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Background: The quantitative measurement of the anticipated number of disaster deaths is very important 
shortly after the mainshock because the forecasted fatalities could help determine the size of the health and 
medical services team to be deployed. This study aimed to devise a simple method to predict the cumulative 
number of deaths during the immediate or early stage of a large earthquake.
Methods: We analyzed six earthquakes in Japan that involved at least 20 deaths, 1990–2018. Analyzing 
statistical patterns in the cumulative number of deaths, we used three models—the exponential model, the 
Weibull model, and the percentile-based model—to predict the likely number of deaths during the early 
stage of earthquakes.
Results: The median time required to reach the median number of deaths was 2.2 (interquartile range: 1.5, 
3.8) days from the mainshock. By only multiplying the cumulative number of deaths as on day 2 by a factor 
of two, the likely number of deaths was calculated using the percentile-based method. The validity of this 
simple method was better than the results from day 4 using the parametric models. The Great East Japan 
earthquake was exceptionally large and difficult to predict in real time, and it involved a large number of 
fatalities following a tsunami.
Conclusions: For all other earthquakes, the median number of deaths was reached on day 2. Even in a 
setting with poor technical resources, the predicted number of deaths can be obtained by multiplying the 
reported cumulative number on day 2 by a factor of two.
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Introduction

Although the land area of Japan accounts for only 0.3% 
of the entire world, more than 20% of earthquakes with 
a magnitude of 6 or greater on the moment magnitude 
scale occur in Japan (1). Japan accounts for 11.9% (1) 

of the total economic impact caused by natural disasters 
across the world, which indicates that the frequency of 
natural disasters in Japan is very high. The number of 
disaster deaths in Japan that were caused by earthquakes 
has been far greater than the numbers of deaths caused by 
other natural disasters in the last 50 years (e.g., about 90% 
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of total deaths in the last three decades were caused by 
earthquakes) (2).

Natural disasters occur suddenly, immediately elevating 
various types of demand, and medical and public health 
responses should thus be implemented swiftly (3-5), 
particularly because the largest demand for medical 
treatment occurs during the first 24–48 hours (6). In 
principle, these responses are classified into three phases: (I) 
immediate; (II) early; and (III) delayed, and the treatment 
of injury during the early stage is known to contribute to 
reducing the cumulative risk of death (7).

In the event of a disaster, various medical teams are 
deployed in contexts around the world (8). In Japan, the 
Disaster Medical Assistance Team (J-DMAT) training 
program has been coordinated by the Ministry of Health, 
Labour and Welfare since 2005 (9). As a group of experts, 
a trained, mobile, self-contained medical team is organized 
to provide medical treatment in the acute phase in the 
devastated area (10). The team is rapidly deployed to any 
area of the country hit by a disaster, but the overall size and 
content of the team is not necessarily determined objectively 
and quantitatively. Although understanding the expected 
total number of deaths would help to coordinate this 
rapid deployment and contribute to minimizing damage, a 
simple prediction method has not yet been established. It is 
frequently the case that available datasets are restricted to 
time-dependent updates of fatalities, and using a prediction 
method that requires only these data could shed light on 
an earthquake’s overall anticipated death toll. Determining 
the size of the team to be deployed requires the quantitative 
measurement of the size of the disaster (e.g., the anticipated 
number of disaster deaths) (11). If the number of direct 
deaths could be predicted, an appropriate number of 
J-DMAT team members could be deployed, and the 
number of indirect deaths could be minimized.

Multiple forecasting studies on natural disasters have 
been conducted, but the majority of these studies have 
focused on forecasting the physical aspects of disasters (e.g., 
the extent of landslides) (12,13), anticipating the overall 
economic damage (14), or conducting an anatomical analysis 
of corpses to understand the nature of disaster deaths from 
the viewpoint of forensic medicine (15,16). A more direct 
exploration, using the number of deaths to predict the likely 
total death toll, is required. In the present study, we aimed 
to devise a simple method to predict the cumulative number 
of deaths during the early stage of a large earthquake using 
data that are readily available in official government reports. 
To accomplish this task using the minimal amount of 

available data, we examined the time trend of deaths during 
six large earthquakes in Japan. We present the following 
article in accordance with the MDAR reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-5784).

Methods

Earthquake data in Japan

Globally, the strength of an earthquake is measured using 
the magnitude, which is scaled by a seismic wave (17); 
however, Japan, where there are frequent earthquakes, has 
adopted the “shindo”, which measures seismic intensity (18).  
Shindo scales ground surface shaking, measured by 
the Japan Meteorological Agency, which has installed 
digital seismometers across Japan and directly performs 
measurements at 4,400 geographic observation points. The 
shindo scale ranges from 0 to 7. Shindo values of 6–, 6+, and 
7 are defined as “difficult to remain standing”, “impossible 
to stand/cannot move without crawling” and “thrown off 
by the shaking and impossible to move at will”, respectively 
(18,19). In the present study, we focused on time series data 
obtained from death certificates issued during earthquakes 
with a moment magnitude (Mw) of 6.5 or greater 
(comparable to shindo 6+ or 7) from 1990 to 2018 that 
involved at least 20 deaths. Twenty deaths were selected 
because the decision to deploy J-DMAT has conventionally 
been determined by whether at least 20 people have been 
seriously injured in a disaster.

Specifically, we focused on direct deaths, which are 
defined as fatalities caused by the direct physical impact 
of the earthquake, including a collapsed building, fire, or 
tsunami. In Japan, during a natural disaster, all corpses 
undergo a postmortem examination, the police department 
provides updates on the cumulative number of deaths 
following these examinations, and press releases containing 
this information are published in newspapers or broadcast 
on television or the radio. In this study, we extracted 
the updated death certificate count from newspapers by 
searching Nikkei Telecom 21 (20), which is the largest 
business information service in Japan, including the full text 
of major Japanese newspapers for the past 30 years, using 
the search terms “earthquake” plus “death” or “earthquake” 
plus “fatality”. Our data were directly retrieved from the 
public news produced from police department reports, 
which can be regarded as the only official source of 
information on the time-dependent number of deaths. 
Because there was no concept of direct and indirect deaths 
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in the 1990s, we simply counted the total number of deaths 
during earthquakes in that period; otherwise, we retrieved 
only direct death counts. Direct deaths were defined as 
death events for which the earthquake had a clear causal 
impact, whereas indirect deaths encompassed fatalities 
occurring during the evacuation process or the post-
earthquake period that could be interpreted as induced 
by the earthquake. If the press release was made in the 
morning (before noon), the first decimal place of the 
corresponding time was set to 0; if the press release was 
made in the evening (after noon), this was set to 5.

Statistical analysis

First, we characterized the descriptive statistics, particularly 
with respect to the cumulative number of deaths during 
the selected earthquakes. The number of days from the 
mainshock that it took to reach a specific percentile point 
of deaths (e.g., median and first and third quartiles) was 
calculated and compared across different earthquakes. 
During the Kumamoto earthquake, an initial minor shock 
was followed by the mainshock. For this earthquake only, 
the time is measured from the first minor shock.

Second, parametric models with a monotonically 
increasing function of time since the mainshock were fitted 
in real time to the observed number of deaths over time. Two 
models with a small number of parameters, the exponential 
and Weibull distributions, were used because the exponential 
model requires only two parameters (i.e., the rate of increase 
and the predicted cumulative number of deaths) and the 
Weibull model can achieve a sigmoidal cumulative curve, i.e., 
the curve that captures the cumulative death pattern, better 
than the exponential distribution. Let the growth rate and 
the cumulative number of deaths be r and N, respectively. 
Using the exponential model, the expected number of deaths 
on day t since the mainshock was modeled as:

( ) ( )( )1 exptE D N rt= − −  [1]

Similarly, let k be the shape parameter of the Weibull 
distribution. The expected number of deaths on day t since 
the mainshock was modeled as:

( ) ( )( )( )1 exp k
tE D N rt= − −  [2]

In addition, we explored the logistic model as an 
alternative approach:

( ) ( )1 expt
NE D

rt
=

+ −  [3]

Assuming that the observed number of deaths on day t 
since the mainshock followed a Poisson distribution, the 
maximum likelihood method was applied using Eq. [1], 
Eq. [2], and Eq. [3] as the expected value of the Poisson 
distribution and updating parameter estimates as time t 
progresses.

( ) ( ) ( )( )exp
 

!

tk
t t

t t

E D E D
L

k
θ

−
=∏  [4]

Where kt represents the observed death count at time t. 
The 95% confidence intervals (CIs) of the parameters were 
derived from the profile likelihood.

Third, as an alternative and more simply implemented 
method, we examined the prediction using the percentile 
point only (hereafter referred to as the percentile-based 
method). Let the observed q-th percentile point of the 
cumulative number of deaths be Mq. Using the single 
percentile point only, the expected total number of deaths 
E(N) is:

( ) 100  qE N M
q

=  [5]

Specifically, we could use the median and first and 
third quartiles, that is, q =25, 50, and 75, to estimate the 
expected total number of deaths on a given date. However, 
in practice, we do not yet know that a certain number of 
days from the mainshock corresponds to the date on which 
the number of deaths reaches a percentile point. Thus, 
we explored the median number of days to reach q =25, 
50, and 75 in our descriptive analysis and used the nearest 
integer value to define the date on which the q-th percentile 
was reached. This method remains as simple as Eq. [5]; 
however, an important drawback is that it does not include 
an uncertainty bound (e.g., 95% CI).

As an alternative method using a variety of datasets 
including detailed seismic and geographic information, 
the Prompt Assessment of Global Earthquakes for 
Response (PAGER) was used to offer another forecast of 
the earthquakes’ impact. The data required for PAGER 
were available only beginning in 2010; therefore, PAGER 
forecasting could be applied only to the Kumamoto and 
Hokkaido Eastern Iburi earthquakes.

Regarding the forecasts from the two parametric 
models, we assessed the validity and reliability of the 
abovementioned prediction methods at the immediate and 
early stages, that is, on days 3 to 6 since the mainshock. 
These days were selected because, at minimum, we needed 
3 days to estimate the three unknown parameters of the 
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Weibull distribution (because the degree of freedom, 
determined by the number of unknown parameters, 
required 3 days). Let tN  and N∞ be the estimated cumulative 
number of deaths on day t and the observed total number 
of direct deaths at the end of the earthquake (i.e., the true 
death toll value that we would like to predict), respectively. 
The validity of the prediction on day t was assessed using 
the distance between the observed and predicted deaths:

( )


2

 
t

t

N N

N
∞ −

 [6]

This is, in principle, using a chi-square test at the future 
time point to assess how expectations compare with the 
actual observed data.

More accurate real-time forecasts correspond to 
smaller values of (6). Reliability was assessed by the 
width of uncertainty, with the scale was adjusted by the 
observed number of deaths, N∞. We used the difference 
between the lower and upper 95% confidence limits of the 
estimated cumulative number of deaths on day t to define 
the approximate standard deviation of forecast tσ , and 
reliability was calculated as  /t Nσ ∞ . When the forecast 
involved broad uncertainty, the resulting reliability was 
large.

The validity of the percentile-based method was assessed 
in a similar manner to that used for the exponential and 
Weibull models. However, because there is no uncertainty 
bound for the percentile-based method, we could not 
assess its reliability. To compare model performance, the 

validity of the parametric models at the minimum number 
of days from the mainshock and that of the percentile-based 
method at the median point were overlaid for illustration.

Data sharing policy

In this study, we extracted the updated death certificate 
count from newspapers by searching Nikkei Telecom  
21 (20). The original data used in this study are available as 
an online supplementary file (Table S1).

Results

There were 13 earthquakes with shindo 6+ or greater from 
1990 to 2018. Of these, six earthquakes involved 20 or 
more deaths (Table 1), and the time-dependent updates of 
the death counts for these six earthquakes were used in the 
following analysis. Figure 1 shows the time series of the 
cumulative number of deaths as a function of time since 
the mainshock. There was a small number of considerably 
delayed corpse identifications following a landslide and 
tsunami; thus, there were some gaps in the increment of 
death. A corpse recovered on the shore and identified in 
later days is considered a lost person and designated as a 
direct death. Although the cumulative number of deaths 
differed markedly by earthquake, all distributions formed 
a cumulative curve that could be described by a sigmoidal 
function.

The time to reach the median and first and third quartiles 

Table 1 Examined earthquakes in Japan with a seismic intensity (“shindo”) of 6+† or greater

Name of the earthquake
Time of earthquake  

(Japan Standard Time)
Seismic intensity 

(“shindo”)‡
Magnitude (Mw)

Death  
toll

Southwest-off Hokkaido earthquake, 1993 10:17 AM, 12 July 1993 6+ (estimated) 7.8 (estimated) 202

Great Hanshin-Awaji earthquake, 1995 5:46 AM, 17 January 1995 7 7.3 5,502

Niigata Prefecture Chuetsu earthquake, 2004 5:56 PM, 23 October 2004 7 6.8 40

Great East Japan earthquake, 2011 2:46 PM, 11 March 2011 7 9.0 15,897

Kumamoto earthquake, 2016 9:26 PM, 14 April 2016 (followed by a greater 
seismic intensity at 1:25 AM, 16 April 2016)

7 7.2 50

Hokkaido Eastern Iburi earthquake, 2018 3:07 AM, 6 September 2018 7 6.6 41
†, Seven other well-documented earthquakes [the Kushiro-oki earthquake (1993), the Hokkaido Toho-Oki earthquake (1994), the Offshore 
Sanriku earthquake (1994), the Western Tottori Prefecture earthquake (2000), the Noto Peninsula earthquake (2007), the Niigata Prefecture 
Chuetsu-oki earthquake (2007), and the Iwate Miyagi Nairiku earthquake (2008)] were excluded because they resulted in no deaths or a small 
number of deaths. ‡, Original seismic intensity scale of the Japan Meteorological Agency, expressed as the discrete class category from 
0 to 7; referred to as “shindo” and directly measured by a digital shindo meter at 4,400 geographic locations in Japan. It is approximately  
proportional to the magnitude scale. Levels 5 and 6 are further classified as 5–, 5+, 6– and 6+.

https://cdn.amegroups.cn/static/public/ATM-20-5784-supplementary.pdf
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Figure 1 Cumulative number of deaths following each earthquake. During each earthquake, the number of deaths initially increased 
exponentially. Subsequently, the increase slowed down. During the Southwest-off Hokkaido earthquake (A), there were 202 deaths by 
day 249. During the Great Hanshin-Awaji earthquake (B), there were 5,502 deaths by day 178. During the Niigata Prefecture Chuetsu 
earthquake (C), there were 40 deaths by day 18. During the Great East Japan earthquake (D), there were 15,897 deaths by day 2918. During 
the Kumamoto earthquake (E), there were 50 deaths by day 120. During the Hokkaido Eastern Iburi earthquake (F), there were 41 deaths 
by day 4.
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of the cumulative number of deaths for the six selected 
earthquakes is shown in Figure 2. The median estimates 
for the lower quartile, median, and upper quartile were 
1.5, 2.2, and 3.8 days, respectively. Among the six selected 
earthquakes, the Great East Japan earthquake in 2011 
tended to be an outlier in the distributions, and only this 
earthquake involved a large number of fatalities because of 
the of vast land area affected as a result of a tsunami, whereas 
other earthquakes were epicentral or affected a restricted 
geographic area. Excluding the 2011 Great East Japan 
earthquake, the median estimates for the lower quartile, 
median, and upper quartile were 1.5, 2.0, and 3.5 days,  
respectively.

Figure 3 shows a comparison of the observed and 
predicted cumulative number of deaths using the 
exponential and Weibull distributions on day 4 since the 
mainshock. Before day 4, forecasts using the Weibull 
distribution did not converge and, on day 3, forecasts using 
the exponential model did not consistently converge for all 
earthquakes. Qualitatively, it was difficult to judge whether 
an inflection point had been reached; thus, the model did 
not smoothly converge on or before day 3. Except for 
the Southwest-off Hokkaido earthquake, forecasts made 
with the exponential model tended to overestimate the 
cumulative number of deaths. Visually, the Weibull model 
aligned well with the data for the Great Hanshin-Awaji, 
Kumamoto, and Hokkaido Eastern Iburi earthquakes. The 
logistic model did not converge for half of the earthquakes 
on day 4, and the fit was worse compared with exponential 

and Weibull models. The logistic model was thus discarded 
in the following analyses.

Figure 4 shows an evaluation of the validity and reliability 
of the forecasts from day 3 to 6 since the mainshock. The 
Southwest-off Hokkaido and Niigata Prefecture Chuetsu 
earthquakes were relatively well forecasted using both the 
exponential model and the Weibull model. In contrast, 
the Great East Japan earthquake yielded the greatest 
error for both models (Figure 4A,C), which indicates 
the difficulty of forecasting death during a very large-
scale earthquake. The error, a measure analogous to chi-
square, generally decreased as a function of time since the 
mainshock; however, the reliability did not necessarily 
demonstrate a decreasing trend over time. No consistent 
pattern of reliability was identified for the earthquakes 
using the exponential or Weibull model. The Great East 
Japan earthquake was difficult to predict, and there was 
not necessarily improvement over time in the prediction’s 
validity or reliability. Results from percentile-based method 
are shown as the online supporting material.

We also examined the percentile-based predictions, 
assuming that day 2 was the median number of days since 
the mainshock for all earthquakes. For the Southwest-
off Hokkaido, Great Hanshin-Awaji, Niigata Prefecture 
Chuetsu, Great East Japan, Kumamoto, and Hokkaido Iburi 
Eastern earthquakes, with the observed death counts of 202, 
5,502, 40, 15,897, 50, and 41, the median prediction yielded 
the forecasts (and errors) of 194 (–8), 5,886 (+384), 50 (+10), 
1,376 (–14,521), 32 (–18), and 70 (+29) deaths, respectively. 

Figure 2 Percentile estimates of the number of days from the earthquake to reach the median and first and third quartiles of the death 
count. The distribution of the number of deaths was analyzed for six earthquakes as a function of the number of days that elapsed from 
the first day. In (A), the first quartile (25th percentile) is shown for the six earthquakes; four earthquakes reached the 25th percentile at  
1–2 days. (B) displays the distribution of the number of days to reach the median. The third quartile (75th percentile) is shown in (C). 
Median estimates for (A-C) were 1.5, 2.2, and 3.8 days, respectively. Outlier box plots show the median and lower to upper quartiles as a box, 
with a confidence diamond containing the mean and the upper and lower 95% confidence limits of the mean. The whiskers extend from 
the ends of the box to the outermost data point that falls within the distances computed as 1st quartile – 1.5 × (interquartile range) and 3rd 
quartile + 1.5 × (interquartile range).
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Figure 3 Observed and predicted number of deaths following each earthquake. Prediction curves for the exponential model (continuous 
line) and the Weibull model (dashed line) are compared with the observed data (dots). Note that the logarithmic scale was used for a part of 
the panels because of the substantial increase in the number of deaths in a short period of time.
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Figure 5A shows the error for different percentile points 
and earthquakes. Clearly, forecasts using the upper quartile 
yielded values that were closer to the observed number of 
deaths.

Figure 5B shows a comparison of the validity of the 
examined approaches using the exponential model, the 
Weibull model, and percentiles. The percentile method 
offered a median-based forecast on day 2, whereas the 
consistent convergence of the models was observed only 
on day 4 or later. Limited convergence is due to limited 

precision of the data and only six earthquakes that we were 
able to include. Although the percentile-based method 
was not always better, the extent of the error based on the 
median-based method was comparable with that based on 
the exponential and Weibull models. The percentile-based 
method yielded the best performance especially for the 
Southwest-off Hokkaido and Kumamoto earthquakes, even 
on day 2.

Figure 6 shows the PAGER results for the Kumamoto 
and Hokkaido Eastern Iburi earthquakes. The precision 

Figure 4 Prediction assessment of the exponential and Weibull models. Predictions were assessed by the number of days elapsed since the 
mainshock during the period of 3 to 6 days. In (A,C), error was measured as the sum of squared differences between the observed and predicted 
values divided by the expected value (i.e., a similar measurement to a chi-square). The cumulative number of deaths during the Hokkaido 
Eastern Iburi earthquake reached the maximum on day 5; thus, the forecast terminated on that day. In (B,D), the width of the prediction 
represents the assessment of uncertainty, which was measured as the difference between the lower and upper 95% prediction intervals.
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Figure 5 Assessment of the quartile-based prediction method for anticipating the cumulative number of deaths for each earthquake. (A) 
Comparison between the observed and predicted numbers of deaths at different numbers of days elapsed since the mainshock. For instance, 
the prediction at day 1.5 is based on the lower quartile, and the observed count by day 1.5 times four gives the prediction. The earthquake 
is identified as a number on the horizontal axis, where 1 is the Hokkaido Offshore earthquake, 2 is the Great Hanshin-Awaji earthquake, 
3 is the Niigata Prefecture Chuetsu earthquake, 4 is the Great East Japan earthquake, 5 is the Kumamoto earthquake, and 6 is the Eastern 
Hokkaido Iburi earthquake. (B) Comparison of validity as measured by a chi-square test among the three methods. The two methods 
that used the exponential and Weibull models first converged on day 4, and their errors contrasted with those based on the quartile-based 
prediction on day 2, when the median was expected to have passed. The earthquakes are identified by the same numbers as in (A).

Figure 6 Real time prediction of fatalities that could arise from each earthquake using the Prompt Assessment of Global Earthquakes for 
Response (PAGER). Data on two earthquakes were eligible for real-time assessment. The death toll of the Kumamoto earthquake was 50 
direct deaths, and the death toll of the Hokkaido Eastern Iburi earthquake was 41 direct deaths.
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of forecasted fatalities was recorded by the power function 
of 10. According to PAGER, predicted deaths for the 
Kumamoto and Hokkaido Eastern Iburi earthquakes 
ranges from 100 to 1,000 persons and 10 to 100 persons, 
respectively, upon occurrence of earthquake. Because 
of the need for rapid response, precision is limited, and 
the distribution on a logarithmic scale was flat for both 
earthquakes. The actual fatalities of the Kumamoto 
earthquake corresponded to the third highest frequency, 
whereas the actual fatalities of the Hokkaido Eastern Iburi 
earthquake were well predicted as the highest frequency by 
PAGER.

Discussion

In the present study, we analyzed six earthquakes in Japan 
that involved at least 20 deaths occurring from 1990 to 
2018. To analyze the statistical patterns in the cumulative 
number of deaths, we used three models (the exponential 
model, the Weibull model, and the percentile-based model) 
to predict the likely number of deaths during the early stage 
of earthquakes. For the evaluation, validity and reliability 
were assessed for the parametric models, whereas only 
validity was assessed for the percentile-based method. The 
parametric models started to converge from day 4; however, 
we found that all earthquakes except the Great East Japan 
earthquake reached the median number of deaths on day 
2; that is, by multiplying the cumulative number of deaths 
as of day 2 by a factor of two, we could calculate the likely 
total number of deaths using the percentile-based method, 
and the validity of such a simple method was better than the 
results from day 4 using the parametric models. The Great 
East Japan earthquake was exceptionally large and involved 
a large number of fatalities caused by a tsunami; excluding 
this earthquake, the percentile-based method performed 
well, regardless of the year of the earthquake. Although our 
analysis of news media data involved reporting delays of up 
to 12 hours, the proposed method can be applied directly to 
police announcement data in the future.

As its most important contribution, the present study has 
empirically demonstrated that the likely size of a disaster can 
be assessed using data on direct deaths. In addition to direct 
deaths, fatalities during earthquakes also include indirect 
deaths, which are referred to as disaster-related deaths in 
Japan (21). Indirect deaths encompass the total number of 
deaths occurring because of environmental changes induced 
by the earthquake, which may lead to the exacerbation 
of chronic illnesses and diseases associated with mental 

distress. The present study focused on direct deaths, which 
reflect the immediate physical impact of the earthquake. We 
have shown that the immediate impact is partly measurable 
as of day 2 after the mainshock, and this could act as a 
benchmark for future evaluation. Moreover, our proposed 
simple method could help to quantify the required amount 
of medical resources, including the number of medical 
experts to be deployed (e.g., by determining the numbers 
of physicians and nurses to be deployed via J-DMAT). 
Considering that limited medical resources and delays in 
medical interventions during the early stage of earthquakes 
are known as triggers of indirect death (22), this quantitative 
method for helping people to make decisions regarding the 
required resources to dispatch may also have the potential 
to reduce disaster-related deaths.

The present study is not the first to propose a decision-
making system that estimates potential losses caused by a 
natural disaster (23); Hazard United States (HAZUS), a 
useful visualization tool that uses a geographic information 
system, was developed by the Federal Emergency 
Management Agency and the National Institute of Building 
Sciences (24,25). Additionally, PAGER can produce 
estimates concerning the impact of significant earthquakes 
around the world (26). These systems can offer the forecasts 
in the first hour after the mainshock, which could be 
used to deploy rescue teams to mitigate the impact of the 
event. PAGER has shown that accounting for physical 
aspects of earthquakes (e.g., distance to the epicenter, 
rupture, propagation, population distribution, and building 
properties) as well as the timing of the earthquake (i.e., 
the hour of day when the earthquake occurs) greatly help 
in predicting the impact. When such data are lacking, our 
proposed method could be used for forecasting; this would 
require 2 days, but the forecasting could be achieved with 
minimal data requirements. Additional published methods 
include an integrated evaluation tool that uses engineering 
and epidemiological theories (27,28) and a system that 
predicts the number of deaths using a risk analysis method 
that measures social vulnerability (29-33). A system 
managed by the International Center for Earth Simulation 
called Quake Loss Assessment for Response and Mitigation 
(QLARM) (34) is also used for earthquake damage 
prediction (35-37). Of the existing methods, HAZUS has 
been routinely used in disaster medicine, and PAGER 
and QLARM offer estimates within 30 minutes of the 
mainshock, which is the expected timescale for prediction in 
physical science (38,39).

Notably, each of these existing methods requires 
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multiple pieces of information as input variables for 
computation, whereas our proposed percentile method 
uses only the cumulative number of deaths. Thus, the 
practical contribution of our study to the field is that we 
have empirically shown the quickest method to analyze 
the observed number of deaths in Japan, where deaths 
are quickly identified after the mainshock and reported 
continuously.

Clearly, the prediction of the number of deaths during 
an earthquake would ideally include the underlying 
mechanisms of the particular earthquake. The essential 
pieces of information may be the geographic distribution 
of seismic intensity, landform type, seismic resistance and 
seismic isolated structure of buildings, social vulnerability, 
and healthcare infrastructure and access (26,29-37), 
which are inductively taken into account by PAGER and 
QLARM. The scientific analysis of such a rigorous series 
of data would ideally be performed; however, our analysis 
of the cumulative number of deaths omits these details in 
an attempt to capture general patterns of fatalities during 
large earthquakes. With the exception of extremely large 
earthquakes, such as the Great East Japan earthquake, we 
have shown that the cumulative number of deaths behaves 
similarly in the social setting of Japan (where different 
regions are characterized by a similar housing style, social 
vulnerability, and administrative mechanism to identify, 
report, and count the number of deaths). Exploiting these 
similarities, our proposed method could greatly help in 
determining the immediate number of medical experts and 
services to be deployed.

Several limitations of our study should be discussed. 
First, the prediction of the cumulative number of deaths 
using the proposed method is thus far restricted to Japan. 
If similar datasets are constructed in other countries, the 
prediction method could be considered for use in these 
additional contexts. Second, the proposed approach did 
not perform well for the Great East Japan earthquake. 
However, the validity of the percentile-based method for 
the 1995 Great Hanshin-Awaji earthquake, which was the 
second-largest earthquake examined in this study, did not 
deviate from that of the other earthquakes; thus, we believe 
that the size of the 2011 Great East Japan earthquake and 
the tsunami-induced deaths during this disaster were truly 
exceptional. Third, additional information, such as the age 
groups and geographic locations of the deceased individuals, 
could inform further methodological development in 
forecasting the cumulative number of deaths during 
earthquakes. Fourth, there was no uncertainty bound for 

the percentile-based method, and our reliability rests on six 
earthquakes and future updates would be indispensable.

Despite these limitations, we believe that the present 
study contributes greatly to forecasting the number of deaths 
during an earthquake. Even in settings with poor technical 
resources, the predicted number of deaths can be obtained 
by multiplying the reported cumulative number of deaths at 
noon on day 2 after the mainshock by a factor of two.

Conclusions

The present study analyzed six earthquakes in Japan that 
involved at least 20 deaths occurring from 1990 to 2018. 
By analyzing the statistical patterns in the cumulative 
number of deaths, we found that all the earthquakes except 
the Great East Japan earthquake reached the median 
number of deaths on day 2. By multiplying the cumulative 
number of deaths as of day 2 by a factor of two, it is 
possible to calculate the likely number of deaths using the 
percentile-based method. Although having physical and 
geographic datasets on the earthquake and the affected 
population would help us to measure the overall size of an 
earthquake event as quickly as within 1 hour, we believe 
that the present study greatly contributes to forecasting the 
number of deaths during an earthquake with minimal data 
requirements.
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