
Published online 30 June 2015 Nucleic Acids Research, 2015, Vol. 43, No. 20 e131
doi: 10.1093/nar/gkv636

A nested parallel experiment demonstrates
differences in intensity-dependence between RNA-seq
and microarrays
David G. Robinson1, Jean Y. Wang1 and John D. Storey1,2,3,*

1Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, 2Center for
Statistics and Machine Learning, Princeton University, Princeton, NJ 08544, USA and 3Department of Molecular
Biology, Princeton University, Princeton, NJ 08544, USA

Received March 12, 2015; Revised May 5, 2015; Accepted June 8, 2015

ABSTRACT

Understanding the differences between microarray
and RNA-Seq technologies for measuring gene ex-
pression is necessary for informed design of exper-
iments and choice of data analysis methods. Previ-
ous comparisons have come to sometimes contra-
dictory conclusions, which we suggest result from
a lack of attention to the intensity-dependent nature
of variation generated by the technologies. To ex-
amine this trend, we carried out a parallel nested
experiment performed simultaneously on the two
technologies that systematically split variation into
four stages (treatment, biological variation, library
preparation and chip/lane noise), allowing a sepa-
ration and comparison of the sources of variation
in a well-controlled cellular system, Saccharomyces
cerevisiae. With this novel dataset, we demonstrate
that power and accuracy are more dependent on per-
gene read depth in RNA-Seq than they are on fluo-
rescence intensity in microarrays. However, we car-
ried out quantitative PCR validations which indicate
that microarrays may demonstrate greater system-
atic bias in low-intensity genes than in RNA-seq.

INTRODUCTION

Since the introduction of RNA sequencing (RNA-Seq) for
measuring mRNA expression, one important question has
been how the technology compares to microarrays in power
and accuracy. Experiments have been carried out to com-
pare microarrays and RNA-Seq, with some concluding
that RNA-Seq shows greater power, accuracy and dynamic
range (1,2) and others challenging that conclusion (3,4).

We carried out a genome-wide gene expression experi-
ment in a controlled setting on the yeast Saccharomyces
cerevisiae in such a manner that the major sources of profil-
ing variation can be unbiasedly partitioned and quantified

(Figure 1). A single extraction of mRNA from each sample
was quantified by both microarrays and RNA-seq in paral-
lel. We multiplexed each lane of RNA-seq profiling so that
it exactly mirrored the eight-array per chip design of the mi-
croarray platform that we utilized. This experiment allowed
a direct and completely parallel investigation into the quan-
titative operating characteristics of RNA-seq gene expres-
sion profiling versus microarrays.

We use this experiment to examine the variation added
by the RNA-Seq and microarray technologies. Our analysis
utilizes two informative strategies: decomposing the varia-
tion contributed by each technology into multiple stages,
which is made possible by the nested design and analyz-
ing the variation as a function of gene expression intensity,
which is known to influence technology-specific variation
in both microarrays (5,6) and RNA-Seq (7–9). (Through-
out this paper, we utilize ‘intensity’ of a gene as a term
for both fluorescence intensity in microarrays and per-gene
read depth in RNA-seq, both of which are measurements
of a gene’s abundance subject to technology-specific bi-
ases and sources of variation.) We find that the variance
contributed by RNA-Seq is more intensity-dependent than
that from microarrays, a result that is statistically signif-
icant and is robust across multiple normalization meth-
ods and R2 metrics. However, comparisons to quantitative
PCR (qPCR) validations show that microarray may show
systematic biases in low intensities, possibly due to cross-
hybridization. This has implications for the design of future
experiments.

A novel characteristic of our experiment relative to previ-
ous microarray to RNA-Seq comparisons is that we utilized
barcode multiplexing to combine RNA-Seq replicates on
each of two sequencing lanes, meaning that technical varia-
tion added by library preparation and handling is now dis-
tinguishable from ‘sampling’ variation added by the lane.
Also notable is that our analysis takes into account the
effect that intensity has on variation (9), which has con-
founded previous comparisons (10). We thus examine which
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Figure 1. Schematic of the experiment. The Condition and Biological
Replicate steps were performed irrespective of technology and these ma-
terials were then utilized in a technology-specific manner (microarrays or
RNA-seq) for the Preparation and Chip/Lane steps.

technology adds more variation as a function of per-gene
depth or intensity.

MATERIALS AND METHODS

Yeast growth and gene expression profiling

Growth of yeast in chemostats. The experiment was per-
formed using yeast haploid strain DBY 12000 FY, a S288C
derivative containing the wild-type HAP1 allele. A single
colony was split into two overnight cultures, one contain-
ing ethanol (E) limitation medium with 60 C-mM (carbon
millimolar) and the other containing glucose (G) limitation
medium with 27 C-mM as the carbon sources (row 1 of Fig-
ure 1). One milliliter of each culture was used to inoculate
a chemostat. After the chemostats reached stasis, 10 ml cul-
ture was collected and frozen at −80◦C (see Supplementary
Methods). A second set of biological samples were prepared
the same way on a different day.

Microarray and RNA-Seq. RNA was harvested from each
of the four samples (row 2 of Figure 1). The four RNA sam-
ples were then processed twice on different days using the
Agilent Quick Amp Labeling kit (Part no. 5190-0424) to
produce eight cRNA libraries, each of which was then hy-
bridized on two separate chips (Yeast Expression 8 × 15K
arrays) on different days according to the factorial design.
After the arrays were washed and scanned, features were
extracted using the Agilent Feature Extraction software to
determine red and green intensities.

The same four RNA samples were also processed using
the Illumina TruSeq RNA Sample Prep v2 LS protocol.
Each sample was prepared twice up to the 3′ end adeny-
lation step, then each of the eight preparations was split
into two aliquots, after which each was indexed and am-
plified to complete the RNA-Seq library preparation (row
3 of Figure 1). The two groups of eight samples that were
indexed together were each mixed at equimolar concentra-
tions and sequenced on separate lanes on the same Illumina
HiSeq 2500 flowcell, to produce 141 bp reads. In total, we
produced profiles from 16 RNA-Seq samples and 16 mi-
croarray samples with identically nested experimental de-
signs (row 4 of Figure 1).

Quantitative PCR. To perform qPCR, the four RNA sam-
ples were treated with RNase-Free DNase Set (Cat # 79254,

Qiagen) column digestion to remove DNA in the samples.
Total RNA was quantified using Quant-iT RNA assay Kit
(Q33140, Invirogen) and Biotek Synergy Mx plate reader.
A total of 750 ng total RNA was used in the first strand
cDNA synthesis (SuperScript III Reverse Transcriptase,
Cat # 18080, Invitrogen). Prevalidated FAM-MGB Taq-
man probes and primers mix for all candidate genes were
ordered from Life Technologies. A total of 96-well plates
(Cat# N8010560, ABI) and optical adhesive cover starter
kit (Cat # 4313663, ABI) were used. qPCR reactions were
set up by combining Taqman Gene Expression Master Mix
(Cat # 4369016, Life Technologies) and individual probe
plus primer mix. The 20-�l qPCR reactions were run on
ABI 7900 HT Sequence Detection System using the follow-
ing thermal protocol: 50◦C, 2 min; 95◦C, 10 min; 40 cycles
of 95◦C, 15 s and 60◦C, 1 min; 95◦C, 15 s; 60◦C, 15 s; 95◦C,
15 s.

Any candidate genes with more than one band on agarose
gel after qPCR were excluded from further analysis. Three
replicates of RT-qPCR for each RNA sample starting from
cDNA synthesis to qPCR reaction were performed. Each
measurement was normalized based on the average across
all genes in a biological replicate and the log-fold change
was estimated based on the difference in average number of
cycles between ethanol and glucose samples.

Preprocessing and statistical analysis

Normalization and differential expression. We used
bowtie2 with the default set of parameters to map
the RNA-Seq reads to the yeast genome and used
htseq-count to match reads against the S. cerevisiae R64
release of the reference genome from the Sacchromyces
Genome Database. Microarrays were normalized after
averaging all preparation and chip replicates within each
biological replicate to create two E replicates and two
G replicates. The matrix of RNA-Seq counts was first
pooled within preparation and chip replicates, then was
transformed using voom from limma, which also computed
precision weights for each observation (11). This pooling
was necessary for differential expression because while
the replicates at later nested stages introduced variation,
they were not full biological replicates and treating them
as replicates in the differential expression analysis would
be pseudoreplication that underestimates the within-group
variation (12). We tested for differential expression in each
technology using a linear model with empirical Bayes
shrinkage of t-statistics, implemented by limma version
3.24.0 (13).

Estimating contributions to variation. For calculations of
the percent of variation explained, the microarray red/green
log fold changes and the RNA-Seq log-transformed counts
were compared, with the counts first transformed us-
ing voom (11). We compared multiple methods of nor-
malizing both the microarray (MA) and RNA-Seq data
(RS) between samples, using implementations in the
normalizeBetweenArrays function in limma as well as the
trimmed mean of M-values (TMM) (14) and relative log ex-
pression (RLE) (15) methods for RNA-Seq, but none made
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a qualitative difference in the resulting conclusions (Supple-
mentary Figure S5).

For each gene, in both the normalized RNA-Seq or mi-
croarray data, we calculated the adjusted-R2, using a nested
ANOVA on three linear models, which differed in which lev-
els of the experiment were parameterized and which were
left as residual variation (Supplementary Methods). The
R2 estimates were then smoothed using LOESS across all
genes based on their microarray intensity or RNA-Seq read
depth.

RESULTS

We carried out an experiment on both Agilent microarrays
and Illumina RNA-Seq to investigate the effects of each
source of variation on the inference of differential expres-
sion. We used the widely studied model organism S. cere-
visiae to investigate differential expression associated with
growth in different carbon sources, glucose (G) and ethanol
(E), and we introduced steps to capture three additional fac-
tors or sources of variation. The sources of variation are: (i)
Condition: biological condition of interest (G versus E); (ii)
Biological Variation: natural biological variation between
clonal populations; (iii) Preparation: sample handling and
preparation; (iv) Chip/Lane: technical variation associated
with either technology, such as array effects or lane effects.

Factors (i)–(iv) were sequentially nested, and at the stage
of each nested factor, the sample was split such that each
sample from the previous factor is balanced across both
levels of the factor (Figure 1). Factors (i) and (ii) were per-
formed only once to produce four samples of isolated RNA,
while factors (iii) and (iv) were technology-dependent and
therefore performed in parallel with microarrays and with
RNA-Seq. We took advantage of a similar design on Agi-
lent yeast microarrays (eight hybridizations per chip) and Il-
lumina RNA-Seq (eight indexed samples per lane) to mimic
the same approach across the two technologies, resulting
in 16 microarray and 16 RNA-Seq profiles that show the
amount of variation added at each stage. The RNA-Seq
experiment achieved a depth of 170.8 million reads, with
depths of 89.6 million and 81.1 million on each of the two
lanes. The number of reads in each of the 16 samples is
shown in Supplementary Table S1.

Differential expression

The biological goal of this experiment is to infer differen-
tial gene expression in S. cerevisiae strain DBY12000 (S288c
Hap1+ Mat a) cultivated in balanced growth conditions in
chemostats using either glucose or ethanol as the sole car-
bon source (condition of interest). The chemostat device
helped minimize any variations in growth conditions (such
as physiological state, temperature, nutrient composition,
etc.) so the study could directly interrogate the factor of in-
terest: transcriptional responses to different carbon sources
(16). We fit a linear model and calculated a moderated t-
statistic to detect differential expression in each case, after
log-transforming the RNA-Seq counts and fitting precision
weights to each observation (11,13). We specifically tracked
a biologically relevant set of 30 genes known to be involved
in processes relevant to glucose or ethanol metabolism,

Figure 2. (A) Comparison between the log2(G/E) (log fold-change) es-
timates calculated from the RNA-Seq data (RS) or the microarray data
(MA). The transparency of the points corresponds to the quantile of the
intensity in microarray or RNA-Seq, whichever is lower. Thirty genes
from biologically relevant pathways are highlighted in color. (B) Pear-
son or Spearman correlation of log2(G/E) estimate between microarray
and RNA-Seq, within a 500 gene window rolling over microarray/RNA-
Seq intensity ranking, shown with a 95% confidence interval (denoted by
shaded regions). The dashed lines show the correlations for genes that were
found to be significantly differentially expressed at FDR ≤1%. The correla-
tion of all genes (0.856 Pearson, 0.799 Spearman) is shown as a horizontal
dotted line.

namely gluconeogenesis, glycolysis, the tricarboxylic acid
(TCA) cycle and the pyruvate branchpoint (17). The results
of our differential expression testing for each gene in both
microarray and RNA-Seq are shown in Supplementary Ta-
ble S2.

One goal is to assess to what extent RNA-Seq and mi-
croarray experiments agree in their assessment of differ-
ential expression. The number of significant genes in each
technology for various false discovery rate (FDR) thresh-
olds, along with the number of genes that overlap, are shown
in Supplementary Figure S1. We found that the fold-change
estimates for differential expression showed a greater agree-
ment (Spearman correlation of 0.799) than did the P-values
(Spearman correlation of 0.546) and therefore focused on
the fold change estimates for quantitative comparisons. Fig-
ure 2a compares the estimated log2(G/E) fold change ratios
between the two technologies, with the opacity of each point
determined by the quantile of the microarray intensity or
RNA-Seq read depth, whichever is lower. We also identify
the 30 biologically relevant genes highlighted in color. The
microarray intensity of each gene was calculated as the av-
erage cy5 fluorescence intensity across all samples (where
cy5 is the channel corresponding to the samples of inter-
est), while RNA-Seq depth was calculated as the total num-
ber of reads mapping to the gene across all samples. (The
relationship between the intensity quantile and the abso-
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lute intensity in each technology is shown in Supplementary
Figure S2.) The correlation between the two technologies is
highly dependent on read depth and microarray intensity,
with the lowest-intensity genes exhibiting the greatest noise
and therefore the lowest correlation.

Figure 2b shows how the Pearson and Spearman cor-
relations between microarray and RNA-Seq effect size es-
timates depend on per-gene intensity, using a rolling win-
dow of 500 genes, ordered by intensity (again determined
by the quantile of the microarray intensity or RNA-Seq
read depth, whichever is lower). The Pearson correlation
varies from 0.597 to 0.962, while the Spearman ranges from
0.574 to 0.884. The 30 genes in our biologically relevant set
showed a 0.984 correlation of effect size estimates, which
is understandable since almost all lie in the top 10% of
read depth and microarray intensity. When only genes de-
tected as differentially expressed in both technologies are
considered, the correlation between the effect size estimates
is higher, ranging from 0.810 to 0.975, but the intensity still
has an effect on the agreement. The microarray and RNA-
Seq assays identified as significantly differentially expressed
28 of the 30 biologically relevant genes at estimated FDR
≤5% (18), and the two technologies agreed on the direction
of the change for all of these genes. This suggests that there
is little difference between the two technologies in terms of
estimating differential expression of high-intensity genes.

Percentage of variation explained

The primary goal of the factorial experiment is to deter-
mine the relative amount of variation added at each stage
of the experiment for each of the two technologies. Based
on the correlation matrix (Supplementary Figure S3), the
RNA-Seq and microarray assays easily distinguished be-
tween the ethanol and glucose samples and showed cluster-
ing within the chip/lane replicates, as expected from the ex-
perimental design. Any analysis should, however, consider
the intensity-dependence of the variation that each technol-
ogy contributes. We calculated the proportion of variation
explained by the Condition, Biological and Preparation fac-
tors, as well as the residual variation due to the chip or lane,
using a nested ANOVA analysis (‘Materials and Methods’
section). We computed this breakdown separately for each
gene and smoothed the result across microarray intensity
RNA-Seq depth using the local regression method, LOESS
(Figure 3).

In both technologies at almost all intensities, the largest
sources of variation were the treatment (ethanol versus glu-
cose) and the chip/lane, in a tradeoff that depended strongly
on intensity or read depth. The analysis indicated that the
variance due to RNA-Seq lane at low-intensity genes was
greater than that due to microarray chip. This difference
is statistically significant: when the genes are divided into
10 bins based on depth or intensity, all bins up to the 80th
percentile of intensity (less than a fluorescence intensity of
5500 or fewer than 30 000 reads) show a highly significant
difference between the amount of variation added by the
microarray chip versus the sequencing lane (Supplementary
Figure S4). This difference would be costly to address by in-
creasing the RNA-Seq read depth. One would have to triple
the sequencing depth (from 171 million reads to 513 million

Figure 3. Percent of variance explained by each nested level of the ex-
periment as computed by an ANOVA adjusted R2, and smoothed using
LOESS across the intensity quantiles. Results from microarray data (MA)
are shown in the solid lines and RNA-Seq data (RS) in the dashed lines. A
95% confidence interval is shown as the shaded region around each line.

reads total) for the percent of variance explained by con-
dition for genes at the 25th percentile of RNA-Seq inten-
sity (6500 reads per gene) to be comparable to genes at that
percentile of microarray intensity. These conclusions were
robust across multiple methods of microarray and RNA-
Seq normalization (Supplementary Figure S5). To ensure
that this discrepancy did not arise from the difference be-
tween the discrete count data from RNA-Seq and the quasi-
continuous fluorescence intensity data from the microarray,
we also calculated an alternative R2 designed for count data
to determine the proportions of variance explained (Supple-
mentary Methods) (19) and observed almost no difference
(Supplementary Figure S6).

To examine the variation added by the chip/lane level
more directly, we also measured the difference in log fold
change estimate when the same sample was run on two chips
or two lanes. We computed the Pearson and Spearman cor-
relation of log fold changes between chips or between lanes
in overlapping windows of 500 genes ordered by intensity as
above (Figure 4a), as well as a LOESS-smoothed curve of
the absolute value of the difference (Figure 4b). Both anal-
yses confirm that the difference between RNA-Seq lanes is
more intensity-dependent than the difference between mi-
croarray chips, with a particularly great disagreement in
low-intensity genes. One notable question is whether this
effect can be mitigated by effect size shrinkage, such as the
DESeq2 software, which is designed to improve the stability
of estimates for low-depth genes (20). Figure 4 shows that
DESeq2 causes the absolute difference in log fold changes to
decrease, but does not substantially improve the correlation
in any but the lowest-intensity windows. This suggests that
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Figure 4. Comparisons of the log2(G/E) estimates within each technology,
comparing the estimates computed for each of the two chips from the mi-
croarray data (MA) or two lanes from the RNA-Seq data (RS), using the
same library preparations. (A) Pearson correlation between the two lanes
of RNA-Seq or two chips of microarrays, within a 500 gene window rolling
over intensity. (B) Absolute value of the log2(G/E) estimate difference be-
tween chips in microarray or lanes in RNA-Seq, smoothed using LOESS.
Microarray is shown in the solid lines and RNA-Seq in the dashed lines.
A 95% confidence interval is shown as the shaded region around each line
(where the region may be thinner than the solid line itself).

effect size shrinkage can make estimates less variable be-
tween lanes, but does not remove the intensity dependence.

Validation of low-intensity genes

These results do not necessarily indicate that microarrays
are more accurate at low intensities than RNA-Seq, only
that they show greater consistency between replicates. Each
technology may still possess biases that cause their measure-
ments not to reflect the underlying mRNA abundance lev-
els. To examine the accuracy of each technology more di-
rectly, we chose 13 genes in the bottom 20% of intensity for
both technologies, for which the estimates of the log2(G/E)
fold change disagreed by at least 1.0 between the technolo-
gies. On these low-intensity contested genes, we performed
qPCR on the mRNA from the original experiment to pro-
vide an independent validation (‘Materials and Methods’
section). As shown in Figure 5, the qPCR results agreed
much more closely with the RNA-Seq estimates than with
the microarray: the Pearson correlation of estimated RNA-
Seq and qPCR log fold changes is 0.671 (P-value 0.012),
while the microarray to qPCR correlation is 0.024 (P-value
0.939).

This leads to the question of whether the disagreement
between microarrays and qPCR results from greater vari-
ation present at low-intensity, or rather systematic bias in-
troduced by the technology, such as cross-hybridization or
fold-change compression. Toward that end, we examined

Figure 5. Comparison of the log fold change estimates measured with
qPCR compared to estimates from the microarray or RNA-Seq, for 13 se-
lected low-intensity genes that disagreed between RNA-Seq and microar-
ray.

Figure 6. Boxplots comparing the normalized and centered expression
values of microarrays, RNA-Seq and qPCR of the six genes for which mi-
croarray and qPCR most disagreed. This shows that in many cases, mi-
croarray measurements were very consistent between biological, technical
and chip replicates. This suggests that the problem is not variation at low-
intensity microarray measurements, but rather bias.

the distribution of normalized measurements across all bio-
logical, technical and chip/lane replicates from the six genes
for which microarrays most strongly disagreed with qPCR
(Figure 6). Even though these genes are low-intensity, in
most cases the variation within microarray and RNA-Seq
measurements was very small compared to the disagree-
ment between the technologies. In an extreme example,
GAS2 shows a reversed fold change relative to qPCR and
RNA-Seq, but shows very little within-condition variation
in any technology. Of these six genes, only OSW1 could
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plausibly be caused by fold change compression, since in
other cases the microarray effect was greater than or a rever-
sal from the RNA-Seq and qPCR observations (21). This
suggests that the issue within these genes was not random
variation present in low-intensity genes or fold change com-
pression, but rather a bias that led to a spurious but statis-
tically significant effect size estimate.

Gene set enrichment

Many gene expression analyses seek to determine sets of
genes whose expression changes within a particular con-
dition in order to draw biologically relevant conclusions
(22,23). We thus looked for enriched sets of genes within
each technology using a Wilcoxon rank-sum test compar-
ing genes within a gene set to those outside it (24,25).

Many enrichment tests look for genes that are unusu-
ally high or low on a ranked list, often ranked by statis-
tical significance. However, ranking by statistical signifi-
cance has been noted to lead to a confounding effect in
RNA-Seq, where highly-expressed or high-depth gene sets
are spuriously marked as significant (26,27). An alternative
is to perform enrichment analysis on log fold change esti-
mates, which would be expected to be less confounded with
depth (28). To demonstrate this effect in our data, we per-
formed gene set enrichment using either P-values or fold
change estimates from each technology, then assigned the
gene sets into five bins based on each gene set’s median
intensity (Supplementary Figure S7). We see that the en-
richment P-value histogram is highly conservative for low-
intensity gene sets when differential expression P-values are
used, and is less influenced by intensity when the log fold
change estimate is used instead. Notably, even though we
found the per-gene variation to be more intensity depen-
dent in RNA-Seq than in microarray, the intensity depen-
dence of gene sets is similar between the two technologies.
Because of this dependence, along with the fact that log fold
changes showed a higher correlation between technologies
than did P-values, we chose to use the estimate of effect size
rather than statistical significance to evaluate gene set en-
richment.

The results of our gene set analysis of both the RNA-
Seq and the microarray data are shown in Supplementary
Table S3 and the distributions of the log fold change of
some of the most significantly enriched gene sets are shown
in Supplementary Figures S8–S10. The enrichment of gene
sets for carbohydrate catabolic process and glycolysis in glu-
cose and of mitochondrial respiratory chain and adenosine
triphosphate synthesis coupled proton transport serve as
confirmation that the experiment captures the difference be-
tween the two metabolic states. Two of the three most signif-
icantly enriched sets are cytoplasmic translation and mito-
chondrial translation, for which expression is higher in glu-
cose and in ethanol, respectively. As the rate of respiration
in the mitochondria is higher in ethanol than in glucose, this
suggests that increase in mitochondrial activity is reflected
in a tradeoff of translation from the cytoplasmic ribosomes
to the mitochondria. Another notable result is that genes
in iron ion homeostasis and ferric-chelate reductase activ-
ity are higher expressed in ethanol than in glucose. This is
likely due to the important role of iron transport and re-

duction in heme biosynthesis, which in turn is necessary for
the electron transport chain and other respiratory activity
(29–31).

We identified higher expression of cytokinesis and cellu-
lar budding genes in ethanol, even though growth rate was
kept equal between the two samples. Mitochondrial inher-
itance and distribution is known to be actively regulated
by the budding tip and to be necessary for equal and effi-
cient distribution of the organelles (32,33), and indeed some
differentially expressed genes in our experiment, such as
UTH1, have been identified as being related to both cell wall
biogenesis and mitochondrial division (34–36). Our results
suggest that this process of mitochondrial inheritance may
be transcriptionally regulated in response to the metabolic
state or level of respiratory activity.

DISCUSSION

We demonstrate an experimental and statistical approach
for determining the variation added at each stage of a
microarray or RNA-Seq experiment. We determined that
RNA-Seq shows a greater degree of intensity-dependent
variation than do microarrays, with particularly high
variance for low-intensity genes and that the intensity-
dependent component was contributed mostly by the chip
or lane level. With qPCR validation, however, we discov-
ered that microarrays appear to possess some systematic
biases in their estimation of differential expression for low-
intensity genes. These may result from cross-hybridization
between these microarray probes and genes that are af-
fected by the treatment condition. Another possibility is
that they result from technical variation induced by the
polymerase chain reaction step that is performed in RNA-
Seq and qPCR, but not in microarrays. Since this bias ap-
pears to be consistent across biological, technical and chip
replicates, it likely cannot be solved or even detected by per-
forming additional replicates on the microarray platform.

Our results have implications for the design of microar-
ray and RNA-Seq experiments meant to identify differen-
tial expression. While other experiments will vary in the
amount of variation added at the biological stages, that
variation is likely to be intensity-independent as it was in
our study, meaning our qualitative conclusions are likely to
hold. For high-intensity genes there is little difference either
in the genes called significant or the estimate of effect size
between RNA-Seq and microarray, and therefore the de-
cision of which technology can be made on other criteria,
such as cost. However, in low-intensity genes, the RNA-
Seq technology tends to add greater variation, leading to
lower statistical power and greater uncertainty in expres-
sion estimates. Microarrays, while more consistent in their
estimates across technical replicates, may show systematic
biases at low intensities that confound differential expres-
sion detection. This suggests that studies for which low-
expressed genes are of special interest should be performed
cross-platform.

More importantly, our study has demonstrated that the
intensity-dependent nature of variation must be taken into
account in future technology comparisons and quality con-
trol experiments, and that focusing on log-fold change
estimate agreement rather than significance testing leads
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to more consistent conclusions. Our approaches of divid-
ing genes into intensity bins, observing correlations within
overlapping windows, and smoothing per-gene values using
LOESS showed trends and differences in the technologies
that would have been missed using aggregate statistics. Fi-
nally, we have demonstrated how our experimental data is
an appropriate benchmark for comparing statistical analy-
sis methods and for developing experimental recommenda-
tions, as it analyzes a well-studied system, includes variation
at each stage of an experiment, and compares RNA-Seq and
microarrays directly on the same biological samples. We ex-
pect future research by ourselves and others will extend our
conclusions and develop them further.
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