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Abstract

Bothrops envenomation is a public health problem in Brazil. Despite the advances in the

knowledge of the pathogenesis of systemic and local effects induced by Bothrops venom,

the target tissues to this venom are not completely characterised. As preadipocytes are

important cells of the adipose tissue and synthesize inflammatory mediators, we investi-

gated the ability of B. moojeni snake venom (Bmv) to stimulate an inflammatory response in

3T3-L1 preadipocytes in vitro, focusing on (1) the release of PGE2, IL-6, TNF-α, MCP-1,

KC, leptin and adiponectin; (2) the mechanisms involved in PGE2 release and (3) differentia-

tion of these cells. Cytotoxicity of Bmv was determined by MTT assay. The concentrations

of PGE2, cytokines and adipokines were quantified by EIA. Participation of the COX-1 and

COX-2 enzymes, NF-κB and PGE2 receptors (EP1-4) was assessed using a pharmacologi-

cal approach, and protein expression of the COX enzymes and P-NF-κB was analysed by

western blotting. Preadipocyte differentiation was quantified by Oil Red O staining. Bmv

(1 μg/mL) induced release of PGE2, IL-6 and KC and increased expression of COX-2 in pre-

adipocytes. Basal levels of TNF-α, MCP-1, leptin and adiponectin were not modified. Treat-

ment of cells with SC560 (COX-1 inhibitor) and NS398 (COX-2 inhibitor) inhibited Bmv-

induced PGE2 release. Bmv induced phosphorylation of NF-κB, and treatment of the cells

with TPCK and SN50, which inhibit distinct NF-κB domains, significantly reduced Bmv-

induced PGE2 release, as did the treatment with an antagonist of PGE2 receptor EP1, unlike

treatment with antagonists of EP2, EP3 or EP4. Bmv also induced lipid accumulation in dif-

ferentiating cells. These results demonstrate that Bmv can activate an inflammatory

response in preadipocytes by inducing the release of inflammatory mediators; that PGE2

production is mediated by the COX-1, COX-2 and NF-κB pathways; and that engagement of

EP1 potentiates PGE2 synthesis via a positive feedback mechanism. Our findings highlight

the role of the adipose tissue as another target for Bmv and suggest that it contributes to

Bothrops envenomation by producing inflammatory mediators.
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Author summary

Snakes of the genus Bothrops are responsible for most snakebite accidents in Latin Amer-

ica. Bothrops moojeni, a venomous member of this genus, is of particular medical impor-

tance in Brazil. Despite significant advances in the study of the pathogenesis of systemic

and local effects induced by Bothrops venom, the target tissues and their responses to

envenomation are poorly understood. We investigated the effects of B. moojeni venom

(Bmv) on preadipocytes, focusing on the release of inflammatory mediators, lipid accu-

mulation and mechanisms involved in PGE2 production. Our results show that Bmv

induced an inflammatory response in preadipocytes, with activation of the NF-κB signal-

ling pathway, release of the inflammatory mediators PGE2, IL-6 and KC and expression of

COX-2. Furthermore, we show that engagement of the EP1 receptor potentiates PGE2

biosynthesis by positive feedback. Bmv also induced lipid accumulation in differentiating

preadipocytes. These results indicate that adipose tissue cells may be another target for

Bmv and highlight the importance of the adipose tissue as a source of inflammatory medi-

ators during Bothrops envenomation, providing a new perspective for studies of this

envenomation. Besides contributing to systemic effects, the mediators released by adipose

tissue cells following activation by Bothrops venom may intensify local effects.

Introduction

Snakebites are an important public health issue in tropical regions of the world and are consid-

ered a neglected disease by the WHO [1]. The genus Bothrops is responsible for most snake-

bites in Brazil, and the species B. moojeni is responsible for most snakebites in the Cerrado of

southeastern and central Brazil, particularly in Minas Gerais and São Paulo, the two states with

the highest human population in the country [2,3]. Clinically, Bothrops envenomation is char-

acterised by local effects, such as oedema, inflammatory pain, haemorrhage and myonecrosis

[4,5], and severe systemic effects, including coagulation disturbances, hypotension and renal

failure [6,7]. The systemic effects indicate that Bothrops venom reaches blood circulation and

triggers deleterious events in many tissues in the bitten victims. In this context the adipose tis-

sue should be considered, since it is widely distributed throughout the body, has diverse physi-

ological functions and impacts a wide variety of body systems [8,9].

Classically described as an energy reservoir that stores lipids, the adipose tissue is now rec-

ognized as an endocrine organ that participates in a wide variety of physiological and patho-

logical processes [8,10]. Studies demonstrating the ability of this tissue to secrete several

factors that play a role in immunological responses have shown its close association with a

number of inflammatory diseases, such as rheumatoid arthritis, type II diabetes, obesity [11–

14] and recently the SARS-CoV-2-induced inflammatory storm [15–19].

The adipose tissue is composed mainly of mature adipocytes and the stromal vascular frac-

tion. The latter comprises endothelial cells, leukocytes (macrophages and lymphocytes), fibro-

blasts and preadipocytes [20]. Preadipocytes are fibroblast-like cells with proinflammatory

features that can acquire a macrophage-like phenotype, displaying phagocytic and antimicro-

bial activities [21–23]. Preadipocytes and adipocytes per se are able to produce and release a

vast array of inflammatory mediators, such as prostaglandins [24,25], cytokines, chemokines

[10,26,27] and inflammatory mediators specifically secreted by the adipose tissue known as

adipokines, including leptin, resistin and adiponectin [10].

Prostaglandin E2 (PGE2) is one of the prostanoids released by the adipose tissue. This lipid

mediator is involved in many physiological functions, but also in the inflammatory response,
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as it mediates vasodilation, oedema formation and hyperalgesia [28]. Moreover, vasodilation

triggered by PGE2 may lead to systemic hypotension in certain inflammatory conditions

[29,30]. Synthesis of this mediator begins when phospholipases A2 act on membrane phospho-

lipids, releasing free arachidonic acid [31], which in turn is processed by the cyclooxygenase

(COX) enzyme system. This is followed by the activity of terminal synthases (PGES). PGE2

exerts its effects through four subtypes of G protein-coupled receptors: EP1, EP2, EP3 and EP4

[32]. In the adipose tissue, PGE2 is involved in maturation of preadipocytes and modulation of

the release of inflammatory mediators such as leptin [33,34] via engagement of EP receptors

[35–37]. In line with this, several species of Bothrops snake venoms have been reported to

induce the release of PGE2 in different in vivo and in vitro experimental models [38–41]. How-

ever, to date, the effects of these venoms on the release of prostaglandins and cytokines by adi-

pose tissue cells are still unknown.

We therefore hypothesized that the adipose tissue can be targeted by B. moojeni snake

venom and can be a source of inflammatory mediators during envenomation. Based on this

working hypothesis and in view of the fact that preadipocytes are cells with proinflammatory

potential, we investigated the ability of B. moojeni whole venom (Bmv) to activate preadipo-

cytes in culture, focusing on (1) the release of PGE2, IL-6, TNF-α, MCP-1, KC, leptin and adi-

ponectin; (2) the mechanisms involved in PGE2 release; and (3) differentiation of these cells.

We show that Bmv is able to stimulate preadipocytes to release PGE2 by activation of the

COX-1 and COX-2 pathways with participation of the transcription factor NF-κB.

Material and methods

Venom, chemicals and reagents

Bothrops moojeni venom was collected, lyophilized, identified and provided by the Herpetol-

ogy Laboratory of Instituto Butantan. The venom batches used were tested for endotoxin con-

tamination using the quantitative limulus amoebocyte lysate (LAL) test [42], which revealed

undetectable levels of endotoxin (<0.125 EU/mL). The venom was reconstituted in sterile PBS

and immediately filtered before use. L-glutamine was purchased from USB (Cleveland, OH,

USA). Dulbecco’s Modified Eagle Medium (DMEM) and Foetal Bovine Serum (FBS) were

purchased from Life Technologies (São Paulo, SP, Brazil); gentamicin was purchased from

Schering-Plough (Whitehouse Station, NJ, USA); insulin, 3-isobutyl-1-methylxanthine

(IBMX), dexamethasone, rosiglitazone, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT), dimethyl sulfoxide (DMSO) and mouse anti-β-actin monoclonal antibody

were purchased from Sigma-Aldrich (St. Louis, MO, USA); and polyclonal antibody against

COX-1, the PGE2 enzyme immunoassay kit, SC-560, NS-398, SC-19220, AH6890, L-798106

and GW 627368X were purchased from Cayman Chemical Company (Ann Arbor, MI, USA).

CellTrace CFSE Cell Proliferation Kit (Molecular Probes, C34554) was purchased from Life

Technologies (Eugene, Oregon, USA). Polyclonal antibody against COX-2, HRP-conjugated

anti-mouse secondary antibody and IL-6, KC, MCP-1, TNF-α, leptin and adiponectin EIA kits

were purchased from Thermo Fisher (Waltham, Massachusetts, USA). Monoclonal antibody

against phosphorylated NF-κB (P-NF-κB) and native NF-κB were purchased from Cell Signal-

ling Technologies (Danver, Massachusetts, USA). HRP-conjugated anti-rabbit secondary anti-

body and nitrocellulose membrane were purchased from GE Healthcare (Buckinghamshire,

UK).

3T3-L1 cell culture

3T3-L1 murine preadipocytes obtained from the American Type Culture Collection were cul-

tured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with FBS, 10% (v/v)
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until confluence. Before stimulation with Bmv, FBS was replaced by Bovine Serum Albumin

(BSA) 0.2%.

3T3-L1 preadipocyte differentiation

A preadipocyte differentiation assay was performed according to a previously established pro-

tocol [43]. Briefly, 1.5 x 104 3T3-L1 preadipocytes were added to each well in 24-well plates

and cultured to 100% confluence (2 x 105 cells/well). Two experimental groups were then

defined: T0, consisting of preadipocytes with total confluence and no stimuli, and T2, consist-

ing of preadipocytes treated with DMEM without antibiotic, supplemented with a high con-

centration of glucose (4500 mg/L), FBS (10%) and L-glutamine (1%), plus the differentiation

cocktail (5 μg/mL insulin, 0.5 mM IBMX, 1 μM dexamethasone and 2 μM rosiglitazone) (con-

trol subgroup), or the same medium with the addition of Bmv (1 μg/mL) for 24 h (Bmv-treated

subgroup). In T2, the culture medium of both subgroups was replaced by DMEM with a high

glucose concentration and the differentiation cocktail without Bmv for an additional 24 h.

Lipid accumulation was quantified as previously described [43].

Cytotoxicity assay

The effects of Bmv and pharmacological compounds on cell viability of 3T3-L1 preadipocytes

were evaluated using the MTT assay [44,45]. Briefly, preadipocytes were incubated at 37˚C in a

humidified atmosphere (5% CO2) with DMEM supplemented with FBS (10%), L-glutamine

(1%) and gentamicin sulphate and incubated with different concentrations of Bmv (0.5, 1 or

5 μg/mL), or the pharmacological compounds or with either DMEM (with 0.2% BSA) as a neg-

ative control or DMEM with Triton 10% as a positive control for 1, 3, 6 and 24 h. MTT (5 mg/

mL) was dissolved in PBS and filtered for sterilization and removal of insoluble residues. Next,

the cells were incubated with medium containing MTT (10%) for 2 hours. DMSO (250 μL)

was then added to each well and mixed thoroughly for 30 min at room temperature. Absor-

bances were recorded at 540 nm in a spectrophotometer. The results were expressed as per-

centages of viable cells, and negative control cells were considered 100% viable.

Cell proliferation assay

The effects of Bmv on proliferation of 3T3-L1 preadipocytes were evaluated using a commer-

cially available Cell Trace CFSE Cell Proliferation Kit (Life Tech). Cells were labeled according

to the manufacturer’s instructions. Labelled cells were seeded in black advanced TC 96-well

microplates at the density of 1x103 cells/well, kept in culture in 10% FBS DMEM for 48 h and

then incubated with Bmv (0.5 or 1 μg/mL) or DMEM for 24 h. Cells not labelled with CFSE

were used as a background control. Afterwards, cells were fixed with cold 4% paraformalde-

hyde for 1 h. The High-Content Screening (HCS) assay was used to assess the fluorescence of

single cells from a cell population 24 h after treatment [46]. Then, the cells nuclei were stained

with Hoechst-33342 (Thermo Fisher Scientific, H3570) for 30 min at room temperature. Cell

quantification based on images was performed using MetaXpress software (Molecular Devices,

USA). An internal mask (cytoplasm) was defined by dilating the nuclear mask out to the edge

of the Hoechst-33342. The fluorescence intensity parameters of the CFSE were measured

inside the cytoplasm area (FITC channel). The quantitative data obtained represent median

fluorescence intensity of the CFSE marker (median 16 sites per well) relative to the negative

control (cells not labelled with CFSE or cells with CFSE without the Bmv).
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Quantification of PGE2, cytokines and adipokines

Quantification of PGE2, cytokines (IL-6, TNF-α, KC and MCP-1) and adipokines (leptin and

adiponectin) was performed in the supernatants collected from cell cultures by enzyme immu-

noassay (EIA) using a commercially available kit (Cayman Chemicals, ThermoFisher). The

tests were performed according to the supplier’s specifications. Concentrations were estimated

from the standard curve and represented in pg/mL.

Pharmacological interventions

To evaluate the participation of COX-1, COX-2, NF-κB and each PGE2 receptor subtype in

the Bmv-induced effects, pharmacological interventions were performed with selective inhibi-

tors or antagonists in concentrations described in the literature [47–52]: 1 μM SC-560 (COX-1

inhibitor, 1 h before Bmv); 1 μM NS-398 (COX-2 inhibitor, 1 h before Bmv); 10 μM SC-19220

(EP1 receptor antagonist, 1 h before Bmv); 10 μM AH 6809 (EP2 receptor antagonist, 1 h

before Bmv); 1 μM L-798,106 (EP3 receptor antagonist, 1 h before Bmv); 10 μM GW 627368X

(EP4 receptor antagonist, 1 h before Bmv); 30 μM TPCK (NF-κB inhibitor, 24 h before Bmv);

50 μg / mL SN50 (NF-κB inhibitor, 2 h before Bmv). Some of the used compounds were pre-

pared in DMSO at concentration lower than 1%. Cells treated with the inhibitors were ana-

lysed for viability by the MTT colorimetric assay. No significant changes in cell viability were

registered with any of the above agents or vehicles at the concentrations used (S1 Fig).

Western blotting

The protein content of COX-1, COX-2 and P-NF-κB was determined in cell lysates by western

blotting. For this purpose, the cells incubated or not with Bmv were lysed by adding 100 μL/

well of Laemmli buffer (0.5 M Tris-HCl, 20% SDS, 1% glycerol, 1 M β-mercaptoethanol, 0.1%

bromophenol blue) and boiled for 10 min. Samples were resolved by SDS-PAGE (12% bis-

acrylamide gels) electrophoresis. The proteins were transferred to a nitrocellulose membrane

with a Mini Trans-Blot (Bio-Rad Laboratories, Richmond, CA, USA). The membranes were

blocked for 1 h with 5% albumin in Tris-buffered saline Tween 20 (20 mM Tris, 100 mM NaCl

and 0.5% Tween 20, pH 7.2) and incubated overnight at 4˚C with COX-1, COX-2, P-NFκB or

NF-κB primary antibodies (1:1000 dilution) and for 1 h at room temperature with the β-actin

primary antibody (1:3000 dilution). Next, the membranes were washed and incubated with the

appropriate secondary antibody conjugated to horseradish peroxidase. Immunoreactive bands

were detected using an entry-level peroxidase substrate for enhanced chemiluminescence

(Pierce ECL Western Blotting Substrate) according to the manufacturer’s instructions

(Thermo Fisher Scientific, Waltham, MA, USA). Band images were captured with an Image-

Quant LAS 4000 mini biomolecular imager (GE Healthcare) and analysed with ImageQuant

TL software (GE Healthcare).

Statistical analysis

The results were expressed as mean + standard error of the mean (S.E.M.). Two-way analysis

of variance (two-way ANOVA) was used, followed by multiple comparisons with the Bonfer-

roni post-test. The normality and homoscedasticity of all samples were checked previously.

The data were analysed with GraphPad Prism 8.0.1 (GraphPad, San Diego, CA, USA). A sig-

nificance level of p< 0.05 was adopted.
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Results

Bmv induces the release of PGE2 by preadipocytes in culture

PGE2 is an important mediator of inflammatory and hyperalgesic processes [53], and previous

studies have demonstrated that the venom of some species of Bothrops snakes induces the

release of this mediator at the injection site [40,54,55]. Although PGE2 is known to be one of

the most abundant lipid mediator produced in the adipose tissue [56], to date it is not known

whether the venom of B. moojeni can activate this tissue to release prostaglandins. We there-

fore decided to investigate the extent to which Bmv can promote the release of PGE2 by preadi-

pocytes in culture. We carried out preliminary assays, which demonstrated that at

concentrations between 0.5 and 1 μg/mL, Bmv does not affect cell viability from 1 to 24 h of

incubation (Fig 1). Based on these data, the maximal non-cytotoxic concentration (1 μg/mL)

was used. At this concentration, Bmv did not induce cell proliferation (S2 Fig). Bmv (1 μg/mL)

was added to the culture medium for 1, 3, 6, 12 and 24 h, and PGE2 release was quantified by

EIA. As shown in Fig 2A, incubation of preadipocytes with Bmv at concentrations of 1 and

2 μg/mL, but not 0.25 and 0.5 μg/mL, resulted in PGE2 levels significantly higher than those

observed in control cells incubated with culture medium alone after 24 h. Fig 2B shows that

stimulation of preadipocytes with Bmv at 1 μg/mL induced significant release of PGE2 from 12

to 24 h, but not at the earlier time intervals evaluated compared with control-group cells. This

result shows that Bmv can stimulate preadipocytes to synthesize PGE2 in a concentration- and

time-dependent manner.

COX-1 and COX-2 participate in Bmv-induced PGE2 release by

preadipocytes

COX enzymes are crucial for the synthesis of PGE2 from arachidonic acid in inflammatory

processes [57]. Although both COX-1 and COX-2 are found constitutively in different tissues,

COX-2 is inducible in inflammatory conditions and in cells of the adipose tissue [25,58,59]. To

investigate the mechanisms underlying PGE2 production induced by Bmv, we evaluated the

participation of COX-1 and COX-2 isoforms in Bmv-induced PGE2 release using pharmaco-

logical approaches. Preadipocytes were treated with either COX-1 or COX-2 selective

Fig 1. Time course of Bmv-induced effect on viability of preadipocyte cell culture. 3T3-L1 preadipocytes (2 x 105

cells/well) were incubated with Bmv (0.5–5 μg/mL) or DMEM (control) for 1, 3, 6 and 24 h. Metabolic activity was

assessed by the MTT assay. Results are expressed as mean + S.E.M. of 3 independent assays (n = 4). �p< 0.05 vs
control (ANOVA and Bonferroni post test).

https://doi.org/10.1371/journal.pntd.0010658.g001
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inhibitors SC-560 and NS-398, respectively, or with vehicle (DMSO < 1%) for 1 h before stim-

ulation with Bmv (1 μg/mL) or DMEM (control) for 24 h. PGE2 release was then evaluated in

the culture supernatants. As shown in Fig 3, preadipocytes preincubated with vehicle followed

by stimulation with Bmv showed significant release of PGE2 compared with non-stimulated

preadipocytes (basal control). Bmv-induced PGE2 release was abolished in preadipocytes pre-

treated with SC-560 but not in preadipocytes treated with vehicle followed by stimulation with

venom (positive control). Pretreatment of cells with NS-398 markedly decreased Bmv-induced

PGE2 release in comparison with the positive control. In addition, pretreatment of preadipo-

cytes with both SC-560 and NS-398 abolished Bmv-induced PGE2 release, which was still

observed in cells without this pretreatment (positive control). This is a strong evidence that

COX-1 and COX-2 play a role in Bmv-induced production of PGE2 in preadipocytes. Based

on these findings, we further investigated whether Bmv can induce COX-2 protein expression

in preadipocytes. As shown in Fig 4A and 4B, incubation of preadipocytes with Bmv did not

change protein expression of the constitutive isoform COX-1 at the time points assessed, but

increased COX-2 protein expression was observed at the 12 h and 24 h time points (Fig 4A

and 4C). Altogether, these results suggest that Bmv-induced PGE2 synthesis depends on both

COX-1 and COX-2 signalling pathways. Furthermore, these data point to the ability of this

venom to upregulate COX-2 protein expression, a mechanism leading to PGE2 release after

longer incubation times.

NF-κB is activated by Bmv and regulates Bmv-induced PGE2 release in

preadipocytes

Several inflammatory stimuli, such as TLR ligands and cytokines, can activate NF-κB [60], a

major transcription factor that regulates a number of inflammatory genes, including those

coding for enzymes that play a critical role in the PGE2 biosynthesis pathway [61–63]. To

determine possible mechanisms involved in the inflammatory effects of Bmv in preadipocytes,

we investigated the ability of this venom to activate NF-κB. The cells were stimulated with

Bmv for 0.5, 1 and 2 h, and the phosphorylated-NF-κB (P-NF-κB) p65 subunit and native NF-

κB were quantified by western blotting. Fig 5A shows representative immunoreactive bands of

Fig 2. Bmv stimulates the release of PGE2 by preadipocytes. (A) Release of PGE2 induced by selected concentrations

of Bmv. 3T3-L1 preadipocytes (2 x 105 cells/well) were incubated with Bmv at distinct concentrations (indicated

above) or DMEM (control) for 24 h. Results are expressed as mean + S.E.M. (n = 4). �p< 0.05 vs respective control

(DMEM); #p< 0.05 vs Bmv 1 μg/mL group (unpaired t test). (B) Time course of Bmv-induced synthesis of PGE2.

3T3-L1 preadipocytes (2 x 105 cells/well) were incubated with Bmv (1 μg/mL) or DMEM (control) for the indicated

time intervals. Results are expressed as mean + S.E.M. of 3 independent assays (n = 4). �p< 0.05 vs negative control

(DMEM) (ANOVA and Bonferroni post test). Concentration of PGE2 in culture supernatants was evaluated by EIA in

both experiments.

https://doi.org/10.1371/journal.pntd.0010658.g002
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Fig 3. COX-1 and COX-2 participate in Bmv-induced PGE2 release by preadipocytes. 3T3-L1 preadipocytes were

pretreated with COX-1 and COX-2 selective inhibitors SC-560 and NS-398, respectively, or vehicle (DMSO< 1%) for

1 h and then stimulated with Bmv (1 μg/mL) or DMEM (control) for 24 h. Concentration of PGE2 present in

supernatants was quantified by EIA. Results are expressed as mean + SEM (n = 4). #p< 0.05 vs. negative control

(vehicle + DMEM); ���p< 0.001 vs. positive control (vehicle + Bmv) (ANOVA and Bonferroni post test).

https://doi.org/10.1371/journal.pntd.0010658.g003

Fig 4. Bmv upregulates COX-2 protein expression in preadipocytes. 3T3-L1 preadipocytes were stimulated with

Bmv (1 μg/mL) or DMEM (control) for 3, 6, 12 or 24 h. COX-1 and COX-2 protein expression was evaluated by

western blotting. (A) Representative immunoreactive bands for COX-1, COX-2 and β-actin (loading control).

Densitometric analysis of immunoreactive bands of (B) COX-1 and (C) COX-2. Results are expressed as mean + SEM

(n = 4). ���p< 0.001 vs. control (ANOVA and Bonferroni post test).

https://doi.org/10.1371/journal.pntd.0010658.g004

PLOS NEGLECTED TROPICAL DISEASES Bothrops moojeni venom activates preadipocytes, leading to inflammation

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010658 August 8, 2022 8 / 21

https://doi.org/10.1371/journal.pntd.0010658.g003
https://doi.org/10.1371/journal.pntd.0010658.g004
https://doi.org/10.1371/journal.pntd.0010658


P-NF-κB, native NF-κB and β-actin. Fig 5B shows the densitometric analysis of the band

intensities normalized with those of β-actin. P-NF-κB protein levels did not change after 0.5 h

of Bmv stimulation in comparison with the negative control group. However, after the 1 h and

2 h time points, preadipocytes stimulated with Bmv showed an increase in P-NF-κB protein

expression in comparison with the negative control group. Native NF-κB did not show marked

changes in its expression levels upon Bmv stimulus compared with the actin loading control

(Fig 5C). To further elucidate the mechanisms of Bmv-induced PGE2 release by preadipocytes,

we investigated the participation of NF-κB in this event using a pharmacological approach.

Preadipocytes were treated with TPCK, an inhibitor of both IKKβ and the p65 subunit of the

NF-ΚB activation pathway [50], or vehicle (DMSO< 1%) for 24 h prior to the Bmv stimulus,

or SN50, a NF-κB nuclear translocation inhibitor [64], or vehicle (DMSO< 1%) for 1 h before

the Bmv stimulus. In both treatment protocols, PGE2 release was measured 24 h after the stim-

ulus. Fig 6 shows that preadipocytes preincubated with vehicle followed by stimulation with

Bmv showed significant release of PGE2 compared with non-stimulated preadipocytes (basal

control). Treatment of the cells with TPCK, a two-step inhibitor which acts on the p65 subunit

of NF-κB, before stimulation with Bmv, significantly reduced the release of PGE2 in compari-

son with cells pretreated with vehicle only and stimulated with Bmv. Similarly, pretreatment of

cells with SN50, a competitive inhibitor of the p50 NF-κB subunit involved in nuclear translo-

cation, significantly reduced Bmv-induced PGE2 levels in comparison with control cells pre-

treated with vehicle only and stimulated with Bmv. Altogether, these results indicate (1) that

Bmv activates the NF-κB pathway in preadipocytes and (2) that NF-κB is involved in the path-

way triggered by Bmv that leads to PGE2 production in preadipocytes.

Fig 5. Bmv activates NF-κB in preadipocytes. 3T3-L1 preadipocytes were stimulated with Bmv (1 μg/mL) or DMEM (control) for 0.5, 1, or

2 h. P-NF-κB and NF-κB protein expression was evaluated by western blotting. (A) Representative immunoreactive bands for P-NF-κB, NF-

κB and β-actin (loading control). Densitometric analysis of immunoreactive bands of (B) P-NF-κB and (C) native NF-κB. Results are

expressed as mean + SEM (n = 3). �p< 0.05 vs. control (ANOVA and Bonferroni post test).

https://doi.org/10.1371/journal.pntd.0010658.g005
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EP1 receptor participates in Bmv-induced PGE2 release by preadipocytes

The effects of PGE2 are exerted by activation of four G-protein coupled receptor subtypes

known as EP1-4 in a paracrine or endocrine way [65]. Besides mediating the physiological and

pathophysiological effects of PGE2, these receptors regulate PGE2 biosynthesis depending on

the cell type and physiological environment [65]. For this reason, we investigated the involve-

ment of the EP receptor subtypes in the production of Bmv-induced PGE2 in preadipocytes.

Fig 7 shows that in preadipocytes treated with vehicle and stimulated with Bmv, there was a

marked release of PGE2 in comparison with cells from the basal group (stimulated only with

vehicle). Pretreatment of cells with EP1 receptor antagonist SC-19220 significantly reduced

Bmv-induced PGE2 release in comparison with the vehicle and Bmv group (positive control).

In contrast, pretreatment with EP2, EP3 or EP4 receptor antagonists did not alter Bmv-

induced PGE2 release by preadipocytes. These findings point to the involvement of EP1, but

not EP2, EP3 or EP4 subtype receptors in Bmv-stimulated PGE2 production.

Bmv induces lipid accumulation in differentiating preadipocytes

Adipogenesis is the differentiation of preadipocytes into mature, terminally differentiated adipo-

cytes. The latter generally have a distinctive cellular morphology and structure, as the cells convert

from fibroblastic to spherical shape and most of the cytoplasmic space is occupied by lipid drop-

lets. This intracytoplasmic lipid accumulation is directly proportional to the extent of differentia-

tion [66]. This relationship has been used as a qualitative marker of adipose conversion and can

be determined by Oil red O staining [67]. As PGE2 is known to exert proliferative and antilipoly-

tic effects on adipocytes [68], we investigated the effects of Bmv on lipid accumulation by assess-

ing Oil Red O staining in differentiating preadipocytes. Preadipocyte cultures at 100% confluence

(T0) were incubated with differentiation medium and stimulated with Bmv or DMEM (negative

control) for 24 h (T1). Then, the medium of control (DMEM) and Bmv groups was replaced with

a differentiation medium for an additional 24 hours (T2). Quantification of intracellular lipid con-

tent is shown in Fig 8A. In the time point T0, lipid accumulation in cells stimulated with Bmv did

not differ from that observed in the control group, whereas in the time point T2, lipid accumula-

tion was significantly increased 24 h after stimulation of cells with Bmv in comparison with non-

stimulated cells. Fig 8B shows cells in the time points T0 and T2. Preadipocytes in T0 are seen at

100% confluence and without intracellular lipid deposits in both non-stimulated and Bmv-stimu-

lated conditions. In T2, while the control preadipocytes growing in the absence of Bmv show few

Fig 6. NF-κB participates in Bmv-induced PGE2 release by preadipocytes. 3T3-L1 preadipocytes were pretreated

with NF-κB inhibitors (A) TPCK or vehicle, for 24 h or (B) SN50 or vehicle (DMSO< 1%) for 1 h, and then

stimulated with Bmv (1 μg/mL) or DMEM (control) for 24 h. Concentration of PGE2 present in supernatants was

quantified by EIA. Results are expressed as mean + SEM (n = 4). ���p< 0.001 vs. negative control (vehicle + DMEM);
##p< 0.01 vs. positive control (vehicle + Bmv) (ANOVA and Bonferroni post test).

https://doi.org/10.1371/journal.pntd.0010658.g006
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intracellular lipid deposits, preadipocytes stimulated with Bmv show a typical spherical shape and

a visible increase in lipid content compared with the T2 control group. These findings are in line

with the increased Bmv-induced release of PGE2 in preadipocytes. As lipid accumulation is a

marker of preadipocyte differentiation into mature adipocytes, these data suggest that Bmv can

stimulate preadipocyte differentiation.

Bmv stimulates IL-6 and KC/IL-8 release by preadipocytes in culture

The adipose tissue was shown to produce cytokines, chemokines and adipose tissue specific medi-

ators known as adipokines, including leptin and adiponectin [10,69]. To investigate additional

effects of Bmv on adipose tissue, we evaluated Bmv-induced release of cytokines, chemokines, lep-

tin and adiponectin by preadipocytes in culture. Bmv (1 μg/mL) was added to the culture medium

for 1, 3, 6 and 24 h, and IL-6, KC/IL-8, TNF-α, MCP-1, leptin and adiponectin release was quanti-

fied by EIA. TNF-α (20 ng/mL) or LPS (1 μg/mL) were used as positive controls. As shown in Fig

9, Bmv induced significant release of IL-6 and KC/IL-8 at 6 h (IL-6) and 24 h (both cytokines)

after stimulation compared with the negative control group cells incubated with culture medium

alone, but not after shorter stimulation periods. In contrast, the levels of TNF-α, MCP-1, leptin

and adiponectin released were the same as those released by the control cells. In the time course

evaluated (24 h) LPS did not stimulate the release of TNF-α by preadipocytes.

Discussion

The adipose tissue is able to secrete an array of substances that regulate homeostasis and

immune responses and is known to contribute to the development of various inflammatory

Fig 7. EP1, but not EP2-4 subtype receptors, participates in Bmv-induced PGE2 release by preadipocytes.

Preadipocytes were incubated with the EP receptors antagonists SC-19220 (EP1 receptor antagonist,10 μM), AH6809

(EP2 receptor antagonist,10 μM), L-798106 (EP3 receptor antagonist,1 μM) or AH23848 (EP4 receptor

antagonist,10 μM) or vehicle (DMSO< 1%) for 1 h followed by stimulation with Bmv (1 μg/mL) for 24 h.

Concentration of PGE2 present in supernatants was quantified by EIA. Results are expressed as mean + S.E.M. (n = 4).
�p< 0.05 vs. negative control (vehicle + DMEM); #p< 0.05 vs. positive control (vehicle + Bmv) (ANOVA and

Bonferroni post test).

https://doi.org/10.1371/journal.pntd.0010658.g007
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Fig 8. Effect of Bmv on lipid accumulation in preadipocytes. (A) Quantification of intracellular lipid content of 3T3-L1

preadipocytes subjected to differentiation medium with or without stimulation by Bmv (1 μg /mL). 24 h after stimulation, the

culture medium of all groups was changed to a fresh differentiation medium, without Bmv, and maintained for 24 h. Cells were then

fixed and stained with Oil Red O as described in Material and Methods. Results are expressed as mean + S.E.M. (n = 4). ��p< 0.01

vs. DMEM (ANOVA and Bonferroni post test); (B) Photomicrographs of cell cultures at different experimental times and
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diseases. We have demonstrated in this study that Bmv can stimulate preadipocytes and induce

the release of important inflammatory mediators such as PGE2, IL-6 and KC by these cells. To

the best of our knowledge, this is the first demonstration that a snake venom can activate adi-

pose tissue cells.

Our findings showing that Bmv induced the release of PGE2 by preadipocytes provide evi-

dence of a new source of this mediator. As the adipose tissue is an endocrine organ and can

contribute to inflammatory processes in distant tissues and organs, the release of PGE2

reported here may have an impact on the systemic effects of Bothrops venoms. Therefore, the

role of this mediator in Bmv-induced systemic alterations deserves further investigation. PGE2

is known to be produced when arachidonic acid is metabolized by the enzymes COX-1 and

conditions. Inset in Bmv/T0 shows a high-magnification view of preadipocytes at 100% confluence without lipid accumulation.

Inset in Bmv/T2 shows a high-magnification view of red-stained lipids in differentiating preadipocytes. Scale bar: 200 μm.

https://doi.org/10.1371/journal.pntd.0010658.g008

Fig 9. Bmv stimulates the release of IL-6 and KC/IL-8 but not TNF-α, MCP-1, leptin nor adiponectin by

preadipocytes. 3T3-L1 preadipocytes (2 x 105 cells/well) were incubated with Bmv (1 μg/mL), or TNF-α, 20 ng/mL

(positive control) or LPS, 1 μg/mL (positive control), or DMEM (control) for the above indicated time intervals.

Concentration of cytokines and adipokines in culture supernatants was evaluated by EIA. Results are expressed as

mean + S.E.M. of 3 independent assays (n = 4). �p< 0.05 vs control (ANOVA and Bonferroni post test).

https://doi.org/10.1371/journal.pntd.0010658.g009
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COX-2 [68]. The former is found in most tissues [59] and is responsible for generating prosta-

glandins in various physiological and pathological conditions [58,70]. COX-2, in turn, can be

constitutively expressed in some tissues and is also inducible under inflammatory conditions

[25,40,70]. Our results showing that inhibition of COX-2 or COX-1 suppressed the Bmv-

induced release of PGE2 indicate that both isoforms are involved in the Bmv-induced PGE2

biosynthetic cascade. Our data also revealed an additional mechanism implicated in the Bmv

effects, namely the upregulation of COX-2 protein expression in preadipocytes. The findings

reported here are in line with previous reports showing that Bothrops spp. venoms and toxins

isolated from these venoms upregulate expression of COX-2, the inducible isoform of the

COX enzymes, in immune cells [25,40,55].

COX-2 expression is regulated at both transcriptional and posttranscriptional levels. The

promoter region of the COX-2 gene contains several binding sites for transcription factors

such as NF-κB, CREB, C/EBP and AP-1 [71,72]. Of these, NF-κB is the main transcription fac-

tor coordinating COX-2 gene expression during inflammatory processes [73,74]. In view of

this, we investigated whether Bmv activates NF-κB in preadipocytes and found that this

venom increased protein expression of the P-NF-κB p65 subunit, an indicator of activation of

this factor. In addition, to better understand the effects of Bmv on the COX pathway, we inves-

tigated the role of the transcription factor NF-κB in Bmv-induced PGE2 synthesis. Our results

demonstrating that pharmacological inhibition of NF-κB with TPCK or SN50 reduced

venom-induced PGE2 release in preadipocytes indicate that NF-κB plays a role in Bmv-

induced production of PGE2 in these cells. As TPCK inhibits the p65 subunit and SN50 is a

competitive antagonist of NF-κB that acts on the p50 subunit, it is reasonable to suggest that

distinct domains of NF-κB, notably the p65 and p50 subunits, are involved in this effect of the

venom. The effects observed with TPCK are in line with the results showing activation of the

NF-κB p65 subunit by Bmv, highlighting the importance of this subunit for the inflammatory

response triggered by this venom in preadipocytes. However, participation of other transcrip-

tion factors, such as CREB, C/EBP and AP-1, in Bmv-induced effects cannot be ruled out. The

upstream pathways involved in the activation of NF-κB by Bmv were not investigated here

and deserve further study.

The effects of PGE2 are mediated by four subtypes of EP receptors (EP1-EP4) [65], and

expression of these four receptors in preadipocytes has been previously reported [25]. Our

data showing that the compound SC-1922, an antagonist of EP1 but not of EP2, EP3 or EP4,

decreased venom-induced release of PGE2 indicate that activation of EP1 contributes to the

increased PGE2 levels induced by Bmv in preadipocytes. Therefore, it is plausible to suggest

that PGE2 engages the EP1 receptor via autocrine action and triggers a biosynthetic pathway

that regulates its own production through a positive feedback loop. These findings are in line

with previous reports of an EP4-dependent positive feedback loop regulating the production

of PGE2 induced by a PLA2 and a metalloproteinase isolated from B. asper snake venom in dif-

ferent cell types [25,75].

In addition to its potent inflammatory activity, PGE2 exerts antilipolytic effects on adipo-

cytes, leading to adipose tissue hypertrophy and differentiation of preadipocytes into mature

adipocytes [76,77]. Hence, our findings showing that Bmv increased lipid accumulation in pre-

adipocytes strongly suggest that this venom can induce differentiation of these cells and that

PGE2 is involved in this effect. The molecular factors involved in preadipocyte differentiation

need to be further investigated. Although the consequences of lipid accumulation were not

investigated here, we hypothesize that the increased intracellular lipid content seen in preadi-

pocytes provides additional substrate for the synthesis of PGE2 and other lipid mediators, thus

potentiating the inflammatory and vascular effects of this mediator following stimulation with

Bmv. The mechanisms underlying Bmv-induced lipid accumulation/adipogenesis in
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preadipocytes will be the subject of future studies by our group. While there has been a report

that bee venom can suppress differentiation of 3T3-L1 preadipocytes, this is to the best of our

knowledge the first study showing that a snake venom stimulates lipid accumulation in preadi-

pocytes [78].

Cytokines and chemokines are important inflammatory mediators that drive the develop-

ment and intensity of inflammatory events [79,80]. Our results showing release of the inflam-

matory cytokines IL-6 and KC/IL-8 after stimulation of preadipocytes with Bmv are consistent

with those showing the release of PGE2 and support the idea that this venom triggers an

inflammatory response in adipose tissue cells. On the other hand, the adipose tissue specific

mediators leptin and adiponectin were not released by Bmv in our experimental condition.

Although PGE2 has been reported as an inducer of leptin production in adipose tissue explants

and adipocytes in culture, this modulation was not observed in Bmv-stimulated preadipocytes.

IL-6 is a cytokine with pleiotropic effects that on the one hand promotes inflammation by

inducing ICAM-1 expression in endothelial cells and the release of MCP-1 by leukocytes [81–

83], and on the other modulates the inflammatory process by stimulating release of the IL-10

cytokine and IL-1 receptor antagonist, leading to an M1 to M2 switch in macrophage pheno-

types and thus more resolutive-phase macrophages [84–86]. The chemokine KC is the murine

analogue of the human IL-8 cytokine and can activate and recruit neutrophils to the inflamma-

tion site [87–89]. Several Bothrops spp. venoms are known to induce the release of these two

cytokines both in vitro and in experimental envenomation in animal models [54,90–92].

Moreover, IL-6 and IL-8 levels were also found to be elevated in the blood of children bitten

by Bothrops spp. [93]. This evidence strongly suggests that the adipose tissue can be a source of

these inflammatory mediators in the event of envenomation by Bothrops snakes.

In conclusion, the present work has shown for the first time that B. moojeni snake venom

can stimulate adipose tissue cells. When stimulated with this venom, preadipocytes released

PGE2, IL-6 and KC/IL-8. Bmv-induced PGE2 release was dependent on the COX-1, COX-2

and NF-κB pathways. Furthermore, Bmv upregulated COX-2 protein expression and phos-

phorylation of NF-κB. It is noteworthy that engagement of the PGE2 receptor subtype EP1 by

PGE2 revealed a positive feedback loop for production of this lipid mediator. Taken together,

these results point to the adipose tissue as an additional target for Bmv and suggest that adi-

pose tissue cells contribute to Bothrops envenomation by acting as a source of inflammatory

mediators.

Supporting information

S1 Fig. Effect of distinct pharmacological compounds on viability of 3T3-L1 cells in cul-

ture. 3T3-L1 preadipocytes (2 x 105 cells/well) were incubated with DMSO < 1%, or 1 μM SC-

560 (COX-1 inhibitor), or 1 μM NS-398 (COX-2 inhibitor), or 10 μM SC-19220 (EP1 receptor

antagonist), or 10 μM AH 6809 (EP2 receptor antagonist), or 1 μM L-798,106 (EP3 receptor

antagonist), or 10 μM GW 627368X (EP4 receptor antagonist) for 25 h, or 30 μM TPCK (NF-

κB inhibitor) for 48 h, or 50 μg / mL SN50 (NF-κB inhibitor) for 26 h.

(TIF)

S2 Fig. Effect of Bmv on proliferation of preadipocytes in culture. 3T3-L1 preadipocytes (2

x 105 cells/well) were incubated with Bmv (0.5 or 1 μg/mL) or DMEM (control) for 24 h. Cell

proliferation was assessed by Cell Trace CFSE Cell Proliferation Kit and fluorescence of single

cells from a cell population was measured by High-Content Screening (HCS) assay. (A) Repre-

sentative images of cell proliferation (fluorescence) obtained by HCS (scale bar: 50 μM). Blue:

cell nuclei; Green: cell cytoplasm of Bmv-treated cells and DMEM (negative control). (B)
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Average intensity of Cytoplasmic CFSE / 16 sites analysed.

(TIF)
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76. Pérez S, Aspichueta P, Ochoa B, Chico Y. The 2-series prostaglandins suppress VLDL secretion in an

inflammatory condition-dependent manner in primary rat hepatocytes. Biochim Biophys Acta—Mol Cell

Biol Lipids. 2006; 1761: 160–171. https://doi.org/10.1016/j.bbalip.2006.02.003 PMID: 16545597

77. Enomoto N, Ikejima K, Yamashina S, Enomoto A, Nishiura T, Nishimura T, et al. Kupffer cell-derived

prostaglandin E2 is involved in alcohol-induced fat accumulation in rat liver. Am J Physiol—Gastrointest

Liver Physiol. 2000; 279: 100–106. https://doi.org/10.1152/ajpgi.2000.279.1.G100 PMID: 10898751

78. Cheon SY, Chung KS, Roh SS, Cha YY, An HJ. Bee venom suppresses the differentiation of preadipo-

cytes and high fat diet-induced obesity by inhibiting adipogenesis. Toxins (Basel). 2018;10. https://doi.

org/10.3390/toxins10010009 PMID: 29295544

79. Holdsworth SR, Can PY. Cytokines: Names and numbers you should care about. Clin J Am Soc

Nephrol. 2015; 10: 2243–2254. https://doi.org/10.2215/CJN.07590714 PMID: 25941193

80. Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;

7: 1–20. https://doi.org/10.1101/cshperspect.a016303 PMID: 25635046

81. Suzuki M, Hashizume M, Yoshida H, Mihara M. Anti-inflammatory mechanism of tocilizumab, a human-

ized anti-IL-6R antibody: Effect on the expression of chemokine and adhesion molecule. Rheumatol Int.

2010; 30: 309–315. https://doi.org/10.1007/s00296-009-0953-0 PMID: 19466425

82. Modur V, Li Y, Zimmerman GA, Prescott SM, McIntyre TM. Retrograde inflammatory signaling from

neutrophils to endothelial cells by soluble interleukin-6 receptor alpha. J Clin Invest. 1997; 100: 2752–

2756. https://doi.org/10.1172/JCI119821 PMID: 9389739

83. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. Role of IL-6 and its soluble

receptor in induction of chemokines and leukocyte recruitment. Immunity. 1997; 6: 315–325. https://doi.

org/10.1016/s1074-7613(00)80334-9 PMID: 9075932

84. Mauer J, Chaurasia B, Goldau J, Vogt MC, Ruud J, Nguyen KD, et al. Signaling by IL-6 promotes alter-

native activation of macrophages to limit endotoxemia and obesity-associated resistance to insulin. Nat

Immunol. 2014; 15: 423–430. https://doi.org/10.1038/ni.2865 PMID: 24681566

85. Steensberg A, Fischer CP, Keller C, Møller K, Pedersen BK. IL-6 enhances plasma IL-1ra, IL-10, and

cortisol in humans. Am J Physiol—Endocrinol Metab. 2003; 285: 433–437. https://doi.org/10.1152/

ajpendo.00074.2003 PMID: 12857678

86. Hurst SM, Wilkinson TS, McLoughlin RM, Jones S, Horiuchi S, Yamamoto N, et al. IL-6 and its soluble

receptor orchestrate a temporal switch in the pattern of leukocyte recruitment seen during acute inflam-

mation. Immunity. 2001; 14: 705–714. https://doi.org/10.1016/s1074-7613(01)00151-0 PMID:

11420041

87. Singer M, Sansonetti PJ. IL-8 Is a Key Chemokine Regulating Neutrophil Recruitment in a New Mouse

Model of Shigella- Induced Colitis. J Immunol. 2004; 173: 4197–4206. https://doi.org/10.4049/jimmunol.

173.6.4197 PMID: 15356171

88. Akdis M, Burgler S, Crameri R, Eiwegger T, Fujita H, Gomez E, et al. Interleukins, from 1 to 37, and

interferon-γ: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 2011; 127: 701–721.

e70. https://doi.org/10.1016/j.jaci.2010.11.050 PMID: 21377040

89. Qazi BS, Tang K, Qazi A. Recent Advances in Underlying Pathologies Provide Insight into Interleukin-8

Expression-Mediated Inflammation and Angiogenesis. Int J Inflam. 2011; 2011: 1–13. https://doi.org/

10.4061/2011/908468 PMID: 22235381

90. Zamuner SR, Zuliani JP, Fernandes CM, Gutiérrez JM, Pereira Teixeira CDF. Inflammation induced by

Bothrops asper venom: Release of proinflammatory cytokines and eicosanoids, and role of adhesion

PLOS NEGLECTED TROPICAL DISEASES Bothrops moojeni venom activates preadipocytes, leading to inflammation

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010658 August 8, 2022 20 / 21

http://www.ncbi.nlm.nih.gov/pubmed/9249646
https://doi.org/10.1042/bj3020723
http://www.ncbi.nlm.nih.gov/pubmed/7945196
https://doi.org/10.1042/BST0360543
http://www.ncbi.nlm.nih.gov/pubmed/18482003
https://doi.org/10.1002/art.1780400207
http://www.ncbi.nlm.nih.gov/pubmed/9041934
https://doi.org/10.1111/j.0953-816X.2004.03441.x
http://www.ncbi.nlm.nih.gov/pubmed/15217394
https://doi.org/10.1038/s41598-019-56847-4
https://doi.org/10.1038/s41598-019-56847-4
http://www.ncbi.nlm.nih.gov/pubmed/31913322
https://doi.org/10.1016/j.bbalip.2006.02.003
http://www.ncbi.nlm.nih.gov/pubmed/16545597
https://doi.org/10.1152/ajpgi.2000.279.1.G100
http://www.ncbi.nlm.nih.gov/pubmed/10898751
https://doi.org/10.3390/toxins10010009
https://doi.org/10.3390/toxins10010009
http://www.ncbi.nlm.nih.gov/pubmed/29295544
https://doi.org/10.2215/CJN.07590714
http://www.ncbi.nlm.nih.gov/pubmed/25941193
https://doi.org/10.1101/cshperspect.a016303
http://www.ncbi.nlm.nih.gov/pubmed/25635046
https://doi.org/10.1007/s00296-009-0953-0
http://www.ncbi.nlm.nih.gov/pubmed/19466425
https://doi.org/10.1172/JCI119821
http://www.ncbi.nlm.nih.gov/pubmed/9389739
https://doi.org/10.1016/s1074-7613%2800%2980334-9
https://doi.org/10.1016/s1074-7613%2800%2980334-9
http://www.ncbi.nlm.nih.gov/pubmed/9075932
https://doi.org/10.1038/ni.2865
http://www.ncbi.nlm.nih.gov/pubmed/24681566
https://doi.org/10.1152/ajpendo.00074.2003
https://doi.org/10.1152/ajpendo.00074.2003
http://www.ncbi.nlm.nih.gov/pubmed/12857678
https://doi.org/10.1016/s1074-7613%2801%2900151-0
http://www.ncbi.nlm.nih.gov/pubmed/11420041
https://doi.org/10.4049/jimmunol.173.6.4197
https://doi.org/10.4049/jimmunol.173.6.4197
http://www.ncbi.nlm.nih.gov/pubmed/15356171
https://doi.org/10.1016/j.jaci.2010.11.050
http://www.ncbi.nlm.nih.gov/pubmed/21377040
https://doi.org/10.4061/2011/908468
https://doi.org/10.4061/2011/908468
http://www.ncbi.nlm.nih.gov/pubmed/22235381
https://doi.org/10.1371/journal.pntd.0010658


molecules in leukocyte infiltration. Toxicon. 2005; 46: 806–813. https://doi.org/10.1016/j.toxicon.2005.

08.011 PMID: 16198389

91. Gouveia VA, Pisete FRFS, Wagner CLR, Dalboni MA, de Oliveira APL, Cogo JC, et al. Photobiomodu-

lation reduces cell death and cytokine production in C2C12 cells exposed to Bothrops venoms. Lasers

Med Sci. 2020; 35: 1047–1054. https://doi.org/10.1007/s10103-019-02884-4 PMID: 31754908

92. Silva de França F, Gabrili JJM, Mathieu L, Burgher F, Blomet J, Tambourgi D V. Bothrops lanceolatus

snake (Fer-de-lance) venom triggers inflammatory mediators’ storm in human blood. Arch Toxicol.

2021; 95: 1129–1138. https://doi.org/10.1007/s00204-020-02959-0 PMID: 33398417
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