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What causes type 1 diabetes?

Lessons from animal models
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To study type 1 diabetes (T1D), excellent animal models exist, both spontaneously diabetic and virus-
induced. Based on knowledge from these, this review focuses on the environmental factors leading to
T1D, concentrated into four areas which are: (1) The thymus-dependent immune system: T1D is a T
cell driven disease and the beta cells are destroyed in an inflammatory insulitis process. Autoimmunity
is breakdown of self-tolerance and the balance between regulator T cells and aggressive effector T cells
is disturbed. Inhibition of the T cells (by e.g. anti-CD3 antibody or cyclosporine) will stop the T1D pro-
cess, even if initiated by virus. Theoretically, the risk from immunotherapy elicits a higher frequency of
malignancy. (2) The activity of the beta cells: Resting beta cells display less antigenicity and are less sen-
sitive to immune destruction. Beta-cell rest can be induced by giving insulin externally in metabolic
doses or by administering potassium-channel openers. Both procedures prevent T1D in animal models,
whereas no good human data exist due to the risk of hypoglycemia. (3) NKT cells: According to the
hygiene hypothesis, stimulation of NKT cells by non-pathogen microbes gives rise to less T cell reac-
tion and less autoimmunity. Glycolipids presented by CD1 molecules are central in this stimulation. (4)
Importance of the intestine and gliadin intake: Gluten-free diet dramatically inhibits T1D in animal
models, and epidemiological data are supportive of such an effect in humans. The mechanisms include
less subclinical intestinal inflammation and permeability, and changed composition of bacterial flora,
which can also be obtained by intake of probiotics. Gluten-free diet is difficult to implement, and short-
term intake has no effect. Regarding the onset of the T1D disease process, slow-acting enterovirus and
gliadin deposits are speculated to be etiological in genetically susceptible individuals, followed by the
mentioned four pathogenetic factors acting in concert. Neutralization of any one of these factors is
capable of stopping T1D development, as lessons are learned from the animal models.

Karsten Buschard, MD, Bartholin Instituttet, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen,
Denmark. e-mail: buschard@dadlnet.dk
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INTRODUCTION

In spite of intensive research during the last dec-
ades, the question in the title cannot be
answered briefly, precisely, or without any
doubt. However, several pieces of evidence have
been obtained and the solutions might not be
far away. Some aspects have been highlighted to
a greater extent than others and, therefore, it
seems necessary to review the data and indica-
tions available in a new approach.

Type 1 diabetes (T1D) is a disease for which
good animal models exist. These include the
spontaneously diabetic BB rats and NOD mice,
as well as virus-induced diabetes in mice; see (1).
However beneficial the models may be, it is
essential that the information obtained is evalu-
ated critically and is related to human data.
T1D is to some extent genetically influenced,

and mostly by certain MHC types. However,
90% of T1D cases have no first-degree relatives,
and the pairwise concordance rate for
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monozygotic twins is described to be 27% (2).
Whether epigenetic studies in the coming years
might expand the genetic component is uncer-
tain at present. In any event, T1D is a disease in
which the environment plays a major role.
It is in good accordance with the partially un-

inherited nature of T1D that the incidence of
the disease during the last 3–4 decades has
increased substantially, mostly in highly devel-
oped countries with a western lifestyle. In these
societies, and especially in Finland, T1D is seen
in up to 2% of all individuals during their life-
time. This is an unusually high incidence for a
potentially deadly disease, only comparable
with that of rheumatoid arthritis. Autoimmuni-
ty is breakdown of tolerance, and interestingly
the organ systems both of insulin production
(beta cells) and of physical body movement
(joints) are less developed at birth and thereby
less known by the immune cells, due to the spe-
cial human problem of creating the big brain.
Not until several weeks of age do the beta cells
become glucose-sensitive, and not before one
year are we able to walk.
This review will focus on four issues, which

are all decisive for the development of the dis-
ease. For each of them it holds true that, in the
animal models, T1D will not occur if the specific
factor is neutralized. At the end of this paper, a
list of the events related to the disease is given,
and how these factors interact during the vari-
ous phases of the T1D disease process is
described.

I. THE THYMUS-DEPENDENT IMMUNE

SYSTEM

The modern era in T1D research began in 1965
when Gepts (re)discovered the insulitis process
in pancreatic tissues from T1D patients (3).
Although T cells were found to be present in situ
in the islets, T1D was not accepted as an auto-
immune disease by all researchers. Indeed, T1D
was seen as being the result of a T cell defect,
which failed to destroy a destructive virus. Not
until the discovery of islet cell antibodies (ICA)
(4), was T1D categorized as being autoimmune,
but the mechanisms were still widely unknown.
Studies using passive transfer focused on the

thymus-dependent immune system (5). Even
virus-induced T1D, using EMC-M virus, was

not seen in nude mice but only in thymus-com-
petent normal mice (6–8). Also, if the T cells
were inhibited by cyclophosphamide, EMC
virus did not induce diabetes (9) and, more spe-
cifically, the effect seems to be dependent on
helper T cells (10). Later studies along the same
line showed a beneficial effect on T1D by
immune suppression e.g. using cyclosporine (11,
12) or CD3 antibodies (13). This kind of treat-
ment would not have been possible to institute
if the etiology had involved a toxic virus. Recent
virus studies show persistent presence of virus in
the beta cells (14). Thus, T1D is a T cell-depen-
dent disease, and if T cells are inactivated, T1D
will not develop.
During the natural history of T1D, T cell

activity develops against more and more beta-
cell epitopes, which is often referred to as
antigen spreading. The antigens include insulin,
glutamic acid decarboxylase (GAD), IA2, zinc-
transporter protein, and others, most likely also
some unknowns. The presence of both effector
T cell reactions and autoantibodies can be
detected. The antibodies are highly valued as
prognostic markers. In children, the first to
arrive are typically insulin autoantibodies
(IAA), but in adolescent and adult T1D
patients, GAD Abs are even more frequent. IA2
and zinc-transporter Abs are well correlated
with the progress of the disease. Being positive
for only one autoantibody is quite safe, but hav-
ing two or more Abs, especially in high titers, is
decisive for a T1D development. In an impor-
tant case study, T1D was seen in a patient with
severe B lymphocyte deficiency (15). This stres-
ses that autoantibodies, no matter how well
prognostic they may be, are of no pathogenic
significance. Although, recently B lymphocytes
have been demonstrated to be of some impor-
tance for islet graft rejection, probably as anti-
gen presenting cells (16).
In contrast, effector T cells are for sure patho-

genetic. T cell reactions against the mentioned
beta-cell epitopes can be detected in vitro, and
the results indicate a prognostic prediction;
especially regarding the outcome of islet or
pancreas transplantation, such a prediction is
significant (17). T cell activity is influenced by
regulator T (Treg) cells, which were earlier
called suppressor T cells. Already in 1980, it
was shown that suppression is impaired in
patients with newly diagnosed T1D (18). This
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has been confirmed later, and it has been sug-
gested that the defective regulation in T1D
might be due to resistance of the effector T
cells to respond to the Tregs (19). Thus, normal
development of Treg cells occurs in response to
islet antigens, but the reaction from the effector
T cells is defective (20). The number of periph-
eral Treg cells seems not to be changed. Inter-
estingly, regulator T cells are raised specifically
but act unspecifically in situ at their relevant
placement. This is probably the reason why
regulator T cells directed against different anti-
gens are all active in diminishing the destruc-
tive insulitis process, and why vaccination
studies using different antigens have given
comparable results in delaying C-peptide dete-
rioration.
The mechanisms by which T cells destroy the

beta cells have been studied extensively. Bendt-
zen suggested in 1986 that IL-1b probably
together with IFNc and TNFa induced necrosis
(21). Later also apoptosis was nominated to be
induced by this mechanism. Support for this
theory is coming additionally from studies in
BB rats. On the other hand, in NOD mice it
appears to be quite clear that the beta cells are
hurt by perforin and granzymes (22, 23).
Hormone producing cells might be especially

sensitive to autoimmune diseases due to the fact
that these cells open themselves up during the
secretion of their specific molecules. This holds
true for adrenal cortex, thyroid glands, and beta
cells. That diabetes is the most common disease
– at least in younger age groups – might be asso-
ciated with the protein nature of insulin,
whereas the other glands produce smaller mole-
cules that may be less antigenic. Also, the pitui-
tary gland produces protein hormones but it is
protected behind the blood brain barrier, which
might be the reason for much less autoimmunity
associated with this tissue.
It might well be imagined that not every single

insulin molecule out of several billions produced
is totally correct, and therefore could elicit an
antigenic reaction. It would therefore seem
appropriate that there are anti-inflammatory
mechanisms associated with the beta cells. We
have found that sulfated beta-galactosyl cera-
mide (sulfatide), which is associated with insulin
and which is present at the surface of the beta
cells, acts against inflammation. Sulfatide
decreases cytokine (24) and chemokine (25)

secretion, it reduces the destructive actions of
cytokines on beta cells, and it stimulates regula-
tory NKT cells (26). Furthermore, sulfatide
inhibits diabetes development in NOD mice
(27), and presence of sulfatide in vitro resulted
in greatly reduced proliferation of an insulin-
specific T-cell clone (28). Sulfatide is a glyco-
sphingolipid produced in the beta cells, and its
association with diabetes has been reviewed in
2005 (29).
Vitamin D can modify the immune response,

and the relative lack of this vitamin in northern
countries fits well with the north-south gradient
of T1D incidence. Furthermore, vitamin D has
been shown to have a protective effect on IL-1
damage of beta cells (30). Also, inhibition of in-
sulitis and diabetes in NOD mice has been dem-
onstrated (31, 32). On the other hand, in
humans the level of vitamin D in plasma is not
associated with development of beta-cell autoim-
munity (Norris JM, personal communication).

Suggestions for treatment

Trials are running in order to suppress the T
cell-dependent immune system, either unspecifi-
cally or by suppressing specific reactions against
certain beta-cell epitopes. The former includes
treatment with anti-CD3 Ab (33) and among the
latter are antigen tolerization against GAD (34)
or insulin, either given orally (35) or as a proin-
sulin vector injected intramuscularly (36). The
mechanism of action seems to be expansion of
regulator T cells, which then act upon the insuli-
tis process (37). The effects of the various trials
are comparable; none of them stop beta-cell
destruction as measured by C-peptide concentra-
tion, but the disease process is delayed by one to
three years. Among the new compounds, sulfa-
tide might be considered for trials in as much as
it has other desirable effects that might help in
prevention of T1D (29), see below.
The theoretical risk of the unspecific depres-

sion of the immune system, as small as it might
be, is an increased incidence of cancer. This is
well known in organ transplantation (e.g. heart
or kidney) using relatively high dosage of immu-
notherapy. Whether it actually plays a role in
T1D immunomodulation is too early to judge.
For the specific epitope vaccination, the risk is
always that aggressive T cells are stimulated to a
higher degree than regulator T cells, with the
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consequence that the disease process is acceler-
ated instead of being delayed.

II. THE ACTIVITY OF THE BETA CELLS

The importance of the activity of the beta cells
has been suggested in 1985 (38) and reviewed
in 1991 (39). Growing evidence suggests that
the functional state of the beta cell plays a role
in the pathogenesis of T1D. Increased inci-
dence of diabetes has been described after
increased insulin production and vice versa,
and actual hyperinsulinemia has been observed
in relation to the diabetogenesis. First-degree
relatives with increased risk of T1D have been
shown to display higher blood insulin concen-
trations (40). Furthermore, in the period before
clinical diabetes is diagnosed, patients might
have eaten food with a high glycemic index
(41). In the last trimester of pregnancy, the
beta cells are stressed by a highly increased
insulin demand, partly due to an increased
amount of counteracting hormones. During
this trimester, development of true T1D is 3.8
times more frequent than in non-pregnant
women (42). In the progression from being
autoantibody-positive to having overt T1D,
insulin resistance seems to be a risk factor (43,
44). This fits well with the finding that in BB
rat litters, it is the heaviest rat that develops
T1D first (45). This might have inspired to the
accelerator hypothesis formulated by Wilkin
(46), which says that increased weight gain in
youngsters might accelerate a T1D develop-
ment. The question can be raised as to what is
most important: a high degree of stress or lack
of rest? In a study using BB rats, food intake
only every other or third day resulted in nearly
the same weight gain but in less diabetes devel-
opment. The beta-cell stress on the eating day
seems to be of less significance than the beta-
cell rest on the other days (47). In humans,
metabolic improvements including increased
plasma adiponectin have correspondingly been
shown (48).
The size of the beta cell mass and the number

of islets are known to vary considerably in
rodents (49), which is probably also the case in
humans, as reflected by the noticeable variation
in normal values of C-peptide concentrations.
This may be genetically determined, but

influence from other factors cannot be ruled
out, such as length of pregnancy for which
shorter length predisposes slightly to T1D (50,
51), and birth by caesarean section which
increases the T1D risk by 23% (52). It is an
attractive idea, but unknown whether low islet
mass, which might be more stressful for the indi-
vidual beta cell, predisposes to T1D.
Pharmacologically, efforts have been made to

induce beta-cell rest both in animal models and
in human (pre)T1D. As is the case for other
endocrine cells, the hormone production is
decreased when the hormone in question is
administered. Injections of insulin accordingly
induce some degree of beta-cell rest, and the
treatment regime in order to do so is termed pro-
phylactic insulin treatment (53). This substan-
tially reduces the incidence of T1D in BB rats
(53). The finding has been repeated by several
groups, and in an open pilot study human
preT1D patients also benefitted from prophy-
lactic insulin treatment by showing delayed dis-
ease progression (54). However, this could not
be confirmed in the large, prospective Diabetes
Prevention Program Trial (DPPT) where the
treatment had no effect (55). Because of the fear
of hypoglycemic events, the dose of insulin used
was as low as 0.1 U ⁄kg body weight (55). By
comparison, the original study in BB rats used
15 U insulin ⁄kg body weight (53). Actually, the
very low human dose was later found not to
work, either in BB rats or in NOD mice (56).
The human dose used might give an immuno-
logical effect, which then was not enough for
T1D prevention. Unfortunately, no pilot trial of
dose-response was performed before the DPPT
was started, and the dose was chosen according
to the wish to avoid insulin shocks (which were
not seen) and according to the availability of
sponsored insulin.
Another way of inducing beta-cell rest is to

activate the beta-cell potassium channels. This
will then close the calcium channels, and no
insulin secretion will occur. Indeed, such a
treatment with diazoxide reduced development
of T1D in BB rats (57). Also, in human T1D
patients diazoxide treatment showed an effect
in form of higher insulin secretion after one
year compared to placebo-treated patients
(58). Diazoxide given to children with T1D
prolonged their remission period (59). Since
diazoxide has undesirable side effects, the
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pharmaceutical industry has attempted to
develop other drugs in order to obtain the
same activation of potassium channels. Such a
drug known as NN 414 showed a good effect
against T1D in BB rats (60), but unfortunately
the compound was later withdrawn due to its
side effects on liver enzymes. Interestingly, nat-
ure itself has a potassium channel activator
secreted by the beta cells together with insulin
(61). This is sulfatide, which opens the K+

channels, and by this induces beta-cell rest for
the individual beta cell (62, 63). Then, the next
beta cell can take over and the first one can
rebuild insulin granules close to the cell mem-
brane, which are necessary for the immediate
first-phase insulin response. Whether sulfatide
due to this property is a candidate as a phar-
macological compound is unresolved at the
moment.
As mechanisms for the outcome of beta-cell

rest, at least three possibilities have been sug-
gested.
First, increased antigen expression (including

both gangliosides and proteins) in beta cells
with high activity (64) could facilitate destruc-
tion caused by the immune system. Thus, lower
levels of specific antigens are expressed at the
surface of a passive cell, which have been dem-
onstrated for several antigens (65–67). Given
the T cell dependent nature of T1D, this is prob-
ably of great importance. Autoimmunity is
breakdown of self-tolerance, which should be
established during fetal and neonatal life. An
adult phenotype of beta cells is not achieved
before weeks after birth, unless the baby is born
to a diabetic mother or – in animal models –
unless the beta cells have been stimulated to
secrete insulin by e.g. arginine (68, 69). In both
cases the beta cells are phenotypic adult instead
of being the usual fetal type, and the risk of later
development of T1D is reduced (68–70). This
emphasizes the need for a good antigenic self
response in a given tissue at the neonatal stage
in order to avoid later breakdown of tolerance.
Furthermore, a different immune response
against adult compared to fetal beta cells has
been shown (71). The principle of neonatal stim-
ulation in order to diminish later autoimmunity
has been extended successfully to the thyroid
gland (72). It should be mentioned that to
explain the lower risk of T1D in children born
of diabetic mothers, compared to offspring of

diabetic fathers (70), a beneficial effect of trans-
mission of maternal islet antibodies has also
been suggested (73).
Second, increased susceptibility to the toxicity

of cytokines (74) or mononuclear spleen cells
from diabetic BB rats or NOD mice (75) has
been shown for active as compared to passive
beta cells. In line with this is the finding that the
NN 414 potassium activator protects against
cytokine-induced apoptosis of beta cells in vitro
(76).
Third, several genes have been described to

change expression as a function of beta-cell
activity (77–79); this might well influence beta-
cell resistance.

Suggestions for treatment

One way to induce rest of a hormone-producing
cell is to provide the body with the same hor-
mone externally. For beta cells, this can be per-
formed by prophylactic insulin treatment using
metabolic doses. Hopefully, a serious trial with
a serious insulin dosage will not be too far
away.
Beta-cell rest can also be induced by treatment

with potassium channel activators. As men-
tioned, this has been tried with diazoxide and
the commercial derivative NN 414. Although
there were perfect results in animal studies, and
even some success in humans, treatment with
these compounds has been stopped due to phar-
macological side effects. Treatment with sulfa-
tide might be a new possibility.
A third method for induction of beta-cell rest

could be diet with low glycemic index combined
with exercise. This kind of treatment, known
partly from the days before the insulin era, is
not realistic to be implemented on a large scale.
The risk with treatment for beta-cell rest

might be some degree of atrophy of the islet-cell
volume and induction of hypoglycemia. The
fear of the latter might be eliminated by good
education of the patients.

III. THE INNATE IMMUNE SYSTEM

In humans and other higher organisms, bacte-
ria are, if necessary, attacked by granulocytes,
macrophages, and NK(T) cells, which define
the innate immune system (80). The main
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targets of this system are non-species or non-
mammalian molecules, among which advanced
glycosphingolipids are important. In contrast,
the T cells from the thymus-dependent immune
system are also directed against intraspecies
molecules that are foreign to the individual and
which include cancer epitopes, the appearance
of which is a large problem in species with long
lifetimes. The side effect of this non-self guard-
ian is that, occasionally, T cells show aggres-
sion toward self-tissue, and thereby potentially
create an autoimmune disease. However, it
seems that the more cells of the immune system
other than T cells are demanded, the less likely
is the risk of autoimmunity. It might be benefi-
cial to have a certain amount of recurrent
infections in which T cells are involved and
occupied i.e. by antibody production. Thus,
children attending pre-school day care, a proxy
measure of total exposure to infectious diseases
in early childhood, were found to have a lower
incidence of T1D, with a pooled odds ratio of
0.59 (81, 82).
In autoimmune diseases the hygiene hypothe-

sis has been established (83). First formulated
by Strachan in 1989, it stated that autoimmuni-
ty is more common in clean surroundings and
less frequent when the organism is well stimu-
lated by microbes. The mechanism for this
seems to be involvement of the innate immune
system. The reaction against glycolipids, mainly
but not exclusively those produced by microbes,
is performed by this innate immune system. The
glycolipids are taken up by dendritic cells and
presented to NKT cells. These are divided into
invariant NKT (iNKT) or type 1 NKT cells and
non-iNKT or type 2 NKT cells. The former type
are defined by their reaction to a-galactosyl
ceramide (a-GalCer) whereas the non-iNKT
cells react with other glycolipids including the
mammalian b forms such as sulfated galactosyl
ceramide (sulfatide) (84).
Glycosphingolipid molecules cannot be pre-

sented by the MHC complex, which only binds
peptides, but presentation is achieved through
the MHC-like CD1 molecules (85). The CD1
molecule contains a groove with two large
hydrophobic pockets that are able to anchor the
lipid tails of a glycosphingolipid (86). The
human dendritic cells can express five kinds of
CD1 molecules. These are divided into two
groups: group 1 includes CD1a, b, c, and e, and

group 2 is comprised of CD1d, which is the only
one that mouse cells express.
Treatment of mice with sulfatide prevents

antigen-induced experimental autoimmune
encephalomyelitis, which is an animal model of
human multiple sclerosis (26). Sulfatide had no
effect in CD1d-deficient mice, indicating that
the protective effect of sulfatide involved bind-
ing to CD1 (26). Actually, the structural basis of
the CD1 presentation of sulfatide is well known,
with two pockets for the fat tails of the glyco-
lipid (87, 88). The most investigated CD1 ligand
is a-GalCer, which is isolated from marine
sponges. Both SJL and NODmice, animal mod-
els of autoimmune diseases, have defects in
NKT cell development and ⁄or function (89, 90),
and in humans with autoimmune diseases NKT
cell numbers are reduced (91). a-GalCer-specific
activation of iNKT cells protects against diabe-
tes in NOD mice (92–94), and such protection
has also been shown by CD1d restricted type 2
NKT cells in transgenic mice (95). This might as
well be the mechanism for the sulfatide preven-
tion of T1D in NOD mice (27). Overexpression
of NKT cells protects transgenic NOD mice
from diabetes (96), whereas a shortage of NKT
cells in CD1d knock-out mice leads to exacerba-
tion of type 1 diabetes (97). Finally, upregula-
tion of CD1d expression within the beta cells
restores the immunoregulatory function of
NKT cells and prevents diabetes in NOD mice
(98). It has been demonstrated that NKT cells
inhibit the onset of diabetes by impairing the
development of pathogenic T cells specific for
pancreatic beta cells (99). This inhibition of T
cell differentiation into effectors by NKT cells
seems to require cell contacts (100). Even for
inhibiting secondary enchephalomyocarditis
(EMC) virus infection CD1d molecules are
important (101). The mechanisms for this
include activation of NKT cells and better pro-
duction of interferon-alpha (101).

Suggestions for treatment

The implications according to the hygiene the-
ory are to avoid too clean surroundings in order
to minimize the incidence of T1D (102). Also,
not to treat aggressively cases of parasites (inno-
cent pinworms etc) in children since these may
lower the risk of developing T1D (103). Treat-
ment with probiotics has been suggested, but no
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final human results exist so far (104). Allergen
induction of a minor eczema, which seems to
facilitate proliferation of NKT cells, reduces
diabetes incidence in NOD mice, which is likely
to reflect the decreased risk of T1D in humans
with allergic dermatitis (105). Treatment with a-
GalCer might be considered, but caution
regarding the effect on other organ systems may
be the reason for the lack of human trials. Sul-
fatide is a compound to consider for future
investigations (27).
The risk of treatment influencing NKT cells is

to disturb the delicate balance between type 1
and type 2 NKT cells (84) although this area for
tumor immunology seems not to be finally
established (106).

IV. THE IMPORTANCE OF THE

INTESTINE AND GLIADIN INTAKE

In 1993 we discovered that hydrolyzed diet pro-
tects against T1D in NOD mice (107). It was
new and not generally accepted that changes in
the diet could influence the incidence of diabe-
tes. Six years later, the study was extended more
specifically to gluten-free diet, which lowered
the T1D incidence from 64% in the chow-fed
control NOD mice to 15% in the experimental
mice (108). In a more recent study in which the
gluten-free diet-treated animals had never expe-
rienced gliadin, not even in fetal or neonatal life,
the decline in incidence of T1D was from 61%
to just 6% (109). Such a dramatic decrease is
hardly seen otherwise and would demand more
or less toxic procedures (e.g. ablation of T cells)
that are not realistic for human use. Later, the
same preventive results using gluten-free diet
were obtained in BB rats (110) and by other
groups also in NOD mice (111, 112). In humans,
a time window was described for the optimal
introduction of wheat in postnatal life (113,
114); this should be between the age of four and
six months, otherwise the risk of beta-cell au-
toimmunity increased up to 4 times. Interest-
ingly, in principle the same has been found for
BB rats (115).
Gluten is composed of glutenin and gliadin. It

is strongly hydrophobic, which is a desirable
property for keeping white bread together.
Mankind has known gluten for only 10,000
years, when we began our agricultural way of

life in Mesopotamia. Since then wheat has been
further refined and has been used more and
more. Different sorts of wheat exist, and breads
are different in structure when comparing
Southern Europe to Scandinavia, where the
composition is relatively compact. The degree
of hydrophobicity may also vary, but in any
case it is difficult to dissolve gluten in the intes-
tine, which is necessary for the enzymes to oper-
ate and to break down the molecules. The result
is that parts of undigested gliadin molecules irri-
tate the intestinal mucosa, inducing unspecific,
subclinical inflammation. Compared to conven-
tional food, a gluten-free diet increases the
amount of regulator T cells in Peyer’s patches in
the intestine (116).
Some people have special problems with glia-

din and develop gluten intolerance in the form
of celiac disease. Up to 10% of patients with
T1D also have celiac disorder and, interestingly,
the two diseases are by far most commonly seen
together if diabetes is the first one to appear,
and seldom if celiac disease develops first and a
protective gluten-free diet is implemented (117).
The symptoms of celiac disease are abdominal
pain and diarrhea, which disappear when the
patient stops the intake of gluten. If not, the
patient will display enteropathy with atrophic
villi and infiltration of immune cells in the intes-
tine. The celiac patients display antibodies
against tissue transglutaminase (tTG) even
before clinical symptoms develop. They often
share risk HLA tissue types (HLA-DR3) with
T1D patients, but this is not the entire explana-
tion for the co-morbidity.
NOD mice fed on a gluten diet also display

intestinal enteropathy (112) and also have tissue
transglutaminase (tTG) antibodies (118). BB
rats have impaired intestinal function (119)
and increased intestinal permeability (120). This
is known in pre-T1D humans as well (121).
Gliadin increases zonulin expression, and
thereby gut permeability (122). Also enterovirus
increase the intestinal permeability (123). The
consequence of this may be higher uptake of
bacteria toxins like LPS, and that molecules of
partly digested gliadin pass the intestinal bar-
rier. Indeed, non-degraded gliadin has been
demonstrated in breast milk from healthy moth-
ers (124). The transport must be mediated
through the blood, which means that also other
organs with a relatively heavy blood flow such
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as the islets of Langerhans could in principle
experience gliadin and perhaps even gliadin
deposits.
If there are gliadin deposits in the islets,

brought by the bloodstream, this might be of
special interest since diabetogenic T cells are
primed both in pancreatic and gut-associated
lymph nodes in NODmice (125). In this connec-
tion, it is worth noting that in BB rats, before in-
sulitis is established, the mesenteric lymph
nodes of wheat-fed rats contain an unusually
high proportion of Th1 cells that proliferate spe-
cifically in response to wheat protein antigens
(126). If the gliadin is present in the islets, these
T cells directed against wheat might give rise to
the first tiny insulitis process. As intranasal
administration of gliadin downregulates the
immune response to wheat gliadin, as shown in
DQ8 transgenic mice (127), we suggest treat-
ment using nasal gliadin to stop insulitis and
thereby diabetes.
It might be presumed that when gluten-free

diet protects against diabetes, excess of gluten
intake would accelerate development of diabe-
tes. This is not the case; in contrast, it inhibits
T1D as well (109, 128). The reason for this para-
dox is unknown, but the effect might be specu-
lated to be due to an LPS-like stimulation of
Toll-like receptor (TLR) 4, which is known to
inhibit diabetes.
Regarding human studies, 6 months of gluten

deprivation do not influence humoral autoim-
munity, but may have a beneficial effect on pres-
ervation of beta-cell function in subjects at risk
for T1D (129). Also, a study lasting 12 months
in young non-diabetic children who were first-
degree relatives of T1D patients showed no
effect on diabetes incidence 5 years later (130).
This is in good agreement with our experience
using NOD mice, that shorter term gluten-free
treatment has no effect on later diabetes inci-
dence when the animals are again fed a gliadin-
containing diet (Funda DP et al., unpublished).
A time period with gluten-free intake does not
pay off later in life; the diet works only when it
is instituted.
Gluten is known to influence the composition

of the bacterial gut flora (131). The flora can
also be manipulated by probiotic administra-
tion, which can prevent spontaneous autoim-
mune diabetes in NOD mice (132).
Furthermore, antibiotic treatment changes the

intestinal distribution of bacteria, and in the
first study on this regarding T1D, using fusidic
acid we could indeed reduce the incidence of
diabetes in BB rats (133, 134). This has later
been confirmed with other antibiotics as well
(135). Treatment with antibiotics may diminish
the amount of bacteria and thereby the concen-
tration of endotoxins. This may increase insulin
sensitivity. We actually found lower blood glu-
cose levels in non-diabetic rats that were given
fusidic acid (136). The presence of certain bacte-
ria is likely to be influenced by antibodies to spe-
cial blood groups, as these Abs may be directed
against mutual glycosylated epitopes; this might
be the explanation for the reduced frequency of
T1D in Lewis a-b- individuals (137). The bacte-
rial colonization after birth is important for the
expression of MHC class II molecules; the
sooner this takes place, the better the definition
of self. Delayed colonization has been suggested
to be the reason for the 23% increased risk of
T1D after birth by cesarean section compared
to vaginal delivery (138).

Suggestions for treatment

The effects of a gluten-free diet include less
inflammation in the intestine, more regulator T
cells in Peyer’s patches, changed bacterial com-
position, a less permeable intestinal barrier, and
possibly less gliadin molecules in the blood; all
in favour of inhibiting T1D development. A glu-
ten-free diet is not easy to implement, however,
and as mentioned, short-term gluten-free intake
has no effect. For this reason, more specific
treatments have been suggested. These include
injections with zonulin receptor mAb (139, 140),
which should reduce gut permeability. Also,
treatment with probiotics or antibiotics might
be considered, but none of these suggestions
seem close to being tested in human trials.

OTHER FACTORS RELATED TO

DEVELOPMENT OF T1D THAT ARE

DIFFICULT TOMANIPULATE

Genetics

The genetics of T1D is not the scope of this
review, but it should be stressed that to a certain
degree, the risk of developing T1D is influenced
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by genetic factors. In a Finnish study, the pro-
bandwise concordance was 42.9% for monozy-
gotic and 7.4% for dizygotic twins (2). About
twenty chromosomal regions are known to carry
risk genes, and among these is by far the stron-
gest the HLA region with a predicted odds ratio
of 6.8 (141). Interestingly, these genes mirror the
reaction to foreign antigens. The gene for insulin
(INS) displays the second highest odds ratio of
2.3, then comes the immune-related lymphoid
protein tyrosine phosphatase (LYP) with 2.0 and
IL2 receptor alpha (IL2RA) with 1.5, whereas all
other genetic risk regions have odds ratios of less
than 1.25 (141). As the incidence of T1D has
increased over the last decades, the frequencies of
high-risk HLA types have declined, or in other
words, the high-risk genes have been diluted
among T1D patients (142).
As it is now, the DNA code for each individ-

ual is given and cannot be manipulated. The
specific sequence is interesting to know only for
evaluation of the risk of developing the disease.
However, for the individual person the risk is
seldom high enough to justify specific precau-
tions, as described earlier in this review. For this
purpose presence of autoantibodies is much
stronger. This might be changed due to the
growing area of epigenetics.

Circumstances in fetal life

Many diseases are influenced by the fetal and
perinatal life. In T1D, two studies have found a
slightly shorter length of pregnancy in mothers
of boys who later develop the disease (143, 144).
Also, higher age of the mother (143) and higher
birth weight predispose for T1D with an
increased risk of 6–10% (145). For individuals
who are born by cesarean section, the risk of
acquiring T1D later in life is increased by 23%
(146), which is actually more than the predispo-
sition of most genes. It is unknown whether the
mentioned risk factors are associated with dif-
ferences in beta-cell volume. This varies with a
magnitude of two to three among commonly
used mouse strains, and may relate to different
diabetes susceptibilities (49, 147).

Virus in beta cells

Several studies indicate that enterovirus is fre-
quently present in newly diagnosed T1D

patients (14, 148–151). Dotta et al. has found
that 3 of 6 T1D patients, but none of 26 con-
trols, had evidence of Coxsackie B4 virus in
their beta cells (14). If these kinds of slow virus
are not destroyed by the innate immune system,
including NK cells, interferon a (IFNa), or
induction of apoptosis of the cells involved, then
through class I presentation the virus will con-
tinue to stimulate the acquired immune system,
which will finally attack the beta cells involved.
Even though beta cells compared to alpha cells
may have an especially strong response of 2¢,5¢A
synthetase, the products of which, 2¢,5¢-oligoad-
enine nucleotides, activate mRNA degrading
enzymes (152), the virus might not be eliminated
and the mentioned events may take place.
If it turns out that only a few virus strains are

responsible for infection of beta cells, vaccina-
tions against these might be a possibility. Other-
wise, strategies in order to avoid enterovirus
infections seem to be unrealistic.

ETIOLOGIES AND PATTERN OF

PROGRESSION TO TYPE 1 DIABETES

A good deal is known about the pathogenesis of
T1D, but no firm knowledge exists about the
etiology of the disease. As disorders are initiated
by something, such ‘‘something’’ will now be
suggested and events will be speculated.
Traditionally, enterovirus has been suggested

as the etiological factor. Indeed, virus exist that
can induce diabetes in mice dependent on the
immune system (8) as demanded by the current
pathogenetic understanding as mentioned
above. Several different virus can induce T1D in
animal models, but in humans especially the
Coxsackie virus have been considered. T1D
does develop more frequently in the autumn
when enterovirus are common, and the recent
findings of somewhat silent enterovirus in the
islets of newly diagnosed T1D patients (14) are
highly interesting etiologically.
Also, beta-cell toxins have been considered

etiologically. In mice, streptozotocin can induce
T1D, even in low multiple doses (153) which
works via an immunological mechanism (154).
However, for the vast majority of T1D patients
no direct beta-cell toxic compound has been
identified. An apparently non-toxic compound
has to be considered instead.
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Gliadin has, as mentioned in point IV, an
important impact on T1D development, and to
the best of our knowledge this is not the case for
any other external compound. Therefore, glia-
din is hereby suggested as an etiological agent
for T1D, not in the sense like an infectious agent
to be the direct cause of a certain disease, but
rather as a starter of a long, complicated process
leading to T1D.

The following scenario can be hypothesized

Virus inside a beta cell cannot be destroyed by
immune cells, but it can disappear due to inter-
feron and 2¢,5¢A synthetase dependent RNAse
activity or due to apoptosis of the host cell.
Being in the blood, virus can be neutralized by
antibodies. Thus, for elimination of a virus,
apoptosis is a beneficial process. Of course, beta
cells are lost, but the huge (re)generation capac-
ity can just create some new ones. This is seen
during pregnancy (155), and as long as the beta
cells are not attacked by the immune system or
are toxically influenced by high glucose or high
fat concentration or insulin resistance, new beta
cells are generated. In support of the benefit
from apoptosis in T1D development is the fact
that the best remission period is seen in T1D
patients with a high level of IL-6 (156) and ⁄or a
low level of adiponectin (157). In contrast, both
low concentrations of IL-6 and high amounts of
adiponectin inhibit apoptosis and are desirable
in T2D. Furthermore, the vitamin D level does
not influence the development of T1D (Norris
JM, personal communication) whereas high
concentrations protect against T2D. Vitamin D
and its analogs have been shown to inhibit
apoptosis in beta cells after cytokine exposure
(30). In as much as apoptosis might be valuable
in T1D, this is most likely not the case in a
degenerative disease like T2D (158). Further-
more, it should be stressed that these consider-
ations cannot be paralled to the commonly used
T1D animal models, which do not have a viral
etiology. Patients developing T1D have
increased intestinal permeability (121), which
likely leads to a higher level of LPS in the blood;
due to a TLR4 mechanism, this will inhibit
apoptosis (159) being unbeneficial for a virus-
containing beta cell.
Simultaneous with the intracellular virus

deposits, gliadin is eaten but not fully digested

and some molecular parts are penetrating to
the bloodstream. Among other organs (includ-
ing the lactating breast (124)), gliadin is likely
brought to the highly vascularized islets and
might to a minor degree adhere to them. The
uptake from the intestine might be caused by a
zonulin-induced increased permeability in dia-
betes susceptible individuals (140) and ⁄or
might be due to infection with any enterovirus,
which causes a more leaky intestinal barrier
(123). In the islets, dendritic cells are activated
by the gliadin molecules, which are presented
to T cells in the regional lymph nodes. These
also drain the intestine (125), and experienced
T cells directed against gliadin might fuel the
process and start an insulitis reaction. From
the islets’ point of view this insulitis is unspe-
cific, but it might also draw attention to the
possible present enterovirus, and a more seri-
ous insulitis inflammation in the islets will take
place. If this is repeated and is lasting for some
time, activated monocytes (160) may be tasting
not only gliadin but also necrotic beta cells
infected with virus. Then a class II process
against the virus will be displayed. Due to
immunological exposure after perforin ⁄gran-
zyme attacks, this might give rise to immune
reactions against specific, important beta-cell
antigens such as insulin, GAD, zinc transporter
etc. So if not by apoptosis, human beta cells
are destroyed by a necrotic process, which
facilitates antigen spreading. This might be
helped along by high beta-cell activity (fever,
intake of refined carbohydrates), by a reactive
thymus-dependent immune system with sup-
pressed regulator function, and by relatively
few NKT cells.
The class II immunity might be the key

event. Administration of silica, which inacti-
vates macrophages, prevents T1D in BB rats
(161). Actually, in NOD mice CD4 cells are
necessary for T1D development even more
than CD8 cells (162, 163). Injection of mole-
cules from the relevant tissue together with
Freund’s adjuvant in order to raise a class II
immune reaction can induce autoimmune dis-
eases. By such a procedure, e.g. experimental
allergic encephalitis (EAE) can be introduced
in animals, but T1D cannot. This might be due
to strong regulator T cell reactivity against
insulin and other beta-cell antigens. But as
hypothesized, gliadin might provoke a class II
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immune reaction in situ of the islets, and this
might also be the case for hidden virus after
necrosis of beta cells, as described.
For the virus part, an analog to herpes zoster

may be speculated. Here, the etiology is a slow
virus, concealed in a sensory ganglion. This
virus can be activated, often in association with
a suppression of the immune system e.g. due to
pregnancy or leukemia. A lower antibody titer
might facilitate presentation of the virus parti-
cles to the CD4 effector T cells and a cellular
inflammation will take place. Interestingly,
T1D patients have lower antibody titers against
Coxsackie virus than healthy controls (164,
165). During this possible class II immunity
against virus, interferon a will be activated.
This is actually found to be expressed in pan-
creases of T1D patients (166), and it is known
to induce T1D in transgenic mice (167).
Through IFNa’s activation of the especially
strong response of the 2¢,5¢A synthetase system
in the beta cells, these and not the alpha cells
are hurt by the mRNA degrading enzymes,
which may explain the beta-cell specificity of
T1D (152). Furthermore, T cells in the insulitis
process might call for NK cells. When present
in situ, these cells attack the beta cells due to
their ligand to NKp46, which is not present on
alpha and delta islets cells (168). In a cell-to-cell
contact, the NK cells degranulate into the beta
cells (168).
At this stage, various amounts of beta-cell

antibodies are present (169), but the process
may still be reversible. However, after repeated
similar attacks more and more effector T cells
are raised and more and more beta cells are
destroyed (170), and a point of no return is
passed. The insulitis process perpetuates by
itself and clinical diabetes will occur. At the time
of diagnosis of T1D, no treatment is known to
be able to cure the disease since the T cell
immune reaction is heavy and irreversible.

FINAL REMARKS

T1D is a complicated disease that is difficult to
understand; the question of what causes T1D is
still not fully answered, but much is known.
Our present knowledge would not have been
obtained without the use of animal models.
The lessons are that T1D will not develop

unless the four numbered pathogenetic factors
(related to: T cells, beta-cell activity, NKT
cells, and the intestine) act in concert to some
degree, and that if any of the four factors are
neutralized, inhibited, or acted against, T1D
will not occur.
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DANSK RESUMÉ

Afhandlingen omhandler den viden dyremodel-
ler har skabt omkring årsagerne til Type 1 dia-
betes (T1D). Uden eksistensen og brug af
dyremodeller ville den nuværende forståelse af
sygdommen være på et væsentligt lavere niveau,
og behandlingsforsøg og –tilbud være betydelig
mindre udviklede. Forekomst af T1D er til dels
bestemt af genetiske faktorer, men med en tvil-
lingekonkordans på 30–40% er miljøfaktorer af
stor betydning.
Vedrørende patogenesen til T1D er fire områ-

der specielt vigtige: 1) Det thymus-afhængige
immunapparat: T1D er en T celle drevet
sygdom og beta-cellerne ødelægges gennem en
lokal betændelse, kaldet insulitis. Der er tale om
en autoimmun proces med brud på selvtole-
rance, hvor regulator T celler søger at standse
de aggressive effektor T celler. Hæmning af T
celler (fx med anti-CD3 antistoffer eller med cy-
closporin) vil bremse T1D processen selv hvis
den er initieret af virus. Den teoretiske risiko
ved immunmodulerende behandling er en højere
frekvens af malignitet. 2) Aktiviteten af beta-
celler: Hvilende beta-celler udviser i mindre grad
antigenicitet end aktive og er mindre følsomme
for immundestruktion. Beta-celle hvile kan
opnås ved at indgive insulin, så behovet for
egenproduktion mindskes, eller ved behandling
med kalium-kanal aktivatorer. Begge procedu-
rer forebygger T1D i dyremodeller, mens der
ikke findes gode humane undersøgelser til dels
på grund af frygt for hypoglykæmi. 3) NKT
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celler: I henhold til hygiejne teorien vil stimula-
tion af NKT celler med ikke-patogene mikrober
give anledning til mindre T celle reaktion og
dermed mindre autoimmunitet. Væsentlig for
denne stimulation er glycolipider præsenteret af
CD1 molekyler. 4) Betydningen af gluten indtag
og tarmforhold iøvrigt: Gluten-fri diæt forebyg-
ger dramatisk T1D i dyremodeller, og epidemio-
logiske data støtter en effekt hos mennesker.
Mekanismerne inkluderer mindre subklinisk
betændelse og permeabilitet i tarmen, samt en
ændret tarmflora der også kan opnås ved indtag

af probiotika. Gluten-fri diæt er vanskelig at im-
plementere og korttidsbehandling har ingen ef-
fekt.
Vedrørende selve starten af T1D processen

spekuleres enterovirus og gliadinaflejringer at
have ætiologisk betydning i genetisk følsomme
individer, hvorefter de fire nævnte patogenetiske
faktorer i en grad af forening er aktive i T1D
sygdomsudviklingen. Læren fra dyremodelstu-
dier er at neutralisation af en hvilken som helst
af de fire patogenetiske faktorer kan stoppe
T1D sygdomsprocessen.
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