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ABSTRACT The development of quantitative imaging biomarkers in medicine requires automatic delin-
eation of relevant anatomical structures using available imaging data. However, this task is complicated in
clinical medicine due to the variation in scanning parameters and protocols, even within a single medical
center. Existing literature on automatic image segmentation using MR data is based on the analysis of
highly homogenous images obtained using a fixed set of pulse sequence parameters (TR/TE). Unfortunately,
algorithms that operate on fixed scanning parameters do not avail themselves to real-world daily clinical
use due to the existing variation in scanning parameters and protocols. Thus, it is necessary to develop
algorithmic techniques that can address the challenge of MR image segmentation using real clinical data.
Toward this goal, we developed a multi-parametric ensemble learning technique to automatically detect and
segment lumbar vertebral bodies using MR images of the spine. We use spine imaging data to illustrate
our techniques since low back pain is an extremely common condition and a typical spine clinic evaluates
patients that have been referred with a wide range of scanning parameters. This method was designed with
special emphasis on robustness so that it can performwell despite the inherent variation in scanning protocols.
Specifically, we show how a single multi-parameter ensemble model trained with manually labeled T2 scans
can autonomously segment vertebral bodies on scans with echo times varying between 24 and 147 ms and
relaxation times varying between 1500 and 7810 ms. Furthermore, even though the model was trained using
T2-MR imaging data, it can accurately segment vertebral bodies on T1-MR and CT, further demonstrating the
robustness and versatility of our methodology. We believe that robust segmentation techniques, such as the
one presented here, are necessary for translating computer assisted diagnosis into everyday clinical practice.

INDEX TERMS Super pixels, ensemble learning, lumbar spine segmentation, robust segmentation.

I. INTRODUCTION
The ability to autonomously segment relevant anatomical
structures could substantially augment and improve medical
diagnosis. This improvement will be realized through quan-
titative analysis of pathological changes, versus the current
qualitative interpretation, as well as through automated detec-
tion of subtle anatomical changes/defects. Yet achieving this
vision without lengthening the clinical workflow requires
automatic delineation of anatomical structures on medical
images (medical image segmentation). While a large body
of literature has been dedicated to medical image segmen-
tation, the development of medical image segmentation tech-
niques that are robust to variation in scanning protocol and
presence of pathology presents a substantial challenge to

existing algorithms. Furthermore, we believe it is an area of
research that is not sufficiently addressed in the current litera-
ture. This is especially true of spineMR imaging, wherein it is
an especially pressing clinical problem due to the high preva-
lence of low back pain in the global population and a lack of
clear understanding of its etiology. This lack of understanding
can be partly ascribed to a lack of quantitative anatomi-
cal measures when evaluating patients with low back pain.
Availability of image-based biomarkers can address this chal-
lenge. Since the majority of current diagnostic paradigms for
low back pain inevitably rely on magnetic resonance imag-
ing (MRI), this is an important clinical need for MRI based
biomarker development.While gross pathological defects can
be easily noted visually, subtle degenerative changes in a
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given patient’s anatomy are far more difficult to assess in
routine radiologic screening. Furthermore, current diagnostic
technologies do not offer a reliable methodology to quantify
an anatomic aberration/pathology or provide a means for
quantitative comparison with a healthy control. Manual or
semi-automated delineation of vertebral bodies and related
structures is not practical in a clinical environment due to time
constraints, which renders quantitative assessment based on
current technology infeasible. Thus, there is a need to develop
fully automated techniques for delineating spinal vertebrae,
as well as other anatomical structures, on MR images.

A large proportion of efforts addressing this need have
centered around the use of CT data, while the use of MR has
been relatively limited. Often, existing methodologies using
MR utilize a single dataset acquired in a research setting with
a single set of parameters.Wewill review some of the existing
literature and elucidate key differentiators. Most literature on
segmentation of lumbar vertebral body segmentation focuses
on the use of CT images. This is perhaps understandable
given the relative contrast of vertebral bodies (bone) on CT
and the fact that CT is the defacto modality in trauma and
analysis/detection of fractures. Notable work in segmentation
of spinal CT includes [3], [12], [17], and [29]. However, CT
imaging is of limited utility in the evaluation of patients with
low back pain and radiculopathy due to the poor resolution of
soft tissue structures (e.g. disks, ligaments). As such, delin-
eation of vertebral bodies serves as a primary step for the
segmentation of associated spinal structures. Thus, vertebral
body segmentation is the focus of the current work.

A review of the literature reveals that the large majority
of vertebral segmentation methods using MR have focused
on semi-automatic segmentation, wherein a clinician supplies
seed points defining regions inside and outside the vertebral
body. These include graph cut based methods [3], [9], [20],
methods based on watershed segmentation [4], [5], [30], and
methods based on level sets [17]. Fully automatic local-
ization of vertebral discs on MR has been addressed rela-
tively sparsely. Notable works include the use of Adaboost
in combination with a localized model in [29] and the disc
localization work presented in [2] and [7]. There are rela-
tively few groups that have addressed fully (with no man-
ual intervention), detection and segmentation of vertebral
bodies on MR images. Recent work includes [26] where
the authors utilize sparse kernel machines to construct a
nonlinear boundary regression model to detect and segment
vertebrae. However, the data set employed in this work con-
sists of highly homogeneous image acquisition protocol (TE
of 85ms and TR of 4000ms). Peng et al. [19] present a
detection and segmentation technique but again validate it on
a small uniform data set acquired in a single scanner setting.
Neubert et al. [18] use shape models on a data set scanned
using a single 3T scanner acquired completely from asymp-
tomatic subjects. Perhaps the closest work to the current
manuscript is presented in [14] where a fully automated
learning based method is presented using a detector similar to
Viola-Jones and a variant of normalized cuts. However, even

there the dataset variation is not very high. The work pre-
sented in [14] also highlights another key aspect of existing
literature, namely, a separate validation step for detection and
segmentation. Such an approach is necessarywhen evaluating
segmentation techniques that rely on human based detec-
tion (or a different detection algorithm). Since the proposed
approach integrates the detection step with the segmentation
step and operates without human supervision of any form, we
validate the technique by comparing segmentations generated
by our technique to those generated by humans.

FIGURE 1. Variation in relaxation and echo time in T2-MRIs seen in a
routine spine clinic.

Ultimately, we would like to emphasize that each of these
approaches have their respectivemerits, but they are validated
with a very specific dataset obtained under specific pulse
sequences and, most often in asymptomatic patients. Real
world clinical data is neither obtained from asymptomatic
patients nor from a single type of scanner. Thus, translation
of the previously described approaches to the clinical set-
ting leads to underwhelming results. It was this need that
motivated the development of an ensemble method for the
detection and segmentation of vertebral bodies on a wide
array of spinal MR images. Our data set was collected as a
part of an active, spine clinic that serves as a major tertiary
referral center. Since patients were referred to this clinic from
the greater Los Angeles area, the accompanying imaging
data was acquired at a variety of regional radiology cen-
ters. Consequently, there was substantial variation in TR/TE,
pixel sizes and image resolutions in our data (see Figure 1).
It is important to put this into perspective: one of the more
recent works on spine segmentation presented in this jour-
nal [26] uses data wherein more than 90% of the images
were acquired with a fixed set of pulse sequence parameters.
Segmentation of vertebral bodies in the presence of varying
acquisition parameters is challenging (see Figure 2). Per-
haps this explains why vendors of computer aided diagnostic
(CAD) software often bundle their tools for sale with specific
scanners rather than standalone software. In practice such
an approach severely limits the applicability of CAD by
relegating it to a point of scan process rather than a point of
utilization process.
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FIGURE 2. Why a majority of segmentation algorithms developed for CAD
do not often translate to the clinic: Left column shows two clinical T2
scans. Middle column shows results from our proposed fully automated
ensemble technique using several parameter values. Right column shows
ITK’s watershed algorithm operating using a fixed set of parameter values
initialized to vertebral centers assuming perfect detection of such centers.
While the specific set of parameter values chosen works for the image in
the top row, it fails for the image in the bottom row. Our technique works
for both images.

If CAD techniques are to be clinically useful, it is criti-
cal that they be developed in a manner such that they are
robust to scanner and sequence variation. This was the driving
factor that lead us to develop an ensemble based algorithm
for the robust segmentation of lumbar vertebrae. To achieve
even modest results in a clinical environment, we had to
use a combination of state of the art computer vision and
machine learning for performing these segmentations. In the
subsequent Methods section, we describe our method along
with the motivation and intuition behind each component.
Succinctly, our method uses a random forest classifier to
identify super-pixels that may be representative of vertebral
bodies. While this approach alone is powerful, it often fails
in the clinical data sets used in our experiments. The solu-
tion to this problem is to vary the parameters used to run
the Felzenswalb superpixel algorithm over a large range of
values and train a separate random forest to identify vertebral
bodies at each parameter setting. The aggregation of vertebral
superpixels over all possible parameter values yields a robust
segmentation algorithm. Since each classifier trained as a part
of our ensemble uses a different parameter setting, we call
the overall classifier a multi-parameter ensemble. Empirical
evaluation suggests that this approach is extremely robust to
variation in the underlying data set. We trained our system
on six manually segmented T2-MR images and the trained
model could accurately segment T2 as well as T1MR images
obtained using a wide range of acquisition settings. In the fol-
lowing sections we present ourmethod as well as experiments
comparing our technique with manual segmentations. A brief
discussion on future work concludes the manuscript.

II. METHODS
A. DATASET DETAILS
As previously stated majority of the T2-MR dataset (33 lum-
bar sagittal cases) used for this study was obtained from an

active spine clinic. To this we added a set of (15 lumbar
sagittal cases T2 and T1) available from the public repository
of spine images (http://spineweb.digitalimaginggroup.ca/).
Thus, we had 48 sagittal T2-MR scans and 15 T1-MR scans.
We used 6 (randomly selected) T2-scans for training the
segmentation tool and the rest for validation. The training pro-
cedure was computationally expensive. Our present imple-
mentation required to 12 to 14 hours to train on our 6-core
Mac Pro. Thus, we limited the training set to a maximum of
6 cases for this manuscript. While we expect a larger training
set to produce better segmentations, this is currently beyond
our computational capacity. To further elucidate the effect of
the size of training data, we present results from experiments
with training sets smaller in size than 6 cases in the discussion
section. The primary focus of this work was to develop a
clinically usable technique to segment vertebral bodies on
T2-MR despite enormous variation. Thus, majority of vali-
dation focused on T2-MR images. Relaxation time (TR) used
to acquire images labeled as T2-MRI varied between a max-
imum of 7810ms and a minimum of 1500ms with a mean of
3798 ms (standard deviation 1575 ms). Excitation time (TE)
for these images varied between a minimum of 24ms and a
maximum of 147ms with a mean of 77ms (standard deviation
of 40.21ms). Apart from the variation in TR and TE, the T2-
images also had substantial variation in pixel resolution and
as well as acquisition dimensions. Pixel dimensions in the
sagittal plane varied between a minimum of 0.34×0.34 mm
to a maximum of 1.1×1.1mm with a mean of 0.66×0.66mm
(with standard deviation 0.21mm). Slice thickness, on the
other hand varied between 0.5 mm at minimum to 5.0 mm
at a maximum with mean of 3.15mm (and standard deviation
of 1.5mm). Image sizes corresponding to the lumbar spine
correspondingly varied between 256 × 256 pixels to 768 ×
768 pixels. The dataset had T1-MR images obtained from
the publicly available dataset had slice thicknesses varying
between 1mm and 5mm with a mean of of 4 mm (with stan-
dard deviation of 0.9 mm), and pixel width varying between
0.4mm and 0.7mm with a mean of 0.5 mm (with standard
deviation of 0.06 mm). TE was between 14ms and 25ms
with mean 18ms (standard deviation 5.6ms) and TR was
between 383ms and 3500ms with mean of 1375ms (standard
deviation 1255ms). The primary variability present in this
dataset comes from the fact that it was sourced from multiple
scanners at multiple centers and was acquired using multiple
protocols. A secondary source of variability comes from the
fact that there is a mix of normal subjects from the publicly
available dataset with patients from the Los Angeles clinics.

B. INTUITION
The segmentation framework presented is inspired by the
ensemble learning principles upon which classic learning
algorithms such as the random forest are based. To understand
intuitively, how we apply this principle, consider a toy image
containing just two vertebral bodies (VBs) denoted as VB1
and VB2. Suppose we were to apply a super-pixel algorithm
in a classic sense, then it would be unreasonable to expect that
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superpixels corresponding to each VB pop up. However, if
every super-pixel algorithm (and indeed every segmentation
algorithm) is ultimately driven by a small set of parameter
values. Suppose at parameter setting P1 the algorithm cap-
tures VB1 accurately but segments VB2 poorly. Now, if we
change P1 to P2 the algorithm may capture VB2 accurately
as one of its super-pixels, while improperly segmenting VB1.
The only way to get the algorithm to accurately segment both
VB1 andVB2 is to run it at multiple parameter values followed
by a classification step that separates super-pixels likely to
represent vertebral bodies from those that may not. Thus,
in a gestalt sense, the super-pixel algorithms operating at a
single parameter setting operate as individual learners. While
each individual learner produced imperfect segmentations,
a combination of these segmentations can yield a power-
ful segmentation tool. Next we describe the specific super-
pixelization framework we use and how feature extraction is
done on the basis of these superpixels.

C. FELZENSZWALB SUPERPIXELS
Superpixel algorithms divide an image into a set of sub
regions such that each sub region is homogeneous according
to some criterion. Our technique ultimately relies on the pos-
sibility that a vertebral body be captured in a single superpixel
by the algorithm. Since super pixel algorithms differ depend-
ing on the specific criterion used to assess homogeneity, this
can be difficult to achieve in practice. In this work we use the
superpixel segmentation algorithm proposed by [10].

1) MOTIVATION
The motivation behind this is that this algorithm generates
superpixels by examining evidence for a boundary between
two neighboring regions as opposed to raw intensity based
pixel grouping produced by algorithms such a SLIC [1]. or
local quickshift clustering. Thus, gradual variation in inten-
sity due to the existence of a strong bias field that does not
produce explicit edges in the image is likely to be ignored
by Felzenswalb superpixels (unlike competing methods like
SLIC or quickshift superpixels). This is especially valuable,
since strong bias fields designed to attenuate signals in the
abdominal regions while amplifying signals on the poste-
rior regions of the body are characteristic of spine MRIs.
Such bias fields cannot be corrected by the application of
N4 [23] or N3 [21]. The Felzenswalb technique remains
robust to the bias field over a wide range of parameters. This
is illustrated in 3 where for each parameter setting the Felzen-
szwalb algorithm picks a few superpixels that correspond to
vertebral bodies. This is not true of SLIC which tends to
produce superpixels that adhere to vertebral boundaries only
at specific parameter settings. Finding the ideal parameter
setting for every variant of a spine image immediately makes
manual parameter tuning an essential part of the segmenta-
tion process with competing techniques. The need for such
manual tuning, is exactly what renders a large variety of
published segmentation methods impractical for direct use in
a typical clinical setting. Figure 3 immediately motivates a

FIGURE 3. Felzenszwalb superpixels computed at various scale settings.

multi-parameter learning algorithm. Essentially, if we could
train a learning algorithm to identify precisely those super-
pixels that correspond to vertebral bodies, at given parameter
setting, we could create a powerful segmentation method
by simply aggregating relevant segments over all parameter
values. This is the essence of the proposed procedure.

D. FEATURE EXTRACTION WITH SUPERPIXELS
To train a machine learning algorithm that can learn to
identify super pixels corresponding to vertebral bodies, we
need to extract features that can uniquely identify vertebral
superpixels from other superpixels. We achieve this using a
carefully selected set of features that are extracted from each
superpixel in the training and test sets.We describe the precise
set of features extracted and the motivation behind each of
these features next.

FIGURE 4. Feature extraction with superpixels. We extract six ratios to
construct a feature vector from each superpixel. These ratio ultimately
quantify shape, position and orientation of the specific super pixel.
Training labels are generated based on the degree of overlap between a
specific superpixel and manually labeled vertebral segments. When there
is no overlap between a superpixel with any manually segmented
vertebral region, the label corresponding to the feature extracted from
the superpixel is 0, otherwise it is 1.

For each superpixel in the imaging data, we extract ratios
that quantify the shape, the position and the orientation of the
superpixel (figure 4). Next we describe each feature and the
motivation behind its choice:
Position and Orientation Features:
• We compute (cx , cy), the centroid of each superpixel and
divide them by the corresponding maximal dimension
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of the image. We also compute the orientation of each
superpixel (as the cosine of the angle between the
X-axis and the major axis of the ellipse that has the
same second-moments as superpixel) and it’s eccentric-
ity (the ratio of the focal distances of the same ellipse).
Note that the features described thus far use the dis-
tinct dichotomy that exists between computer vision and
medical image analysis. While the proposed features
are neither translationally nor rotationally invariant, they
are highly relevant in medical image analysis. Lumbar
sagittal MR images of the spine are generally acquired
by placing the patient in a supine position in the bore of a
scanner and the scanning is performed in a very specific
manner by the technician. Thus, unlike generic computer
vision problems, we can be certain that the medical
image is acquired in a standardized, centered frame that
contains the entire region of interest. For instance, unlike
an image of a car found in a regular computer vision
database containing cars, medical images are generally
captured in a manner such that the lumbar vertebral
bodies are placed near the center of the acquisition in a
particular orientation and no occlusion. The availability
of this standardization in medical image analysis is what
the centroidal and orientation features proposed above
capitalize upon. superpixels corresponding to vertebral
bodies tend to be oriented in a specific manner in the
clinical MR images. Thus, position and orientation fea-
tures alone yield powerful markers for identifying verte-
bral superpixels.

Complexity Features:

• Fractal features − P2
A : While medical MR images may

be acquired in a specific frame and orientation, other
challenges exist in medical imaging that do not exist
in computer vision. For example color information is
absent and intensity values are relative (in MR). Addi-
tionally, training data for image segmentation comes at
a high cost (manual segmentation). These factors make
shape based feature engineering an attractive propo-
sition. Thus, we incorporate three shape based fea-
tures into our learning enegine. The first is ratio of
the square of the perimeter to the area is a crude mea-
sure of border complexity/fractal dimension of a super-
pixel. A superpixel with a small area, but an extremely
complex boundary is unlikely to be vertebral super-
pixel. We expect the vertebral superpixels to be roughly
square. Hence the value of this feature is expected to
stay bounded. This intuition functions well in real data
wherein this single feature can often distinguish between
vertebral and non vertebral in a given image.

• Shape features − Solidity and Extent : Solidity is
the ratio of the area of the superpixel to the area of its
convex hull. Since we expect the vertebral superpixel to
be roughly convex we expect this value to be close to
one. Extent is the ratio of the area of the superpixel to the
area of the bounding box. Again, we expect this to be

higher for vertebral superpixels due to the characteristic
square shaped rendering of vertebral bodies in saggital
MR images.

Note that we do not use superpixel intensities in defining
the feature vector. The features used are purely geometry
based. The combination of these features in conjunction with
a suitable machine learning classifier may be used to dis-
tinguish superpixels corresponding to vertebrae from those
that do not. Indeed, this is the intuition behind our approach.
Yet, as stated before, note that we still rely on the accuracy
of the underlying superpixel generation technique to yield
at least one superpixel that corresponds to each vertebral
body. This is a difficult task to achieve given that the super-
pixel generation problem itself is a highly non-convex one.
While, it is difficult to rely on a single algorithm running
at a given parameter setting to yield one superpixel per ver-
tebral body, running multiple algorithms or even the same
algorithm at several parameter settings effectively overcomes
this issue, thus yielding a multi-parameter ensemble. The
idea is inspired by similar models that were used in climate
prediction in the early 21st century [22], [27].

1) TRAINING
To elucidate the training process further, let I = {I1, I2,
· · · Ii · · · IT } denote the training data set with individual
I ’s representing patient scans. Thus, we have T training
scans. We denote by S describes a pre-chosen superpixel
generation mechanism. Further, lets us denote by P =

{P1,P2, · · ·Pj · · ·PN } the possible/chosen set of parameters
we can use for the superpixel algorithm. Given a specific
parameter setting Pj and image Ii the super-pixel generator S
can generate a set of Kij super-pixels denoted as {sij}.

{sijk |k ∈ 1, · · · ,Kij} = S(Ii,Pj) (1)

The collective of all superpixels for a particular parameter
setting Pj, we then denote by:

{S}j =
{
sijk ∀ k ∈ 1, · · · ,Kij; i ∈ 1, · · · ,T

}
(2)

Thus, we generate during training the collective:

S =
{
{S}1, {S}2, {S}3, · · · {S}j · · · {S}N

}
(3)

which contains for every parameter setting a set of super-
pixels derived using images in the entire training set. The
next step is to extract the proposed features from each {S}j.
We denote the feature extraction mechanism by f . the feature
extraction works on a superpixel to extract a ’feature vector’
as explained in section II-D. Thus, at every parameter valuePj
we obtain a matrix in Rh×g where h denotes the total number
of super-pixels in the set {S}j and g is the dimensionality of
the feature extracted. We define:

{F}j =
{
f (sijk ) ∀ k ∈ 1, · · · ,Kij; i ∈ 1, · · · ,T

}
(4)

and we define the collective :

F =
{
{F}1, {F}2, {F}3, · · · {F}j · · · {F}N

}
(5)
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Note that each {F}j represents a unique set of features
extracted from the superpixels in the corresponding {S}j. For
each {F}j features corresponding to super-pixels that overlap
with manually segmented vertebral bodies with a Dice score
of greater than 0.85 are labeled ‘1’ and those that do not are
labeled ‘0’. Thus, we have one of labeling {L}j for each {F}j.
The collective is defined by:

L =
{
{L}1, {L}2, {L}3, · · · {L}j · · · {L}N

}
(6)

The next step is to apply a machine learning model. We use
the random forest classifier for this purpose. Now, for each
super-pixel set the vast majority of super-pixels are back-
ground and a very small subset are actually vertebral bodies.
Furthermore, only super-pixels that overlap with vertebral
bodies (Dice score > 0.85) are labeled ‘1’ and all others are
labeled zero. This creates, what is known in machine learning
parlance, a highly unbalanced dataset. Amongst hundreds
of super-pixels generated per image, 5 to 6 are vertebrae
(labeled +1) and all others are negative samples (labeled 0).
Ensemble methods such as the Random Forest (RF) [12]
are better suited to handle such dataset imbalance. This is
partly because they ultimately train classifiers on smaller
subsets and then aggregate them by simple majority voting.
Each smaller subset is likely to be more balanced due to the
necessity of selecting positive as well as negative samples
during the training process. Consequently, the random forest
classifier naturally handles dataset imbalance, unlike com-
peting techniques such as SVMs wherein carefully designed
hard negative mining needs to be used to achieve a similar
effect. Furthermore, each tree in a random forest represents
a simpler model with fewer parameters as compared to a
relatively complex alternatives such as deep neural networks,
which can severely over fit when dataset sizes are smaller.
Hence, we train random forests models Mj to distinguish
feature vectors that can identify super-pixels corresponding
to vertebral bodies :

Mj = trainRF
(
{F}j, {L}j

)
(7)

The collective of models is the trained multi-parameter
ensemble model:

MPEmodel = {M1,M2,M3 · · ·Mj · · ·MN } (8)

2) SEGMENTATION
Given a newly acquired scan, denoted by I∗, the procedure to
segment this scan involves the following steps in a manner
similar to that used in the training process. First, we run the
superpixel algorithm S with each parameter in the set P to
obtain the super-pixel sets:

{s}∗jk = S(I∗,Pj) (9)

Next the collective of super-pixels for all possible parameter
values is formed:

{S}j =
{
{s}∗jk ∀ k ∈ 1, · · · ,K∗j

}
(10)

Next, we extract features :

{F∗}j = {f (s∗j) ∀ k ∈ 1, · · · ,K∗j} (11)

Each of these {F∗}j feature sets extracted from the test image
are paired with the corresponding random forest classifier
Mj to discriminate super-pixels that are highly likely to have
captured vertebral bodies faithfully, from background super-
pixels. Thus, a candidate segmentation is produced, which
may have segmented only a small subset of all the vertebral
bodies in the image, but segmented these with high accuracy.

predRF ({F∗}j,Mj)⇒ Segj (12)

The final segmentation is the n obtained as:

Seg(It ) =
∑
j

Segj (13)

III. RESULTS
A. PROCEDURE
The Felzenswalb superpixel technique produces distinct
results based on the specific parameter values used. The main
parameter of interest while using this technique is the ‘k or
the scale parameter described in [10]. In our experiments
we varied the scale between 30 and 100 with intervals of 5.
At lower values of scale (near 30) the algorithm divides the
vertebral body into multiple sub-regions. At scales close to
100 more than one vertebral body tends to be grouped into
a single superpixel. At some optimal scale value a super-
pixel may appear such that it precisely segments the vertebral
body. This optimal ‘scale value’ varies from one vertebral
body to the next and from one image slice to the next.
However, by training a classifier to identify a superpixel that
adheres to a vertebral body at every possible scale value,
we can capture all vertebral bodies in all slices despite any
variation involved. False positive elimination was performed
using a centrality measure labeling inter-slice consistency of
superpixels detected as vertebral bodies of the same patient
image. To refine the super-pixels picked out by the random
forest, we applied a limited post-processing protocol that was
designed to force the super-pixels identified to exactly corre-
spond to gray scale edges in the original intensity image. This
step consisted of identifying a two pixel thick morphological
boundary around each super-pixel and adjusting super-pixel
boundaries using a localized intensity clustering. As such,
we did not find the post-processing to substantially improve
the dice scores at p-value threshold of 0.05. Hence we have
reported Dice score metrics using post-processing as well
as without it in the results. As stated earlier we trained our
method using 6 manually labeled sagittal T2-MRI scans and
used it to segment vertebrae on 42- T2 and 15 -T1MRI scans.
The six cases used for training all came from a single acqui-
sition center but varied in terms of acquisition/relaxation
times. Even though the T2-MR scans used for validating the
trained model used were obtained at more than 5 centers with
varying acquisition protocols and in the presence of gross
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pathology, our technique produced qualitatively reasonable
segmentation as shown in figures 5 and 7. In the following
section we describe both qualitative and quantitative analyses
of our results.

B. SEGMENTING VERTEBRAE ON T2 IMAGES AFTER
TRAINING ON T2 IMAGES WITH DIFFERENT ACQUISITION
PARAMETERS AND PATHOLOGY
Results shown in figures 5 and 6 demonstrate the performance
of our technique in segmenting vertebral bodies in real clin-
ical data. In figure 5 we highlight the degree of variation
involved in clinical data labeled ‘T2’ that is seen at a given
spine center. This demonstrates the challenge that faces all
computer aided diagnosis methods, if they are ever to be truly
useful in the clinical setting. Specifically, the case shown
in the second row of figure 5 has severe disk degeneration,
obscuring the border between the vertebra. The case in row 5
is scanned with a protocol that results in an unusually bright
signal in the spinal cord while relatively noisy signal in the
vertebral bodies while the overall signal is heavily suppressed
in the MR image in the third row. Since, we rely on super-
pixels computed at several parameter values followed by
shape based classification ensembles, we can overcome this
tremendous variability in the imaging data and present our
surgeons with a clinically usable system. To quantitatively
validate our technique, we manually segmented each of our
42 validation scans and compared the manual segmentations
to automatic segmentations using the Dice overlap measure.
Figure 6 shows the distribution of Dice coefficients. Figure 8
shows a polar plot of Dice coefficients achieved in all 42 test
cases. Note that in majority of the cases the dice coefficient is
> 0.8. The mean Dice score after is 0.83(σ = 0.06) in spite
of the tremendous variation in the data set.

C. TRAINING ON T2-IMAGES AND SEGMENTING
ON T1-IMAGES
The robustness of the learning method presented can also
be demonstrated by showing how well the model trained
on T2-MR images can segment T1-MR scans (figure 7).
Although, the results on T1-images are not as accurate as
the ones on T2-images (mean dice coefficient of 0.75), they
clearly demonstrate the robustness of the learning machine
proposed. Figures 6 and 9 present the quantitative picture
of how automated segmentations compare to manual ones.
To the best of our knowledge, this type of ‘cross modality
learning’ is a first in spine segmentation literature.

D. COMPARISON WITH ALTERNATIVE METHODS
In order to further convince the reader of the robustness
of our technique as compared to competing techniques we
present in this sub-section a comparison between the pro-
posed methodology and comparable existing methods from
segmentation literature. The three methods that we compare
against include watershed transform driven segmentation [4],
[5], [13], [30], the related random walker based segmentation
[12] and active shape modeling. For both watershed and

FIGURE 5. Fully automatic segmentation of lumbar vertebrae from T2-MR
scans from in spite of acquisition and pathology induced variation. Red
indicates automated segmentation and green indicates manual
segmentation. Note the presence of dislocation in the second row from
the top and severe disk degeneration in the case in the bottom row.
Further note the substantial variation in noise and bias across the cases
and that not all vertebral bodies are perfectly square in shape either.

random walker methods we initialize a 5×5 pixel region in
the center of each vertebral body as vertebral body mark-
ers and use regions outside a 50×50 pixel box around the
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FIGURE 6. Histogram of dice scores computed by comparing automated
segmentation produced using parameter ensembles to manual
delineations of vertebral bodies on T2 (blue) and T1 (yellow) images.

FIGURE 7. Segmentation of T1 scans using model learnt from T2 scans.
Green is manual and red is automated.

vertebral center as a background marker. For Active shape
modeling (ASM) [6], [24] we used a shape initialization that
was defined individually for each vertebral body. A 2D ASM
was trained using 30 vertex points to VBs in the training
data. We fit individual 2D-ASMs to each VB on each slice
in the test data. The results of our comparative experiments
are summarized in table 1.

TABLE 1. Comparison between Dice scores (DSC) proposed ensemble
segmentation and standard segmentation techniques.

While standard techniques are indeed comparable on cer-
tain cases as evidenced by the ‘Max DSC’ row, the pro-
posed approach does much better on the ‘Min DSC’ row
and presents us with a substantially lower standard deviation.
This is because when the super-pixel algorithm is run for
a large number of parameter settings it tends to generate a
wide choice of delineations for the succeeding random forest
classifiers. Under such a paradigm the random forest can
easily reject any segmentation that might be slightly less
accurate. A typical segmentation approach that relies on a two
stage paradigm of ’detection’ followed by the application of
a standard ’segmentation’ method [14], [18], [19], [31], does
not have this flexibility since out of the box segmentation
algorithms are applied post the detection step yielding a less
flexible overall approach.

IV. DISCUSSION
A. THE EFFECT OF POST PROCESSING
We indicated in the results section that we apply a series of
simple post processing steps to refine the initial superpixel
segmentations.While the post processing definitely increases
the mean Dice ratio for both T2 and T1 segmentations the
gains are made at the cost of slightly higher variation in
the scores themselves. To quantify the impact of the post
processing we show dice scores obtained with and without
post-processing on both T2 and T1 MR test scans. Figure 8
indicates the effect of post-processing in case of the T2
images. The mean Dice score before the post-processing was
0.81 which was slightly lower than after it 0.83. However
the standard deviation in the Dice scores after applying the
post-processing was 0.06 which was slightly higher than the
standard deviation obtained before applying it, which was
0.05.We surmise that this improvementmay be due to the fact
that local intensity based algorithms such as watersheds are
better able to deal with intensity contrast reduction effected
by supressing the water related signals in the T2 sequence.
Yet, the difference in the means as measured by a t-statistic
not statistically significant between post processed and non
post-processed images (t-statistic=1.37, p-value=0.18). Sim-
ilar trends were seen in the T1 segmentation results. Figure 9
shows a polar plot comparing dice ratios for T1 images
before and after post-processing. In the case of T1-MRI seg-
mentation significant difference was not observed between
dice scores computed before and after post processing. For
these images the mean Dice scores before post processing
was 0.737 and after it was 0.747. A t-test for difference

1800412 VOLUME 5, 2017



B. Gaonkar et al.: Multi-Parameter Ensemble Learning for Automated Vertebral Body Segmentation

FIGURE 8. Dice coefficients comparing manual and automated
segmentations on T2 MR scans with postprocessing(yellow) and without
post-processing (orange).

FIGURE 9. Dice coefficients comparing manual and automated
segmentations on T1 MR scans (using model trained on T2 scans) with
post-processing(yellow) and without post-processing (orange).

between the means was not significant (t-statistic: 0.297,
p-value 0.767). While we have retained the post-processing
due to the mean increase in Dice coefficients, with the max-
imum increase in an individual case being 0.12, additional
work is required to identify which specific cases are likely to
generally benefit from post-processing.

B. QUALITATIVE COMPARISONS WITH OTHER METHODS
USED IN BRAIN AND BONE IMAGING
The use of standard pipeline (N4+ Histogram equalization
+ Rigid registration) for image and pixel size normaliza-
tion is often the first step in the automated segmentation of
many anatomical structures including brain, breast, liver and

FIGURE 10. Result of standard pipeline using N4+histogram
equalization+rigid registration. Template (left), subject (center) and
registered subject (right).

prostate. The registration step is often the first step towards
atlas building and machine learning for such structures as
it normalizes the pixel spacing and intensity heterogeneity.
However, this generic protocol may not be well suited for
preprocessing in clinical spine imaging. In figure 10, we
illustrate the application of rigid registration with FSL’s Flirt
tool to spine imaging data [16].

Figure 10 shows that the algorithm rotates the image out
of the sagittal plane to match it with the template. While
registration fails, this example also elucidates the necessity
for further research into the development of image regis-
tration methods for spine MR data. Standard segmentation
methodology used in bone image analysis typically revolves
around shape modeling. The use of shape modeling in ver-
tebral body detection/segmentation is reasonable. Hence we
presented results using related techniques in section III-D.
We further elaborate on the qualitative aspects of these results
in this section. Figure 11 shows how the active shapes based
segmentation performs on two different cases in our dataset.
In the first case (row) the ASM model works in a fashion
comparable to the proposed technique and indeed produces
a reasonable segmentation. In the second row it seems to
fail. This failure is likely due to the presence of strong edges
inside the vertebral bodies in the second image in addition
to an atypical suppression of intensities near the top of the
image. Despite the challenge, the MPB performs a reason-
able segmentation. Given both images, a human physician
would be expected to accurately delineate where the vertebral
bodies are. Our ensemble learning based technique mimics
this ability.

C. VARIATION IN ACCURACY WITH VARIATION IN
NUMBER OF BASE LEARNERS
As stated earlier, in the experiments presented, we varied
the scale parameter of the Felzenswalb superpixel algorithm
between 30 and 100 in intervals of 5.

This choice was made by looking at a single test image
and observing that below 30 superpixels generated approach
the size of pixel spacing and above 100, they unusably large
(encompassing the entire spine). Yet, the question of how best
to sample the space of parameters remains unaddressed in
the current work. In general generating superpixels with a
smaller range of parameter settings, in the multi-parameter
ensemble leads to worse results. This is documented in
figure 13.
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FIGURE 11. Original images (left), Segmentation using active shapes
(center) and segmentation using proposed methodology(right). Top row
represents a case where ASM segments vertebral bodies satisfactorily.
Middle row and Bottom row show cases where ASM inaccurately
estimates rotation (middle row) or scale (bottom row) parameters
associated with the model.

D. TRAINING WITH MINIMAL AMOUNT OF DATA
Note that all the results described abovewere obtained using a
very small training data set (namely 6 cases). This elucidates
the fact that we can train robust and powerful segmentation
methods using a minimal amount of training data, albeit at
enormous computation costs. However, computational costs
will be progressively less important in the future. The ability
to generalize to large datasets by learning from a small dataset
is a strength that will bemore valuable as datasets get larger in
the future. The proposed method can improve with increased
training data. We show results obtained by re-training
the algorithm on a fewer number of training data points
(figure 14). While more labeled data improves performance,
we perform reasonably well even when trained using just
3manually labeled cases. Generally training a standard object
detection framework (such as the Viola -Jones detector [25])
requires a very large and diverse training data set that captures
the shape, pose and intensity variation of the object being
detected. One of the key problems in medical image analysis
is the limited availability of such labeled training data. Thus,
a similar multi-parametric approach could potentially be use-
ful for segmenting other organs/regions of interest in clinical
imaging data in conjunction with this or other superpixel
centric methods. While there is limited work on using multi-
parameter ensembles in medical image segmentation, the
thriving field of multi-atlas brain image registration draws
upon similar principles [8].

E. COULD PARAMETER OPTIMIZATION REPLACE
MULTI-PARAMETER ENSEMBLES
Another approach to segmenting data that is obtained under a
widely varying set of parameters could potentially utilize the

FIGURE 12. Segmenting a CT image using a model trained on T2-MR
images.

FIGURE 13. Variation of Dice score within the segmentations produced
for T2 (top) and T1 (bottom) images with increasing number of
independent parameter settings used for constructing ensemble. Initially
the addition of base learners at different parameter settings improves
Dice ratios substantially while reducing variance (indicates by marker
width) amongst the Dice ratios. As more base learners are added the
increase in performance is relatively less pronounced, but the decrease in
variance is substantial.

TR/TE values themselves to modify the segmentation algo-
rithm. For instance, one may be able to remedy the failure of
the active shape models shown in Fig 11 by a)’training’ a dic-
tionary of shape models using images acquired at numerous
distinct TR/TE settings and then b) performing segmentation
on a patient image by choosing a shape model which matches
the patient acquisition in terms of TR/TE. While such an
approach might be possible, it is unclear if and how such
an approach would deal with variation within a single image
itself due to factors such as acquisition bias or pathology.
Despite the challenges, this remains an interesting avenue of
research that requires further exploration.

F. ROBUSTNESS AND SEGMENTING CT DATA
While the difference between T1 and T2 MRI is stark, a
human clinician who has seen the spine on T2-MR will be
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FIGURE 14. Variation of Dice score within the segmentations produced
for T2 images with increasing number of training subjects. As expected
increased more training data leads to better accuracy and lesser variation
in the predicted Dice score values.

able to identify at least some of the relevant structures on
T1-MRI. The proposed method mimics this ability. While the
primary thrust of the study was MR imaging for exploratory
purposes we attempted to segment a CT image obtained from
a publicly available database of CT images using the ‘learnt’
model. The result is presented in figure 12. The proposed
method is able to identify and segment vertebral bodies on
CT even after training solely on MR images.

G. A NOTE ON PATHOLOGY
An important aspect of our data set was that it contained a
large number of pathological cases. Since, the data set was
directly collected from an active spine clinic, it was unlike
most data sets that have been employed in the literature,
and contained cases with some type of pathology. Existing
literature, tends to utilize scans obtained from normal sub-
jects for segmentation. Shapes of vertebral bodies cannot be
assumed to be consistent in the presence of pathology. This is
well illustrated by images in figures 5 and 6. In spite of this
variation, the proposed superpixel centric technique is able to
robustly delineate anatomy. Further research will be required
to modify/evaluate if competing techniques can achieve such
an outcome.

V. CONCLUSION
In conclusion we reiterate that we have constructed amachine
learning based system for segmentation of vertebral bodies on
clinicalMR images of the lumbar spine. The primarymethod-
ological differentiators of our technique from previous work
is the use of superpixels based multi-parameter ensemble
learning. However, the primary motivation of the work is to
create a system that can be used segment lumbar vertebrae
reliably even in the presence of tremendous variation in the
scanning protocol and comparable variation due to the pres-
ence of pathology. The fact that our technique works in the
presence of substantial variation in the scanning parameters
in T2 images is significant. The fact that it can learn using

a relatively small training set and use a model trained using
T2-images to segment vertebrae on T1-images establishes
the robustness of the proposed learning methodology. Future
work will focus on reducing the time required for training
and segmenting vertebrae using the proposed methodology,
validation on larger data sets and the development of a live
web based application where spine surgeons and other clin-
ical practitioners can use the system to augment diagnostic
decisions.
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