic changes, increased
frequency of mutations, induction of apoptosis or senes-
cence, and even malignant transformation (Azzam et al., 2002;
Nagasawa and Little, 2002; Morgan, 2003; Ko et al., 2006).
Interesting mechanistic evidence supporting the activation of the

FIGURE 1 | The DNA damage response (DDR) generates alarm
signals that are transmitted from the DNA-damaged cell to the
extracellular microenvironment. (A) Rapid extracellular DDR signals
occur in response to DNA damage and are transmitted to neighboring

cells via direct cell–cell contact and paracrine signals. (B) Late extracellular
DDR signals occur in response to persistent DNA damage signaling and
are collectively known as the senescence-associated secretory phenotype
(SASP).
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DDR in bystander cells includes the formation of DNA dam-
age foci (DDF), which also suggests the accumulation of DSBs
in these cells (Figure 1A; Sokolov et al., 2007). The formation
of bystander γH2AX foci has been observed in a number of
experimental systems, including human cultured cells and three-
dimensional tissue models, as well as in vivo mouse models
(Sokolov et al., 2005; Sedelnikova et al., 2007). Furthermore, nor-
mal fibroblasts that were exposed to damaged cells, either directly
through co-culture or indirectly through conditioned media,
demonstrated many other typical DDR markers in DDF, includ-
ing 53BP1, phospho-ATM, and the focal presence of the ATM-
activating MRN complex (Sokolov et al., 2005; Sedelnikova et al.,
2007).

The pathways involved in the transmission of alarm signals
generated by irradiated cells remain ill defined, but emerg-
ing insight appears promising. For example, the activation of
DNA-PKcs and ATM is necessary for the generation of a
bystander signal from the damaged cell, but these kinases are not
required for signal reception in non-irradiated bystander cells
(Hagelstrom et al., 2008). Alternatively, the kinase ATR could
be required in the recipient bystander cell to allow for the for-
mation of DDF (containing γH2AX, 53BP1, BRCA1) and the
subsequent activation of ATM. Importantly, this ATR-dependent
bystander DDR activation occurs only in S-phase cells, consistent
with the concept that replication stress is a major trigger for ATR
activation (Burdak-Rothkamm et al., 2007, 2008). Accordingly,
the radiation-triggered extracellular alarm signal preferentially
affects non-irradiated cells that display high rates of replication
and transcriptional activities (Dickey et al., 2012). Overall, this
suggests that not all bystander cells equally trigger a bystander
DDR, and that actively dividing cells are most receptive to this
signal (Figure 1A).

Two distinct pathways for the transmission of rapid extra-
cellular DDR signals have been proposed: direct cell–cell com-
munication and paracrine interaction (Figure 1A). For cells in
direct physical contact, small molecules (<1.5 kDa) are usu-
ally transmitted through multimeric protein channels termed
gap junctions, and the rapid extracellular DDR signal is effec-
tively abrogated following the use of pharmacological inhibitors
against gap junctions (i.e., lindane) or by the genetic ablation of
an essential gap junction component, connexin 43 (Azzam et al.,
1998, 2001). To directly communicate with neighboring cells, the
DDR has also been shown to increase the presence of selected
cell surface ligands and receptors on damaged cells. For exam-
ple, some DDR regulated cell surface molecules can subsequently
engage surrounding immune cells (NKG2D ligands) or can influ-
ence damaged cells survival (DR5 receptor) via receptor-ligand
engagement (Wu et al., 1997; Finnberg et al., 2005; Gasser et al.,
2005; Lam et al., 2014). A second signaling route consists of the
release of soluble factors into the extracellular media, which act
in a paracrine manner to stimulate neighboring cells. Consistent
with this mechanism, the addition of conditioned media from
irradiated cells is sufficient to induce DDF and bystander DDR
activation in non-irradiated cells (Sokolov et al., 2005; Shao et al.,
2008; Dickey et al., 2009; Klammer et al., 2010).

The molecular players directly tasked with conveying rapid
stress signaling from cell to cell are still poorly defined. The

most commonly described family of factors is reactive oxy-
gen or nitrogen species (ROS/NOS), produced at high levels in
the damaged cell (Havaki et al., 2014). Indeed, the activation of
the DDR as well as its downstream phenotypes in bystander
cells (i.e., up-regulation of stress genes, micronucleus forma-
tion) is suppressed by superoxide dismutase activation or by
ROS inhibitors (Azzam et al., 2002; Little et al., 2002). ROS, and
in particular H2O2, which has a relatively longer half-life, can
freely diffuse across plasma membranes or through gap junc-
tions, causing DNA damage at distant sites (Azzam et al., 2003).
Oxidative stress can result in DNA lesions in the form of sin-
gle strand DNA breaks (SSBs) that can be converted to DSBs
when unresolved or abundant, suggesting that ROS can account
for at least a subset of the observed bystander DNA damage
events (Tanaka et al., 2006). The second class of soluble factors
involved in long distance extracellular DDR signaling includes
molecules such as transforming growth factor-β1 (TGF-β1) and
tumor necrosis factor-α (TNF-α; Iyer et al., 2000). In addition to
its direct role in signaling, the TGF-β1 secreted by the irradiated
cells also contributes to the intracellular increase of ROS andNOS
in bystander cells, most likely through NAD(P)H oxidase acti-
vation (Burdak-Rothkamm et al., 2007, 2008; Shao et al., 2008).
Some, and perhaps most, rapid intercellular damage signaling
processes also play a role in the late extracellular response (see
below). However, the opposite is not necessarily true, for exam-
ple, cytokines like IL-6 and IL-8 are exclusive to the late phase
following irradiation (Rodier et al., 2009).

A Late Senescence-Associated Extracellular
DDR Signal Modifies the Microenvironment
In general, the early phase of the intracellular DDR signaling cas-
cade is a well-established response to nuclear damage, occurring
within seconds to hours of the initial assault. But when DNA
lesions are particularly severe or irreparable, such as uncapped
telomeres (d’Adda di Fagagna et al., 2003), the DDR signal can
persist and provoke programmed cell death (apoptosis) or
permanent growth arrest (cell senescence; Rodier and Campisi,
2011). While apoptotic cells are rapidly eliminated, damaged
senescent cells can persist for extended periods and accumulate in
damaged or aging tissues (Baker et al., 2011). Senescence typically
depends on the p53/p21 and p16INK4a/RB tumor suppressor
pathways (Campisi, 2003; d’Adda di Fagagna, 2008) and is char-
acterized by a series of functional hallmarks (Rodier and Campisi,
2011; Lopez-Otin et al., 2013). It is important to note that the
DDR remains permanently activated in most senescent cells, as
evidenced by the presence of persistent DDF, termed “DNA seg-
ment with chromatin alterations reinforcing senescence” (DNA-
SCARS; Rodier et al., 2011). These DNA-SCARS, whether telom-
eric or intra-chromosomal, are suggested DDR activity nodes that
maintain long-term DDR signaling (Rodier et al., 2011).

With few exceptions (Coppe et al., 2011), senescent cells from
most species and tissues that are triggered by various stresses
all display a Senescence-Associated Secretory Phenotype (SASP;
Figure 1B), which is critical for the ability of these cells to
modulate their microenvironment (Coppe et al., 2008, 2010a,b;
Ohanna et al., 2011). A large subset of this SASP critically
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depends on DDR signaling and is thus an extracellular exten-
sion of the DDR (Rodier et al., 2009). The SASP is defined as a
pro-inflammatory secretome composed of cytokines (i.e., IL-6 IL-
8, GROα, GROβ, MCP-1), growth factors (i.e., GM-CSF, G-CSF,
HGF/SF, IGF), proteases (i.e., metalloproteinase MMP-1, -2, and
-3), and other non-soluble extracellular matrix proteins (i.e., col-
lagens, fibronectin, laminin; Bavik et al., 2006; Coppe et al., 2008,
2010a; Ohanna et al., 2011;Malaquin et al., 2013). The exact com-
position of the SASP, its targets, and the overall downstream
outcomes vary considerably depending on the cellular context
and the type of stresses, but the consensus is that the SASP is at
least partially DDR-dependent and is in major part responsible
for modulating senescence-associated inflammatory microenvi-
ronments in tissues (Figure 1B).

The SASP contributes to senescence reinforcement in dam-
aged cells and to tissue repair, but also to age-associated tis-
sue dysfunction and other age-related diseases, including cancer
(Figure 1B). Because the SASP appears to have both beneficial
and deleterious effects, it may represent an interesting, double-
edged target for pharmaceutical intervention in human disease
(Acosta and Gil, 2012; Perez-Mancera et al., 2014). In the con-
text of cancer, which is particularly applicable to DDR events
activated by irradiation or chemotherapy, the SASP also con-
tributes to the clearance of damaged senescent tumor cells
by enhancing both innate and adaptive immunity (Xue et al.,
2007; Kang et al., 2011; Iannello et al., 2013). However, the
SASP also generates chronic inflammation in normal tissues
with persistent senescent cells, contributing to age-related tis-
sue dysfunction (Rodier and Campisi, 2011). In the case of

the tumor microenvironment, the SASP of senescent stromal
fibroblasts sustains tumor growth and invasion and can even
create tumor microenvironments that promote long-term can-
cer therapy resistance (Krtolica et al., 2001; Sun et al., 2012).
Overall, understanding the molecular regulation of the SASP
appears essential to reveal how the DDR manages extracellular
signaling.

Molecular Regulation of the SASP by
the DDR

Direct molecular links between the SASP and the DDR have
been demonstrated (Figure 2A), but unlike the rapid extracel-
lular DDR signals, the SASP is a slow, delayed response to
DDR signaling. While apical DDR kinases like ATM are acti-
vated within minutes of DNA lesions and subsequent DDR
transcriptional responses are established within hours by p53 and
other transcription factors, the SASP develops over days, with
associated factors like IL-6 reaching maximal secretion levels 4–
10 days after DDR initiation (Coppe et al., 2008; Rodier et al.,
2009). In response to DNA damage, persistent DDR signals
emanating from DNA-SCARS are necessary, both for the estab-
lishment andmaintenance of the SASP (Rodier et al., 2009, 2011).
At the molecular level, the DDR proteins H2AX, ATM, NBS1
and CHK2, but not cell cycle arrest mediators p53 and pRb,
are required to support the SASP (Rodier et al., 2009, 2011).
Activation of the p38MAPK stress kinase pathway also triggers
the SASP and in some situations concurrent activation of the

FIGURE 2 | Examples of molecular interactions between the DDR and
outgoing–incoming extracellular damage signals. (A) Outgoing signal
from the damaged cell: in response to persistent DNA-SCARS, molecular
components of the DDR cascade lead to selected transcription factor
activation and increased transcription of SASP factors such as IL-6.

(B) Incoming damage to the undamaged cell: the presence of extracellular
TGF-β can reinforce DDR-mediated p53 activity and trigger the formation of
DNA-SCARS, which subsequently mediate senescence phenotypes, including
increased secretion of SASP factors that reinforce a positive senescence
feedback loop.

Frontiers in Genetics | www.frontiersin.org 4 March 2015 | Volume 6 | Article 94

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


Malaquin et al. The DDR conveys extracellular signals

DDR is not necessary suggesting that there may be different
subsets of SASP factors requiring varying levels of interaction
with the DDR (Figure 2A; Freund et al., 2011). For example,
the depletion of ATM completely prevents the secretion of IL-
6 and IL-8 in senescent irradiated human fibroblasts, but does
not impede increased secretion of MCP1, TIMP2, and IGFBP2
(Rodier et al., 2009).

The inflammation-associated transcription factor, nuclear
factor-kB (NF-κB), is revealing itself to be a master regulator
of the SASP (Figure 2A; Salminen et al., 2012). The activation
of the RelA p65 subunit of NF-κB and its recruitment to the
chromatin are necessary for the expression of several SASP fac-
tors, including IL-6 and IL-8 (Chien et al., 2011). Several studies
also showed that the DDR can directly trigger activation of NF-
κB signaling via the interaction between activated ATM and
the NEMO protein, which is a regulatory subunit of the IKK
complex (inhibitor of NF-κB signaling). DDR activation results
in the export of an ATM/NEMO complex into the cytoplasm,
where it binds to and activates IKKα/β, leading to the initia-
tion of NF-κB signaling via the phosphorylation of inhibitory
IκB proteins (Huang et al., 2003; Wu et al., 2006; Miyamoto,
2011). C/EBPβ (CCAAT-enhancer-binding proteins), another
transcription factor known to be involved in inflammatory regu-
lation, can also contribute to SASP induction in cooperation with
NF-κB (Kuilman et al., 2008).

Alternatively, another important DNA-damage sensor and
DDR regulator, known as PARP-1 (Poly-ADP-ribose polymerase
1), is also involved in the regulation of NF-kB in senescent
melanoma cells undergoing the SASP (Ohanna et al., 2011).
Perhaps linked in this context, activated PARP-1 can interact with
NEMO to enhance the formation of the ATM/NEMO complex
(Stilmann et al., 2009).

Cell-Autonomous Reinforcement or
Bystander Activation of the DDR Using
Late Extracellular DDR Signals (SASP)

Much like the bystander effect described for rapid DDR extracel-
lular signals, the SASP generated from persistently damaged cells
is known to modulate DDR-associated behaviors in neighbor-
ing cells. Although ROS may influence how the DDR generates
the SASP (Guo et al., 2010), most of the SASP’s known extra-
cellular effects are currently associated with proteinic soluble
factors. Additionally, and again in contrast to the rapid DDR
extracellular response, the SASP has been shown to impact both
the signal-emitting damaged cell and healthy bystander cells.
In damaged cells, the SASP can reinforce p53-associated DDR
pathways in a paracrine manner, which maintains senescence
in these cells. For example, IL-6 is considered to be a major
mediator of paracrine senescence reinforcement (Kuilman et al.,
2008). Similarly, CXCR2-binding chemokines (such as IL-8 or
GRO-1) are also crucial to reinforce oncogenic- and replication-
induced senescence (Acosta et al., 2008). Alternatively, the SASP
generated by senescent cells also impacts neighboring bystander
cells, as demonstrated both in culture and in vivo (Kuilman et al.,
2008; Nelson et al., 2012; Acosta et al., 2013). In particular,

multiple SASP components secreted by oncogene-induced senes-
cent cells can trigger paracrine senescence in bystander cells
(i.e., TGFβ family ligands, VEGF, CCL2, and CCL20) and IL-
1 signaling is apparently a major upstream regulator of this
paracrine senescence (Acosta et al., 2013). Finally, the SASP
factor MCP-1 (CCL2), found in the conditioned media of
senescent melanoma cells, was demonstrated to promote DNA
lesions in other cells, as illustrated by an increase in 53BP1
DDF (Ohanna et al., 2011). Other extracellular signals that are
not necessarily secreted by damaged or senescent cells can
also connect to the DDR. For example, type I β-interferon
secreted by virally infected cells has been shown to induce
paracrine bystander senescence in other cells via the genera-
tion of ROS, DDR activation, and p53 activity (Moiseeva et al.,
2006).

The link between extracellular signaling and DDR activation
is well illustrated by TGFβ signaling, which is often associ-
ated with senescence (Hubackova et al., 2012; Figure 2B). The
inhibition of the TGFβ pathway resulted in defective DDR acti-
vation in irradiated normal cells, as measured by decreased
p53 activation and a reduction in ATM, CHK2, and H2AX
phosphorylation (Kirshner et al., 2006). The addition of recom-
binant TGFβ-1 also restored functional ATM in damaged nor-
mal cells and could induce DDR-associated senescent pheno-
types in healthy hepatocellular carcinoma cells (Kirshner et al.,
2006; Senturk et al., 2010). Similarly, TGFβ-1 from the condi-
tioned media of senescent normal fibroblasts (oncogene-induced
senescent, replicative exhaustion, or genotoxic drugs) triggered
a senescent growth arrest in undamaged cells via the DDR-
associated p53 or the p16 pathways (Figure 2B). TGFβ-induced
bystander senescence is associated with the activation of a per-
sistent DDR, the formation of DNA-SCARS, and the subsequent
production of SASP factors. It is probable that the activation of
the TGFβ/SMAD pathway results in increased intracellular ROS
and NOS production in the target bystander cells through an NF-
κB-mediated increase in Nox4 expression and NAPDH oxidase
activity (Burdak-Rothkamm et al., 2007, 2008; Shao et al., 2008).
Finally, the stimulation of the IL1R/NF-κB pathway known to
activate cellular inflammatory responses also cooperates with
TGFβ/SMAD to induce bystander senescence (Hubackova et al.,
2012).

Conclusion and Perspectives

It is now clear that DNA-damaged cells interact with the extracel-
lular environment to induce bi-directional changes within them-
selves and in undamaged neighboring cells. These communica-
tion strategies have most likely evolved to convey stress signals
from damaged cells to the surrounding tissue and occur relatively
rapidly (within hours) and/or slowly under the shape of the SASP.
In the case of cancer treatment, therapeutic tools, including radi-
ation and cytotoxic drugs, can trigger DDR activity and cellular
senescence in normal and neoplastic cells but whether the gen-
eration of a DDR-driven immunomodulatory microenvironment
has beneficial or detrimental consequences remains unknown
(Acosta and Gil, 2012; Sun and Nelson, 2012). It is thus evident
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that understanding microenvironment-modulating DDR-related
mechanisms and their consequences remains a major chal-
lenge in the development of successful cancer therapies. Recent
tools have emerged to directly manipulate senescence in mam-
malian model systems, which will be very useful in determining
the importance of extracellular signals emitted from senescent
cells (Baker et al., 2011; Laberge et al., 2013; Demaria et al., 2014).
The use of these models and other strategies will be instru-
mental in the exploration of the pathways regulating DDR-
mediated extracellular communication, as well as in the iden-
tification of extracellular signaling molecules that may become
potential targets for therapeutic development in advanced

cancer therapies that take into account tissue microenviron-
ments.
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