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Abstract

Purpose To illustrate how structural equation modeling

(SEM) can be used for response shift detection with ran-

dom measurement occasions and health state operational-

ized as fixed group membership (Study 1) or with fixed

measurement occasions and health state operationalized as

time-varying covariates (Study 2).

Methods In Study 1, we explored seven items of the

Performance Scales measuring physical and mental aspects

of perceived disability of 771 stable, 629 progressive, and

1,552 relapsing MS patients. Time lags between the three

measurements varied and were accounted for by intro-

ducing time since diagnosis as an exogenous variable. In

Study 2, we considered the SF-12 scales measuring phys-

ical and mental components of HRQoL of 1,767 patients.

Health state was accounted for by exogenous variables

relapse (yes/no) and symptoms (worse/same/better).

Results In Study 1, progressive and relapsing patients

reported greater disability than stable patients but little

longitudinal change. Some response shift was found with

stable and relapsing patients. In Study 2, relapse and

symptoms were associated with HRQoL, but no change

and only little response shift was found.

Conclusions While small response shifts were found,

they had little impact on the evaluation of true change in

performance and HRQoL.

Keywords Response shift � Structural equation

modeling � Health-related quality of life � Multiple

sclerosis patients � Measurement bias

Introduction

Measurement in health research relies heavily on self-

report data. Self-report data collected in longitudinal

studies are often difficult to interpret due to respondents’

changing standards, values, or conceptualization of the

target construct. This phenomenon is referred to as

‘response shift’. We distinguish three types of response

shift: (1) recalibration of respondents’ internal standards of

measurement, (2) reprioritization of respondents’ values,

and 3) reconceptualization of the target construct [1]. Each

of these types of response shift can be operationalized

within structural equation modeling (SEM) [2, 3].

Several operationalizations of response shift have been

proposed. Generally, response shift can be defined either as

bias in the measurement of the attribute of interest or as

bias in the explanation of the attribute [4]. In this paper, we

will focus only on response shift in measurement. From

this perspective, bias is not considered as noise but rather

as systematic differences in patients’ scores that are not
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fully explained by true differences in the attribute of

interest (e.g., health-related quality-of-life (HRQoL)), but

also by differences in other variables (e.g., other patient

expectations, adaptation). Response shift is considered as a

measurement bias that changes with time of measurement

in longitudinal research (see Oort et al. [2, 4, 5]).

With SEM, we can detect such measurement bias with

respect to time of measurement in longitudinal designs, group

membership in multigroup designs, or any other exogenous

variable. For example, the effects of health state on the course

of HRQoL can be modeled by dividing the sample into

healthy and non-healthy subgroups, or by including an indi-

cator of health state as an exogenous variable. If exogenous

variables are included in a longitudinal model, they can be

static (e.g., diagnosis) or they can vary across measurement

occasions (e.g., depression scale scores). Additionally, dif-

ferent longitudinal structures (e.g., growth, autoregression)

can be investigated with latent variables.

As explained in a companion paper by Schwartz et al. [6],

this paper is one in a series investigating response shift in

multiple sclerosis (MS) patients using different methods.

Here, we demonstrate how SEM can be used to detect

response shift. We aim to illustrate the flexibility of SEM by

investigating response shift in two studies. In Study 1, we

investigate the performance disabilities in MS patients by

taking the first three measurement occasions with varying

time lags across patients. We investigate health status by

distinguishing between three pre-defined and known groups of

MS patients (i.e. stable, progressive, and relapsing) and use

these groups in a multigroup analysis. In Study 2, we inves-

tigate HRQoL in MS patients by selecting measurement

occasions with fixed time lags. Health status is taken into

account by introducing time-varying health status indicators

as exogenous variables. In both studies, we will investigate

change and response shift with respect to health status.

Method

Data

Analyses in this paper utilize data from the North Ameri-

can Research Committee on Multiple Sclerosis (NAR-

COMS) project registry. The NARCOMS registry was

established in 1993 to collect biannual data on MS patients’

status. The main aim of the registry is to make these data

available for the wider community, in particular research-

ers, to increase knowledge about MS.

Study 1

Response shift in performance disability is investigated

using the intake questionnaire and the two subsequent

follow-up questionnaires. As the timing of the measure-

ment occasions varies across patients, they are considered

random. On average, the first two measurement occasions

are 1.04 (SD = 0.79) years apart, and the second and third

measurement occasions are 0.88 (SD = 0.73) years apart.

Study 2

In Study 2, three other measurement occasions are used.

Since the intake survey does not include the HRQoL ques-

tionnaire, we took the first three measurement occasions that

included the HRQoL questionnaire and that were evenly

spaced in time (about 6 months apart). These occasions are

considered as fixed. On average, the first measurement

occasion in this study is 3.07 (SD = 1.97) years from intake.

Variables

In the NARCOMS registry, a number of demographic,

clinical, and psycho-social measures are collected. In Study

1, we investigate change and response shift in ‘perfor-

mance disability’ as measured by the Performance Scales

[7]. In Study 2, we investigate change and response shift in

‘HRQoL’ as measured by the SF-12 [8]. In both studies, we

include demographic variables (age and sex) and clinical

variables (time since diagnosis and health state). These

variables are used to investigate additional measurement

bias in the observed variables of the Performance Scales

and the SF-12.

Performance Disability

The Performance Scales [7] originally included eight items.

As the visual disability item was not consistently included

as part of the NARCOMS survey, we use seven items of

disability. Items were scored on a 6-point (or 7-point in

case of mobility) Likert scale (0 = Normal; 5 = Totally

disabled) and represent performance disability with respect

to mobility, hand function, fatigue, cognition, bladder/

bowel, sensory, and spasticity. Higher scores indicate

greater disability. When less than three item responses

were missing, values were imputed using the expected

maximization (EM) algorithm [9].

HRQoL

The SF-12 [8] was used to measure two components of

HRQoL: Mental (MENT) and Physical (PHYS). Eight

scales are created from the 12 items including physical

functioning (PF), role limitations because of physical

health (RP), bodily pain (BP), general health (GH), vitality

(VT), social functioning (SF), role limitations because of

emotional problems (RE), and mental health (MH). Higher
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scores indicate better HRQoL. The scales—not the items—

are the focus of our analysis. When less then five subscale

values were missing, values were imputed using the EM

algorithm [9].

Health State

In Study 1, three groups of patients with different health

states were created based on their answers to relapse and

symptom change questions at baseline and follow-up mea-

surements. The three groups are defined as follows: ‘stable’,

patients with no relapses and symptoms that remained

unchanged or improved; ‘progressive’, patients who

relapsed and whose symptoms continued to get worse;

‘relapsing’, those who experienced a relapse but whose

symptoms remained unchanged or improved. In Study 2, two

items were used to measure health state: ‘relapse in the past

6 months’ (1 = yes, 0 = no/unsure) and ‘symptoms com-

pared to 6 months ago’ (1 = much worse; 7 = much better).

Both items were administered at each measurement occasion

and can thus be included as time-varying covariates.

Other Variables

‘Age’, ‘sex’, ‘newly diagnosed’, and ‘time since diagnosis’

are also included in the analyses. At the first measurement

occasion of Study 1, we distinguish between patients who

are newly diagnosed (diagnosis the same year as joining

the NARCOMS registry) and patients whose diagnosis year

was different from the year of joining NARCOMS or their

diagnosis year is unknown. In Study 2, ‘time since diag-

nosis’ is treated as a continuous variable that is calculated

as the difference between the first measurement occasion

and the year of diagnosis. Patients with an unknown year of

diagnosis are excluded.

Study 1 analysis

In both studies, the analysis has three steps: Establishing a

measurement model (Step 1), testing invariance of model

parameters across measurement occasions (Step 2), and

testing invariance with respect to exogenous variables

(Step 3). Each step is outlined below, with similarities and

differences between the two studies highlighted. All anal-

yses were carried out with LISREL 8.54. See Appendix 1

for a more detailed description of the methods; syntax files

are available upon request.

Step 1: Establishing a measurement model

The Performance Scales were originally reported to measure

a unidimensional construct [7]. If the corresponding confir-

matory factor analysis (CFA) model does not fit, then

exploratory factor analysis is used to determine an alterna-

tive model, before continuing with CFA. Maximum likeli-

hood estimation is used for parameter estimation. We assess

the overall fit of our models with the chi-square test of exact

fit, the root mean square error of approximation (RMSEA)

[12], the expected cross-validation index (ECVI) [12], the

comparative fit index (CFI) [10], and the Tucker Lewis index

(TLI) [11]. A non-significant chi-square value indicates good

fit. However, as it is sensitive to small deviations between

model and data, especially when sample size is large, we also

consider approximate fit indices. RMSEA \ 0.08 indicates

satisfactory fit; RMSEA \ 0.05 indicates close fit. ECVI

cannot be used as a stand-alone index but can be used to

compare alternative models; a smaller ECVI value indicates

better model fit [12]. Finally, both the CFI and the TLI assess

the improvement in fit from a null model that assumes no

relationships between variables. Values of [ .90 for the TLI

and values [ .95 for the CFI indicate reasonable fit of the

model to data. If a new model is specified, the change in

model fit is assessed with the chi-square difference test and

the ECVI difference test [12].

Step 2: Testing invariance across measurement occasions

In this step, we take the final model of Step 1 and simul-

taneously constrain all factor loadings and intercepts to be

equal across measurement occasions and groups. Across-

occasion invariance (no measurement bias) of factor

loadings and intercepts is assessed by comparing this

model with the final model of Step 1 using the chi-square

difference test. A significant result provides evidence for

response shift. However, if the test result is not significant,

we still investigate response shift, as a single, yet sub-

stantially important response shift may not cause signifi-

cant deterioration in the overall model fit.

To detect measurement bias, we examine modification

indices and the standardized expected parameter changes

(SEPC) [13]. If both are large, we expect significant

improvement in the overall model and substantial change in

the parameter estimate(s). As there are a large number of

modification indices to consider, we stop investigating

modification indices when none are greater than a Bonfer-

roni-adjusted critical value [14] of 12.83. For SEPC, we

consider [ 0.10 significant [15]. The effect size [16] of

possible response shifts will be evaluated in comparison with

Cohen’s d effect sizes of observed and true change [2].

Step 3: Testing invariance with respect to exogenous

variables

The first model in this step includes ‘age’, ‘sex’, ‘newly

diagnosed’, ‘time between measurement occasions 1 and 2’,

Qual Life Res (2011) 20:1527–1540 1529
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and ‘time between measurement occasions 2 and 3’ as

additional exogenous variables. These five exogenous

variables correlate with each other and with the common

factors, but their relationship with the observed items

should be fully explained through these correlations. If

large modification indices and SEPCs are present, this

indicates the presence of bias. In case of direct effects

changing over time, we consider this measurement bias as

response shift.

Study 2 analysis

In Study 2, we took the same steps as in Study 1. All

analyses were carried out with Mx [17]. See Appendix 2

for a detailed description of the methods; syntax files are

available upon request.

Step 1: Establishing a measurement model

The first goal is to find a satisfactory measurement model

for the SF-12. We begin with the measurement model

comprising two common factors: PHYS and MENT

HRQoL. If this model does not fit, we use modification

indices and standardized residuals [13, 18] to identify

misspecification and to develop an alternative model. As in

Study 1, possible model modifications are assessed using

the chi-square difference test and ECVI difference test.

Overall model fit is assessed using the same statistics as

used in Study 1.

Step 2: Testing invariance across measurement occasions

All factor loadings and intercepts of the final model of Step

1 are simultaneously constrained to be equal across mea-

surement occasions, like in Study 1. To detect response

shift, we use a different search strategy from Study 1 where

we test individual constraints. Here, we follow the proce-

dure outlined in King-Kallimanis et al. [19], relying on a

smaller number of global tests that free multiple constraints

simultaneously. In this study, we use eight global tests, one

for each observed scale. The fit of each of these eight new

models is compared to the fully constrained model using

the chi-square difference test (at adjusted significance

level) [14] and scaled observed parameter changes (OPC).

After running the eight tests, the observed scale producing

the largest OPC in combination with a significant chi-

square difference test is interpreted as response shift. We

continue iteratively, retesting the remaining scales, until no

large OPC with a significant chi-square difference test is

found. Corresponding to Cohen’s small effect sizes, we

consider an OPC indicating a standardized difference of 0.1

between factor loadings or 0.2 between intercepts to be

large [16].

Step 3: Testing invariance with respect to exogenous

variables

We extend the final model of Step 2 to include ‘age’, ‘sex’,

‘time since diagnosis’, ‘relapse in the past 6 months’, and

‘symptom change in the last 6 months’ as exogenous

variables. To test for response shift, we fit new models

where we include direct effects of the exogenous variables

on the observed scales. The impact of these direct effects is

assessed with OPCs and the chi-square difference test. If

the largest effects are significant, we leave these parame-

ters free to be estimated and repeat the process until no

significant improvements are found. Once any biases have

been accounted for, this final model can be used to assess

true change in the attribute of interest using the same for-

mula used in Study 1 [2].

Results

Study 1 results

In the analysis of the Performance Scales items, we dis-

tinguished between 771 stable patients (26.1%), 629 pro-

gressive patients (21.3%), and 1,552 relapsing patients

(52.6%). See Table 1 for sample characteristics and

Table 2 for the Performance Scales item means.

Step 1: Establishing a measurement model

The reported unidimensional structure of the Performance

Scales yielded satisfactory fit (Table 3, Model 1.1.1).

However, model fit could be improved upon. Exploratory

factor analysis suggested a two-dimensional model, and in

CFA this model yielded substantially better fit for the

Performance Scales than a one-dimensional model

(Table 3, 1.1.2). The two dimensions were interpreted as

(1) Visible Disability (mobility, spasticity, bladder),

describing the most visible and stigmatizing symptoms that

may make one home bound; and (2) Internal Disability

(hand function, fatigue, sensory, cognition), relating to an

internal, more subjective experience.

Step 2: Testing measurement invariance

across measurement occasions

The equality constraints imposed in this step led to a sig-

nificant deterioration in fit, suggesting the presence of

response shift (Table 3, Model 1.2.1). The modification

indices and SEPCs suggested first removing the equality

constraint on the intercept of ‘sensory’ for the stable

group at the first measurement occasion (v2diff(1) = 56.8,

P \ 0.001) and successively the intercept of ‘sensory’ for

1530 Qual Life Res (2011) 20:1527–1540
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Table 1 Descriptive statistics

for demographic variables of

Multiple Sclerosis patients for

Study 1 and Study 2

Variable Study 1 (n = 2,952) Study 2 (n = 1,767)

Sex

Male 423 (14.33%) 303 (17.15%)

Female 2,031 (68.80%) 1,464 (82.86%)

Age, mean (SD) 40.82 (9.35) 45.56 (9.31)

Time since diagnosis in years, mean (SD) NA 3.69 (2.12)

Newly diagnosed

Yes 1,054 (35.70%) NA

No/unknown 1,898 (64.30%)

Relapse

Yes (T1) NA 608 (34.41%)

Yes (T2) NA 565 (31.98%)

Yes (T3) NA 555 (31.41%)

Symptom change

T1 NA 3.64 (1.15)

T2 NA 3.61 (1.08)

T3 NA 3.64 (1.04)

Group membership

Stable 771 (26.12%) NA

Actively relapsing 1,552 (52.57%) NA

Progressing without relapsing 629 (21.31%) NA

Table 2 Means and standard deviations for Performance Scale items (Study 1) and SF-12 scales (Study 2)

Measurement

Occasions & Group Membership

Mobility Hand Function Fatigue Cognitive Bladder/Bowel Sensory Spasticity

Study 1—Performance Scales: higher scores indicate more disability

Time 1

Relapsing 1.52 (1.45) 1.22 (1.08) 2.58 (1.31) 1.62 (1.19) 1.18 (1.08) 1.89 (1.19) 1.51 (1.24)

Progressive 1.67 (1.47) 1.02 (0.98) 2.39 (1.26) 1.40 (1.17) 1.20 (1.04) 1.65 (1.17) 1.34 (1.22)

Stable 0.82 (1.17) 0.63 (0.86) 1.68 (1.22) 0.99 (1.01) 0.72 (0.90) 1.31 (1.03) 0.82 (1.05)

Time 2

Relapsing 1.65 (1.50) 1.25 (1.09) 2.68 (1.31) 1.74 (1.23) 1.29 (1.15) 1.83 (1.22) 1.60 (1.29)

Progressive 1.79 (1.56) 1.10 (1.05) 2.45 (1.31) 1.45 (1.12) 1.24 (1.05) 1.59 (1.13) 1.48 (1.27)

Stable 0.78 (1.21) 0.66 (0.89) 1.70 (1.25) 1.02 (0.97) 0.75 (0.91) 1.13 (0.98) 0.77 (0.96)

Time 3

Relapsing 1.75 (1.55) 1.31 (1.13) 2.70 (1.32) 1.77 (1.21) 1.37 (1.67) 1.84 (1.24) 1.65 (1.28)

Progressive 1.91 (1.67) 1.16 (1.07) 2.52 (1.28) 1.52 (1.16) 1.35 (1.10) 1.65 (1.16) 1.50 (1.29)

Stable 0.81 (1.24) 0.67 (0.88) 1.63 (1.25) 1.02 (1.25) 0.76 (0.91) 1.06 (0.96) 0.82 (0.99)

Measurement Occasions PF RF BP GH VT SF RE MH

Study 2—SF-12: higher scores indicate better health

Time 1 6.80 (2.34) 6.26 (2.47) 5.40 (2.52) 4.30 (1.93) 3.13 (2.04) 7.17 (2.38) 7.42 (2.28) 5.87 (1.73)

Time 2 6.86 (2.17) 6.34 (2.32) 5.41 (2.54) 4.37 (1.95) 3.16 (1.96) 7.03 (2.43) 6.98 (2.38) 5.81 (1.65)

Time 3 6.70 (2.44) 6.23 (2.50) 5.52 (2.68) 4.32 (1.93) 3.05 (2.07) 7.13 (2.43) 7.50 (2.31) 5.92 (1.72)

Sample sizes in Study 1 are relapsing = 1,552, progressive = 629, and stable = 771. Total sample size = 2,952. Total sample size in Study

2 = 1,767

PF Physical Functioning, RF Role Functioning, BP Bodily Pain, GH General Health, VT Vitality, SF Social Functioning, RE Role Emotional,

MH Mental Health

SF-12 means are sums of the items for each subscale and are not scaled to the standard 0–100 for computational convenience
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the relapse group at the first measurement occasion

(v2diff(1) = 74.2, P \ 0.001). No further model modifi-

cations were necessary. The ECVI difference tests were in

agreement with these modifications (Table 3).

As can be seen in Fig. 1a, at the second and third

measurement occasions, the intercepts of ‘sensory’ appear

to decrease for the stable (0.37–0.18) and relapsing groups

(0.37–0.18) relative to their Visible Disability (Fig. 1b).

This response shift can be interpreted as recalibration and

suggests that for these groups, when overall disability

increases over time, specific sensory disability did not

increase as much.

Step 3: Testing measurement invariance with respect

to exogenous variables

In the final step, we used Model 1.2.2 and included addi-

tional exogenous variables (Table 3, Model 1.3.1). In all

groups, at all occasions, we found positive correlations

between age and both disability dimensions (see Table 4).

The other exogenous variables, ‘sex’, ‘newly diagnosed’,

‘time between measurement occasions 1 and 2’, and ‘time

between measurement occasions 2 and 3’ had correlations

less than 0.1 with disability. When inspecting the SEPCs,

we find that none were above our cut point of 0.10.

Therefore, we concluded that there was no bias in the

Performance Scales items with respect to these variables.

See Fig. 1a and Table 4 for final model estimates.

For each group, the estimates of the common factor

means of this final model (Model 1.3.2) are plotted against

time in Fig. 1b and c. We see deterioration of progressive

and relapsing patients (increasing visible disability scores)

but no change in stable patients. There is little change

within groups for internal disability, stable patients have

the lowest internal disability means, and relapsing patients

have the highest internal disability means.

Study 1 conclusion

Only ‘‘sensory disability’’ showed response shift. Consid-

ering the impact of response shift and true change on

observed change in ‘sensory disability’, we see that an

observed change of -0.19 for stable patients is almost fully

attributable to response shift (-0.22), leaving only 0.03 of
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Fig. 1 a Performance Scale Measurement model at one measurement

occasion. Factor loadings and intercepts of Model 1.2.2. mobi
Mobility, spas Spasticity, blad Bladder/Bowel, hand Hand Function,

sens Sensory, fatig Fatigue, cogn Cognitive. b Visible Disability

Mean Change by Group and Between Models. c Internal Disability

Mean Change by Group and Between Groups. Note Scaling of

vertical axis is in standard deviations of the first measurement

occasion common factor standard deviations
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Table 4 Final model covariance and residual variance estimates

Visible–T1 Internal–T1 Visible–T2 Internal–T2 Visible–T3 Internal–T3

Variance/covariances

Visible–T1

Stable 1.10

Progressive 1.17

Relapsing 1.52

Internal–T1

Stable 0.38 0.52

Progressive 0.35 0.60

Relapsing 0.56 0.73

Visible–T2 1.26

Stable 0.99 0.36 1.98

Progressive 1.58 0.35 1.82

Relapsing 1.43 0.56

Internal–T2

Stable 0.35 0.40 0.42 0.47

Progressive 0.28 0.52 0.37 0.67

Relapsing 0.50 0.63 0.65 0.77

Visible–T3

Stable 0.97 0.34 1.20 0.39 1.22

Progressive 1.65 0.26 2.05 0.25 2.29

Relapsing 1.41 0.52 1.77 0.58 1.93

Internal–T3

Stable 0.32 0.39 0.38 0.42 0.40 0.48

Progressive 0.25 0.52 0.30 0.61 0.35 0.69

Relapsing 0.51 0.61 0.64 0.69 0.65 0.79

Sex

Stable -0.01 0.01 -0.02 0.01 -0.03 0.01

Progressive -0.09 \0.01 -0.08 -0.01 -0.09 -0.01

Relapsing -0.08 -0.02 -0.07 -0.01 -0.08 -0.01

Age

Stable 0.32 0.07 0.34 0.09 0.35 0.08

Progressive 0.43 0.04 0.50 0.02 0.51 0.01

Relapsing 0.37 0.12 0.43 0.14 0.43 0.13

Newly diagnosed -0.26 -0.12 -0.26 -0.12 -0.26 -0.12

Time between T1 and T2 0.10 0.01 0.10 0.01

Time between T2 and T3 0.10 0.01

Residual variances Mobility Spasticity Bladder/bowel Hand function Sensory Fatigue Cognitive

Stable

T1 0.27 0.59 0.53 0.40 0.61 0.74 0.48

T2 0.23 0.45 0.51 0.42 0.55 0.80 0.48

T3 0.30 0.43 0.51 0.38 0.51 0.88 0.51

Progressive

T1 0.41 0.82 0.77 0.60 0.82 0.79 0.75

T2 0.44 0.87 0.70 0.61 0.72 0.80 0.64

T3 0.40 0.81 0.80 0.60 0.76 0.80 0.67
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true change. In the relapsing group, once we accounted for

a response shift of -0.18, we see that an observed change

of -0.06 underestimates a true change of 0.12. Still,

we note that these effect sizes should be considered

‘‘small’’.

Study 2 results

Participants were included if they had at least six of the 12

SF-12 items completed at three consecutive measurement

occasions that were 6 (±3) months apart. This yielded a

final sample of 1,767 patients. See Table 1 for sample

characteristics and Table 2 for SF-12 observed scale

means.

Step 1: Establishing a measurement model

The SF-12 PF, RP, BP, and GH scales are associated with

PHYS, and VT, SF, RE, and MH are associated with

MENT [8]. When replicating this structure, this model had

only marginally satisfactory fit (Table 3, Model 2.1.1).

Three sources of misfit were, at all measurement occasions,

as follows: 1) covariances between residuals of PF and RP

(v2diff(9) = 549.6, P \ 0.001), 2) covariances between
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Fig. 2 a SF-12 Measurement model at one measurement occasion.

Factor loadings and intercepts of Model 2.2.2. PF Physical Func-

tioning, RF Role Functioning, BP Bodily Pain, GH General Health,

VT Vitality, SF Social Functioning, RE Role Emotional, MH Mental

Health. b PHYS HRQoL Mean Change Between Models. c MENT

HRQoL Mean Change Between Models. Note Scaling of vertical axis

is in standard deviations of the first measurement occasion common

factor standard deviations

Table 4 continued

Residual variances Mobility Spasticity Bladder/bowel Hand function Sensory Fatigue Cognitive

Stable

T1 0.57 0.83 0.76 0.58 0.76 0.77 0.72

T2 0.40 0.83 0.79 0.58 0.79 0.74 0.73

T3 0.43 0.76 0.86 0.61 0.78 0.73 0.67
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residuals of MH and RE (v2diff(9) = 452.5, P \ 0.001),

and 3) cross-loadings of VT on PHYS (v2diff(3) = 156.0.2,

P \ 0.001). These modifications produced a measurement

model with satisfactory fit (Table 3, Model 2.1.2).

Step 2: Testing measurement invariance

across measurement occasions

The equality constraints imposed in this step led to sig-

nificantly deteriorated fit, suggesting the presence of

response shift (Table 3, Model 2.2.1). The global test

associated with the scale RE resulted in the largest OPCs

and a significant chi-square difference test. Therefore, the

parameters associated with RE were free to be estimated

(Fig. 2a). As can be seen in Fig. 2a, the intercept of RE at

the second measurement occasion was lower (7.1) than at

the first and third measurement occasions (7.4 and 7.5).

This suggests that there is uniform recalibration for the RE

scale: Patients seemed less inclined to report high RE at the

second measurement occasion as compared to the first and

third measurement occasions, given similar MENT

HRQoL. No further response shifts were found.

Step 3: Testing measurement invariance with respect

to exogenous variables

Adding additional exogenous variables to Model 2.2.2

resulted in a satisfactorily fitting model (Table 3, Model

2.3.1). We found large negative correlations of age and

relapse with PHYS and MENT and positive correlations of

symptom change with PHYS and MENT. The correlations

between sex and time since diagnosis and PHYS and

MENT are considered very small (\0.01) (Table 5). With

Model 2.3.1 as the comparison model, we proceeded to test

for bias with respect to the exogenous variables using the

global tests and OPCs. Significant direct effects of age on

MH (Model 2.3.2) were found. We also found significant

direct effects of age on VT (Model 2.3.3). In the next

iteration, no further significant effects were found.

We tested whether the measurement bias in MH and VT

with respect to age was consistent across measurement

occasions. As the inclusion of equality constraints across

measurement occasions did not worsen model fit (v2diff

(4) = 7.80, P = 0.099), we concluded that the bias is con-

sistent and did not indicate response shift. Given the negative

correlations between age and PHYS and MENT (Table 5),

Table 5 Final model variance/covariances and residual variance estimates

PHYS

HRQoL –T1

MENT

HRQoL –T1

PHYS

HRQoL –T2

MENT

HRQoL –T2

PHYS

HRQoL –T3

MENT

HRQoL –T3

Variance/Covariances

PHYS HRQoL –T1 1

MENT HRQoL –T1 0.87 1

PHYS HRQoL –T2 0.87 0.78 0.94

MENT HRQoL –T2 0.81 0.81 0.84 0.95

PHYS HRQoL –T3 0.91 0.80 0.90 0.83 1.05

MENT HRQoL –T3 0.77 0.78 0.77 0.81 0.91 0.98

Sex -0.03 0.002 -0.01 -0.01 -0.02 -0.005

Age -0.25 -0.12 -0.21 -0.13 -0.26 -0.13

Time since diagnosis -0.04 0.02 0.01 -0.05 -0.02 -0.03

Symptom change–T1 0.63 0.52 0.52 0.48 0.52 0.39

Symptom change–T2 0.52 0.42 0.61 0.53 0.57 0.41

Symptom change–T3 0.41 0.36 0.42 0.39 0.60 0.49

Relapse–T1 -0.15 -0.15 -0.13 -0.12 -0.13 -0.12

Relapse–T2 -0.13 -0.13 -0.15 -0.14 -0.14 -0.12

Relapse–T3 -0.12 -0.11 -0.13 -0.11 -0.17 -0.14

PF RP BP GH VT SF RE MH

Residual variances

T1 2.27 1.66 3.24 1.68 1.97 1.31 2.65 1.76

T2 1.99 1.62 3.28 1.65 1.82 1.56 2.61 1.67

T3 2.51 1.60 3.91 1.64 2.02 1.62 2.59 1.79
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the bias on MH (0.20) and VT (0.19) with respect to age

suggests that older patients reported better MH and VT

than was expected. The estimates of the common factor

means of this model (Model 2.3.3) did not show any

change (Fig. 2b and c).

Study 2 conclusion

When we consider the impact of response shift and true

change on observed change in EF, we see that the observed

change of 0.23 is almost fully attributable to response shift

(0.17), leaving only 0.06 of true change. However, only on

the second measurement occasion, we found an indication of

response shift in EF, which hinders substantive interpreta-

tion. So we concluded that this may be a chance finding.

Discussion

We have illustrated two different ways in which SEM can

be used to investigate response shift. With the present data,

we found uniform recalibration response shift in the sensory

disability item of the Performance Scales (Study 1),

indicating that stable and relapsing patients initially over-

estimate their sensory disability. Apparently, in comparison

with their general performance disability, they initially

worry more about their sensory disability but then become

accustomed to their situation, whereas progressive patients

continue to deteriorate in their performance disability and, as

a result, do not become accustomed to sensory disability. In a

study investigating progressive MS patients, it was shown

that the presence of sensory disability led to an increased

length of time to reach a severe level of disability [20]. In

another study comparing progressive and relapsing patients,

it was found that relapsing patients had higher initial sensory

disability than progressive patients [21]. It may be possible

that the gradual progression of disease seen in progressive

patients leads to a slight worsening of sensory disability over

time, which is difficult to become accustomed to.

We did not find clearly interpretable response shift in

the SF-12 (Study 2), nor did we find any change in HRQoL.

However, two measurement biases that are not response

shift, as they are constant across measurement occasions,

were found: age on MH and age on VT. The correlations

between age and PHYS and MENT HRQoL are negative;

however, the direct effects of age on MH and VT are

positive. This suggests that increased age affects MH and

VT in a different way than would be expected due to the

correlations between the age and the common factors.

A possible explanation for the limited response shift

findings is that the NARCOMS registry patients are not

subjected to a planned intervention, so there is no clear

catalyst of health state changes, other than self-reported

relapse and symptoms. Therefore, the sizes of the response

shifts found are small, and accounting for these response

shifts does not cause large effects on the mean change in

performance disability or HRQoL. Though importantly, the

response shifts do change the interpretation of the observed

changes. In Study 1 for the stable patients and in Study 2

for all patients, the response shift accounts for essentially

all observed change, leaving essentially no true change.

With the relapsing patients in Study 1, the observed change

is underestimated, and after taking response shift into

consideration, true change appears small and negative.

These two studies highlight how SEM can be used to

detect measurement bias under different circumstances.

The steps used are hierarchical; however, there is the

flexibility (1) to account for health state by splitting the

sample into subsamples or by including exogenous vari-

ables, (2) to use time-varying or time-constant exogenous

variables, (3) to use different search strategies for detecting

response shift, (4) inclusion of fixed or random measure-

ment occasions and, not discussed in this paper, (5) to

investigate different longitudinal structures like autore-

gressive and latent growth curve structures [22]. Some of

these decisions are made based on the design of the study

or sample size available, and for each decision made there

are trade-offs. A persistent problem is that the decision of

when to stop investigating measurement bias is relatively

subjective. Because of the large number of tests to con-

sider, despite our strict criteria for what we consider

response shift, we still need to guard against chance find-

ings [18]. Still, SEM offers a useful statistical approach for

response shift detection as it can be tailored to the specifics

of the study design.
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Appendix 1

Study 1

Step 1: Establishing a measurement model

The Performance Scales were originally reported to be a

unidimensional construct [7]. If the confirmatory factor

analysis (CFA) used to assess the longitudinal multigroup

uni-dimensional model does not fit, then exploratory factor
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analysis is used to determine an alternative model, and the

fit of this model is assessed using CFA.

Maximum likelihood estimation is used for parameter

estimation. We assess the overall fit of our models with the

chi-square test of exact fit, the root mean square error of

approximation (RMSEA) [12], the expected cross-valida-

tion index (ECVI) [12], the comparative fit index (CFI)

[10], and the Tucker Lewis index (TLI) [11]. Emphasis,

however, is placed on the RMSEA and ECVI fit statistics

as confidence intervals can be calculated for these fit sta-

tistics. A non-significant chi-square value indicates good

fit. As it is sensitive to small deviations between model and

data, especially when the sample size is large, we also

consider approximate fit indices that relax the stringent

requirement on chi-square that the model has exact fit to

the population. RMSEA \ .08 indicates satisfactory fit;

RMSEA \ .05 indicates close fit. ECVI cannot be used as

a stand-alone index but can be used to compare alternative

models; a smaller ECVI value suggests better model fit

[12]. Finally, both the CFI and the TLI assess the

improvement in fit from a null model with no relationships

assumed between variables. Values [.95 for the CFI and

[.90 for the TLI indicate reasonable fit of the model to

data.

If a new model is specified due to misfit as indicated by

modification indices, standardized residuals or standard-

ized expected parameter changes (SEPC), then the change

in overall model fit is assessed with the chi-square differ-

ence test and the ECVI difference test [13]. The chi-square

difference test is used to assess whether the alternative

model fit is significantly better than the fit of the null

model. A significant result indicates that the alternative

model has better fit than the null model. The ECVI dif-

ference is the difference between the ECVI values of the

null and alternative models. If the confidence interval of

this test does not include zero, then the change is signifi-

cant. The ECVI test is based on the chi-square test but it

penalizes models containing more free parameters [13].

Step 2: Testing invariance across measurement occasions

In this step, we take the final model of Step 1 and simul-

taneously constrain all factor loadings and intercepts to be

equal across measurement occasions and groups. Across-

occasion invariance (lack of measurement bias) of the

factor loadings and intercepts is assessed by comparing this

model with the final model of Step 1 using the chi-square

difference test. A significant test provides strong evidence

that response shift is present as it is possible that the

equality constraints imposed are not tenable. However, if

the test is not significant, it may still be possible that one of

the equality constraints is not tenable. Therefore, we still

search for bias, as a single, yet substantially important

response shift may not cause significant deterioration in the

overall model fit.

To detect measurement bias, we examine modification

indices and SEPCs [13]. One prerequisite for meaningful

model respecification is that large modification indices are

substantively interpretable; however, this alone does not

ensure a substantial change in the parameter estimate,

especially in large samples. Therefore, we also consider the

associated SEPC. If both are large, then there is a signifi-

cant improvement in the overall model and substantial

change in the parameter estimate. As there are a large

number of modification indices to consider, we stop

investigating modification indices when none are greater

than 12.83 [14]. This critical value has been adjusted for

the number of tests in consideration so as to maintain a

family-wise type 1 error rate of 5%. For the SEPCs, we

consider[0.10 significant [15]. The impact of any response

shift found is assessed by using Oort’s [2] partitioning

formula to evaluate the contribution of response shift and

true change in terms of Cohen’s effect size d [16].

Step 3: Testing invariance with respect

to exogenous variables

Using the final model in Step 2, we now include ‘age’,

‘sex’, ‘newly diagnosed’, ‘time between measurement

occasions 1 and 2’, and ‘time between measurement

occasions 2 and 3’ as additional exogenous variables.

These five exogenous variables correlate with each other

and with the common factors, but their relationship with

the observed items should be fully explained by these

correlations. If large modification indices and SEPCs are

present between the exogenous variables and the observed

items, this is an indication of bias and requires the esti-

mation of direct effects. If the estimates of the direct effects

change over time (i.e., cannot be constrained to be equal

across measurement occasions), we interpret this as

response shift. However, if the direct effects do not change

over time, we consider this measurement bias. Large

modification indices and SEPCs will be evaluated using the

same criteria as outlined in Step 2.

Appendix 2

Study 2

Step 1: Establishing a measurement model

The first goal is to find a satisfactory measurement model

for the SF-12. We begin with the measurement model

comprising two common factors: PHYS and MENT

HRQoL. If this model does not fit, we use modification
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indices and standardized residuals [13, 18] to identify

misspecification and develop an alternative model. As we

are evaluating the measurement model longitudinally, we

require the same observed variables to be associated with

the same common factors across measurement occasions. If

the model is modified, the changes are assessed using the

chi-square difference test and ECVI difference test as

explained in Study 1. Overall model fit is assessed using

the same statistics as used in Study 1.

Step 2: Testing invariance across measurement occasions

Using the final measurement model from Step 1, all factor

loadings and intercepts of the final model of Step 1 are

simultaneously constrained to be equal across measurement

occasions, like in Study 1. The assessment of overall model

fit and change in model fit compared to the final model of

Step 1 are again done in the same way as in Study 1.

To detect response shift, we use a different search

strategy from Study 1 where we test individual constraints.

Here, we follow the procedure outlined in King-Kallimanis

et al. [19], where all observed scales are tested with a

smaller number of global tests that free multiple constraints

simultaneously. In this study, we use eight global tests, one

for each observed scale. That is, for each of the eight

scales, the equality constraints on both the factor loadings

and the intercepts at all three measurement occasions are

removed. The fit of each of these eight new models is

compared to the fully constrained model using the chi-

square difference test. The impact of freeing the parameters

on the estimated parameter values is assessed by calculat-

ing the observed parameter changes (OPC). The OPCs are

scaled for ease of comparison, and they are the actual

difference between the standardized factor loadings and

intercepts of the null model, and the standardized factor

loadings and intercepts of the altered model. Correspond-

ing to Cohen’s small effect sizes, we consider an OPC

indicating a difference of 0.1 between factor loadings or

0.2 between intercepts to be large [16]. We consider both

values because small deviations in the observed and

expected covariance matrix may lead to significant model

improvement, but not substantial parameter change.

After running the eight tests, the model specifics are

checked. In particular, scales with OPCs that meet our

criteria that are in conjunction with a significant chi-square

difference test are considered as exhibiting response shift.

The factor loadings and intercepts of this scale remain

unconstrained, and the remaining scales are retested with

an adjusted significance level. We continue iteratively

retesting the remaining scales, until no large OPC with

significant chi-square difference test is found.

Although there are fewer tests to consider when using

the global tests, when the number of iterations increases, so

does the number of tests. Therefore, when considering the

significance of the chi-square difference test, we use a

Bonferroni-adjusted level of significance, with the family-

wise level of significance at 5% divided by the number of

tests under consideration for this particular step of the

analysis [14].

Step 3: Testing invariance with respect to exogenous

variables

We extend the final model of Step 2 to include ‘age’, ‘sex’,

‘time since diagnosis’, ‘relapse in the past 6 months’, and

‘symptom change in the last 6 months’ as exogenous

variables. We hypothesize that these variables have the

potential to induce bias on the observed scales. These

additional variables are free to correlate with each other

and with the common factors; however, all direct effects

between the observed scales are fixed to zero. To test for

response shift, we fit new models where the direct effects

of the exogenous variables are free to be estimated. For

example, for ‘sex’ we fit eight new models, with the effect

of sex on an observed scale for three measurement occa-

sions. This results in three additional parameters to be

estimated. The impact of these direct effects is assessed

with OPCs and the chi-square difference test. If the largest

effects meet our criteria like in Step 2, we leave these

parameters free to be estimated and start the process over

again and stop when no freed direct effects meet our cri-

teria. Once any biases have been accounted for, this final

model can be used to assess true change in the attribute of

interest using the same partitioning formula we use in

Study 1.
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