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Abstract: The ongoing coronavirus pandemic has been a burden on the worldwide population, with
mass fatalities and devastating socioeconomic consequences. It has particularly drawn attention to the
lack of approved small-molecule drugs to inhibit SARS coronaviruses. Importantly, lessons learned
from the SARS outbreak of 2002–2004, caused by severe acute respiratory syndrome coronavirus 1
(SARS-CoV-1), can be applied to current drug discovery ventures. SARS-CoV-1 and SARS-CoV-2
both possess two cysteine proteases, the main protease (Mpro) and the papain-like protease (PLpro),
which play a significant role in facilitating viral replication, and are important drug targets. The
non-covalent inhibitor, GRL-0617, which was found to inhibit replication of SARS-CoV-1, and more
recently SARS-CoV-2, is the only PLpro inhibitor co-crystallised with the recently solved SARS-CoV-2
PLpro crystal structure. Therefore, the GRL-0617 structural template and pharmacophore features
are instrumental in the design and development of more potent PLpro inhibitors. In this work,
we conducted scaffold hopping using GRL-0617 as a reference to screen over 339,000 ligands in
the chemical space using the ChemDiv, MayBridge, and Enamine screening libraries. Twenty-four
distinct scaffolds with structural and electrostatic similarity to GRL-0617 were obtained. These
proceeded to molecular docking against PLpro using the AutoDock tools. Of two compounds that
showed the most favourable predicted binding affinities to the target site, as well as comparable
protein-ligand interactions to GRL-0617, one was chosen for further analogue-based work. Twenty-
seven analogues of this compound were further docked against the PLpro, which resulted in two
additional hits with promising docking profiles. Our in silico pipeline consisted of an integrative
four-step approach: (1) ligand-based virtual screening (scaffold-hopping), (2) molecular docking,
(3) an analogue search, and, (4) evaluation of scaffold drug-likeness, to identify promising scaffolds
and eliminate those with undesirable properties. Overall, we present four novel, and lipophilic,
scaffolds obtained from an exhaustive search of diverse and uncharted regions of chemical space,
which may be further explored in vitro through structure-activity relationship (SAR) studies in the
search for more potent inhibitors. Furthermore, these scaffolds were predicted to have fewer off-target
interactions than GRL-0617. Lastly, to our knowledge, this work contains the largest ligand-based
virtual screen performed against GRL-0617.

Keywords: drug discovery; papain-like protease; PLpro; SARS coronavirus 2; COVID-19; analogues;
in silico; docking; scaffold hopping; virtual screening

1. Introduction

As one of the greatest health crises of our generation, the ongoing coronavirus disease
2019 (COVID-19) pandemic has resulted in more than 2 million deaths, with approximately
110 million cases reported worldwide [1], and profound socioeconomic impact [2–5]. Se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [6], the causative agent of
COVID-19 [7], is the seventh known coronavirus to infect humans [8]. SARS-CoV-2 is highly
infectious [9–12], and spreads through particles expelled from infected individuals [13,14].
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As the most severe pandemic caused by a coronavirus [15], COVID-19 has caused more
cases and fatalities than the severe acute respiratory syndrome (SARS) pandemic, and
the Middle East respiratory syndrome (MERS)-related outbreaks, combined [16]. In 2015,
SARS and MERS were listed by the World Health Organization (WHO) as likely to be the
cause of a future epidemic or pandemic and requiring urgent research and development
(R&D) [17]. In December 2020, the Pfizer-BioNTech COVID-19 vaccine [18,19], and the
Moderna COVID-19 vaccine [20,21] were approved by the United States Food and Drug
Administration (FDA), and the Oxford-AstraZeneca COVID-19 vaccine [22–24] was ap-
proved by the United Kingdom Medicines and Healthcare products Regulatory Agency
(MHRA). Other vaccines have also been authorized for emergency use, including the Sput-
nik V COVID-19 vaccine (Russia) [25] and CoronaVac (China) [26]. As the first vaccines
approved for the prevention of COVID-19, they have offered a renewed picture of hope
towards the end of the pandemic.

However, given the evolving nature of the virus, as well as high mortality rates,
approved small-molecule drugs for COVID-19 remain highly sought-after. SARS-CoV-2
has several important drug targets. These include the main protease (Mpro) [27,28], and
the papain-like protease (PLpro). PLpro’s name is derived from its structural similarity
to papain, an enzyme found in papaya. There is currently no approved drug that acts
against the Mpro or PLpro. Remdesivir, which has been approved by the FDA as the first
and only small-molecule drug for the treatment COVID-19 in hospitalized patients [29], is
suggested to target the SARS-CoV-2’s RNA-dependent RNA polymerase (RdRp) [30,31].
However, there are conflicting studies regarding the efficacy of remdesivir in the patient
population [32–35]. Furthermore, it cannot be administered orally. Thus, the search for a
highly potent and specific antiviral continues.

The Mpro has been the subject of intense scrutiny, with 23 investigational inhibitors of
varying potency identified thus far [36,37]. Conversely, only one small-molecule inhibitor,
GRL-0617, with experimental data has been reported for the SARS-CoV-2 PLpro, by the
International Union of Basic and Clinical Pharmacology and the British Pharmacological
Society (IUPHAR/BPS) Guide to Pharmacology [36,37], with a half-maximal inhibitory
concentration (IC50) of 2.4 µM [38]. Ebselen has also been presented as a potential inhibitor
of PLpro in a pre-print article [39]. GRL-0617 binds non-covalently, and it is the only
PLpro inhibitor with a co-crystallised structure [40] available in the Protein DataBank
(www.rcsb.org) (PDB ID: 7JRN). This co-crystallised structure can serve as a valuable tool
to analyse the binding mode of GRL-0617, which can aid drug discovery efforts. GRL-0617
was initially found to inhibit the SARS-CoV-1 PLpro in 2008, with an IC50 of 600 nM [41].
The SARS-CoV-1 and SARS-CoV-2 PLpro’s share 83% sequence identity and are structurally
similar [42,43]. Although GRL-0617 demonstrates good potency, there is a lack of data on
its pharmacokinetic profile. Furthermore, GRL-0617 contains a toxic chemical moiety, an
aniline group. Nearly one-third of drugs that have been withdrawn from the market, or
that have black-box warnings associated with idiosyncratic adverse drug reactions (IADRs),
contain an aniline group [44–47]. GRL-0617 has not yet been tested in clinical trials, or in
animal studies, to establish safety or side-effects. The presence of other inhibitory scaffolds
may, therefore, be useful to aid and accelerate the drug discovery process, as safety concerns
account for a major reason candidate drugs fail to be marketed after phase 3 trials [48,49].

Upon entry of SARS-CoV-2 into human cells, the Mpro and PLpro play a major role
in aiding the viral replication process [50,51]. They are cysteine proteases, responsible
for processing the replicase polyproteins, polyprotein 1a (pp1a), and polyprotein 1ab
(pp1ab), which are derived from the RdRp. This facilitates the generation of 16 products,
non-structural proteins (NSPs) 1 to 16. PLpro, which itself is encoded in NSP 3, cleaves
NSPs 1-3, whilst the Mpro cleaves NSPs 4-16 [52]. The NSPs play an instrumental role in
initiating viral replication. Targeting the Mpro or PLpro with inhibitory small-molecules will,
therefore, halt viral replication. As shown in Figure 1, the recently solved crystal structure
of PLpro (PDB ID: 7JRN) [40,42,53] is composed of four domains: a ubiquitin-like domain, a
catalytic (‘thumb’) domain, a zinc-binding (‘fingers’) domain, and a fourth (‘palm’) domain,

www.rcsb.org


Molecules 2021, 26, 1134 3 of 24

which contributes two residues to the catalytic triad. Unlike the Mpro, the SARS-CoV-2
PLpro can cleave interferon-stimulated gene 15 (ISG15) in the cytosol of host cells [38,54–56].
This causes dysregulation of signalling cascades and can lead to a ‘cytokine storm’, which
is associated with increased severity of morbidity, as well as an increased likelihood of
mortality, in COVID-19 patients [57].
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Figure 1. The structure of PLpro (PDB ID: 7JRN). The ubiquitin-binding domain is shown in dark
blue. The catalytic triad is shown as silver sticks. Bound GRL-0617 is shown as magenta spheres,
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Importantly, a stabilising mutation at NSP 3 may suggest a mechanism which differ-
entiates COVID-19 from SARS [58,59]. NSP 3 has a major role in suppressing the host’s
innate immunity, and is associated with the inflammation produced in severe COVID-19.
Furthermore, the increased infectivity of SARS-CoV-2, in contrast to SARS-CoV-1, may be
related to a destabilising mutation at NSP 2 [58,59]. Interestingly, the PLpro of SARS-CoV-1
preferentially cleaves ubiquitin over ISG15 [60]. The catalytic site of PLpro harbours the
catalytic triad (Figure 1): Cys-111, His-272, and Asp-286 [50,61]. The known non-covalent
inhibitor GRL-0617 does not directly form contacts with the catalytic triad, but instead,
it binds to a cavity nearby and induces the closure of blocking loop 2 (BL2) [53,62]. This
results in a narrowing of the catalytic site, preventing substrate binding, and catalysis.
The zinc-binding site is coordinated by the conserved cysteines, Cys-189, Cys-192, Cys-
224, and Cys-226. Zinc binding plays a significant role in the structural integrity of the
protein [50,61].

In this work, we used GRL-0617 as a reference molecule to virtually screen over
339,000 lead-like and diverse molecules in the chemical space. This was followed by
various rounds of docking against the PLpro crystal structure, as well as evaluation of drug-
likeness, to search for lead scaffolds against PLpro. In preparation for future coronavirus
pandemics, the presence of such scaffolds in the literature may expand our toolkit and
inform drug design, development, and discovery efforts, in the search for potent inhibitors.
To prevent the next coronavirus epidemic from becoming a pandemic of such a grand scale,
an approved drug against SARS-CoV-2 may be repurposed for immediate use. This will
also preclude the need to create a new vaccine, which is a highly time-consuming process.

Although a small-molecule drug that targets both Mpro and PLpro is near impossible
to design, it may be possible to find potent inhibitors for each of the proteases separately
but administer them in combination. A drug that inhibits both proteases responsible for
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processing the viral polyprotein replicases may be more effective than a drug that inhibits
one of the proteins. Importantly, such molecules should be lipophilic to penetrate the
plasma membrane of host cells and reach the Mpro or PLpro. Here, we present several novel
drug-like, and lipophilic scaffolds with structural and electrostatic similarity to GRL-0617,
and comparable protein-ligand interactions. These scaffolds may be tested in vitro to
establish effectiveness in comparison to GRL-0617 and, if proven to be active, their efficacy
can be further improved through structure-activity relationship (SAR) studies.

2. Results
2.1. Round 1: Ligand-Based Virtual Screening

A screen of 339,240 molecules from the ChemDiv Diversity®, MayBridge Hit Locator®,
and Enamine Hit Locator® chemical libraries in Rapid Overlay of Chemical Structures
(ROCS) (OpenEye Scientific Software, Santa Fe, NM, USA) [63,64] and subsequent elec-
trostatic field comparison in Forge (Cresset, Litlington, Cambridgeshire) [65–67], revealed
24 similar hits to the reference ligand, GRL-0617 (Supporting Information, Figure S1), which
were commercially available (Supporting Information, Table S1). Of these hits, 18 had a
Shape Tanimoto score (denoting structural/3D shape similarity to the reference) above 0.8
(Supporting Information, Figure S2), with the highest being that of the hit with PubChem
Compound ID (CID) 121589399 (Figure 2a). Six hits obtained a Color Tanimoto score
(denoting chemical group similarity to reference) above 0.5, with the highest being that of
the hit with PubChem CID 2732501 (Figure 2b). Importantly, four compounds (Figure 3b–e;
Supporting Information, Figure S3), including 121589399 obtained field scores (denoting
electrostatic similarity to reference) above 0.8. Hits with field scores of 0.8 and above have
a strong potential to be bioactive [67].
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0.8 shown). (a) Query molecule GRL-0617 (shown as light green lines), which all compounds
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2.2. Validation of the Docking Protocol

Blind docking [67,68] of the reference ligand GRL-0617 against PLpro in several pro-
grams showed that AutoDock Vina [69] could best reproduce the co-crystallised GRL-0617
pose, as shown in Figure 4. When the docked pose was superimposed against the co-
crystallised pose, there was found to be a root-mean-square-deviation (RMSD) of ~0.4 Å
(within the ≤2 Å acceptable range for validation of self-docking). Furthermore, the score
and pose were highly reproducible in five independent docking runs. The mean predicted
free energy of binding (Gibbs free energy (∆G)) score, which is often reported as the pre-
dicted binding affinity in docking, calculated for GRL-0617 was −9.68 ± 0.22 kcal/mol
(mean ± standard error of the mean (SEM)), for five independent runs (Supporting Infor-
mation, Table S2).

2.3. Evaluation of Hits from Virtual Screening Using Molecular Docking
2.3.1. Round 2: Docking 24 Hits from ROCS

The 24 distinct chemical scaffolds obtained from virtual screening were then blindly
docked against PLpro in AutoDock Vina (Scripps Research, San Diego, CA, USA) [69]
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(Supporting Information, Table S2). Of these, compounds with poses that were not in
the active site in any of the five runs were automatically eliminated from the search
(PubChem CIDs: 46295452, 4818469, 5079298, 135431927, 20878059). The compound with
PubChem CID 121589399 obtained the best (most negative) mean predicted binding affinity
of −8.88 ± 0.07 kcal/mol (n = 5), with its pose in the same site as GRL-0617 in all five
runs (Figure 5a). This compound also obtained the best Shape Tanimoto score in the
ligand-based screening. Additionally, it was one of the hits with the highest field score
(0.814). PubChem CID 5384279 obtained the second-best mean predicted binding affinity
of −8.70 ± 0.05 kcal/mol (n = 5), with its pose in the same site as GRL-0617 in all five
runs (Figure 5b). The compound with PubChem CID 5183914, which notably obtained the
highest field score of 0.873, had a mean predicted binding affinity of −8.44 ± 0.14 kcal/mol
(n = 5), with its pose in the same site as GRL-0617 in all five runs (Figure 5c).
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Figure 4. Validation of the docking protocol using GRL-0617. (a)-i Reproducing the co-crystallised
pose of GRL-0617 in AutoDock Vina (co-crystallised pose: pink sticks, docked pose: cyan sticks),
with an RMSD of 0.430 Å between the two poses. The protein crystal structure is shown as white
ribbons (PDB ID: 7JRN); (a)-ii The two-dimensional structure of GRL-0617 (drawn in MarvinSketch);
(b) Co-crystallised pose: pink sticks, docked pose in AutoDock 4.2: cyan sticks, with an RMSD of
7.595 Å between the two poses; (c) Co-crystallised pose: pink sticks, docked pose in SwissDock: cyan
sticks, with an RMSD of 0.545 Å between the two poses; (d) Co-crystallised pose: pink sticks, docked
pose in GOLD: cyan sticks, with an RMSD of 0.720 Å between the two poses.

Three-dimensional analysis of the 24 docked compounds’ protein-ligand interactions
in Protein-Ligand Interaction Profiler (PLIP) (BIOTEC, Tatzberg, Dresden) [70] revealed that
compounds with PubChem CID 121589399 and PubChem CID 5384279 had the greatest
number of interactions in common with the reference ligand (Figure 6a–c). For compound
121589399, these were: π-π stacking with Tyr-268, hydrogen bonds with Leu-162, Asp-164,
Gln-269, and Tyr-273, as well as hydrophobic interactions with Leu-162, Asp-164, Pro-248,
Tyr-264, and Tyr-268, and Gln-269. Although compound 5384279 was missing the π-π
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stacking with Tyr-268, it had retained the hydrogen bond with Asp-164, and hydrophobic
interactions with Leu-162, Asp-164, Pro-247, Pro-248, Tyr-264, Tyr-268, and Gln-269.
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Figure 6. Three-dimensional protein-ligand interactions predicted by PLIP for the reference and three
hits. (a) Reference ligand GRL-0617’s (cyan sticks) interactions with PLpro residues (white/silver
sticks); (b) Compound 121589399’s (cyan sticks) interactions with PLpro residues (white/silver
sticks); (c) Compound 5384279’s (cyan sticks) interactions with PLpro residues (white/silver sticks);
(d) Compound 5183914’s (cyan sticks) interactions with PLpro residues (white/silver sticks). 3-letter
codes and sequence numbers for amino acids are given. Hydrogen bonds are shown as blue lines.
π-π stacking interactions are shown as green dashes. Hydrophobic interactions are shown as grey
dots. The PubChem CID is shown above each compound.
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Two-dimensional analysis of these two compounds’ interactions in Maestro (Schrödinger,
L.L.C., New York, NY, USA) [71] showed that both compounds formed π-π stacking
with Tyr-268, like the reference ligand (Figure 7a–c). Analysis of compound 5183914’s
interactions in PLIP (Figure 6d) revealed several residue interactions in common with the
reference ligand: π-π stacking with Tyr-268, hydrogen bonds with Asp-164, and Gln-269,
and hydrophobic interactions with Asp-164, Pro-248, Tyr-264, and Gln-269. In Maestro,
compound 5183914 was shown to have: π-π stacking with Tyr-268, and a hydrogen bond
with Gln-269, in common with the reference ligand (Figure 7). When the results from
PLIP and Maestro were combined (Supporting Information, Figure S4a–d), compound
121589399 was found to have six interactions in common with GRL-0617, whilst compounds
5384279 and 5183914 were found to have five and four interactions in common with the
reference, respectively.
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0617 (PubChem CIDs 121589399 and 5384279), analogues could only be found for Pub-
Chem CID 121589399. 27 commercially available analogues (Supporting Information, Fig-
ure S5; Supporting Information, Table S3) were obtained with a Tanimoto 2D similarity 
score of 0.7 and above using the MolPort SMILES and SMARTS search tool (www.mol-
port.com). After docking these analogues, two hits were found with their mean predicted 
binding affinities closer to that of the reference ligand (Supporting Information, Table S4), 
with scores better (more negative) than −9.00. Compounds with PubChem CID 121558793 

Figure 7. Two-dimensional protein-ligand interactions predicted by Maestro for the reference
and three hits. (a) Reference ligand GRL-0617’s interactions with PLpro residues; (b) Compound
121589399’s interactions with PLpro residues; (c) Compound 5384279’s interactions with PLpro

residues; (d) Compound 5183914’s interactions with PLpro residues. π-π stacking interactions are
represented by green lines. π-cation interactions are represented by red lines. Hydrogen bonds are
represented by purple dashed arrows (side chain) and purple solid arrow (backbone). Hydrophobic
residues are shown as green circles. Positively charged residues are shown as purple circles. Nega-
tively charged residues are shown as red circles. Polar residues are shown as cyan circles. Glycines
are shown as light-yellow circles. The PubChem CID is shown above each compound.
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2.3.2. Round 3: Docking the Analogues of the Best Hit from Round 2

Of the two best scoring hits which had the most interactions in common with GRL-
0617 (PubChem CIDs 121589399 and 5384279), analogues could only be found for PubChem
CID 121589399. 27 commercially available analogues (Supporting Information, Figure S5;
Supporting Information, Table S3) were obtained with a Tanimoto 2D similarity score of
0.7 and above using the MolPort SMILES and SMARTS search tool (www.molport.com).
After docking these analogues, two hits were found with their mean predicted binding
affinities closer to that of the reference ligand (Supporting Information, Table S4), with
scores better (more negative) than −9.00. Compounds with PubChem CID 121558793
and PubChem CID 132344896 obtained ∆G values of −9.40 ± 0.00 kcal/mol (n = 5) and
−9.26 ± 0.05 kcal/mol (n = 5), respectively, with poses in the same site as GRL-0617
(Figure 8) in five independent runs.
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Figure 8. Poses of analogues from blind docking against PLpro in AutoDock Vina. (a) Compound
121558793’s pose (cyan sticks) relative to the reference ligand GRL-0617’s co-crystallised pose (pink
sticks); (b) Compound 132344896’s pose (cyan sticks) relative to the reference ligand GRL-0617’s
co-crystallised (pink sticks). The protein is shown as white ribbons.

Using PLIP, Compound 121558793 was found to have the following interactions in
common with GRL-0617: π-π stacking with Tyr-268, hydrogen bonds with Asp-164 and
Gln-269, and hydrophobic interactions with Asp-164, Pro-248, Tyr-264, Tyr-268, and Gln-269
(Figure 9a,b). Whilst compound 132344896 was found to have the following interactions
in common with GRL-0617: π-π stacking with Tyr-268, hydrogen bonds with Asp-164
and Gln-269, and hydrophobic interactions with Asp-164, Pro-247, Tyr-264, and Gln-269
(Figure 9a,c).

Additionally, analysis of protein-ligand interactions in Maestro showed that com-
pounds 121558793 and 132344896 had all interactions in common with GRL-0617 (Figure 10).
When the PLIP and Maestro results were combined (Supporting Information, Figure S4a,e,f),
compounds 121558793 and 132344896 were found to have six and five interactions in com-
mon with the reference ligand, respectively.

2.3.3. Refinement Using Focused Docking

Five hits entered focused docking in AutoDock 4.2 (Scripps Research, San Diego, CA,
USA) [72,73], which were PubChem CID 121589399, PubChem CID 5384279, PubChem
CID 5183914, PubChem CID 121558793, and PubChem CID 132344896. When GRL-0617’s
docked pose obtained from AutoDock 4.2 was superimposed against its co-crystallised
pose (Figure 11a), an RMSD of 0.672 Å was obtained (within the ≤2 acceptable range for
validation of self-docking). Once again, the score and pose were highly reproducible in
five independent docking runs (Supporting Information, Table S5). The mean predicted
binding affinity calculated for GRL-0617 was −9.43 ± 0.05 (n = 5). Compound 121558793
(Figure 11e) was predicted by AutoDock 4.2 to have the best predicted binding affinity out
of the five hits in focused docking (−9.17 ± 0.05 (n = 5)). The control and all five selected
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compounds obtained predicted binding affinities in the same rank as before (GRL-0617
< 121558793 < 132344896 < 121589399 < 5384279 < 5183914), in consensus with the blind
docking results from AutoDock Vina. However, poses were not identical between the two
programs. Where an alternative pose was suggested by AutoDock 4.2, it was usually a
switch in orientation (e.g., Figure 11b), such that the compound’s ring group positions
were flipped.
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Figure 9. Three-dimensional protein-ligand interactions predicted by PLIP for two best scoring
analogues of compound 121589399. (a) Interactions of reference ligand GRL-0617 (cyan sticks) with
PLpro residues (white/silver sticks); (b) Interactions of analogue compound 121558793 (cyan sticks)
with PLpro residues (white/silver sticks); (c) Interactions of analogue compound 132344896 (cyan
sticks) with PLpro residues (white/silver sticks). 3-letter codes and sequence numbers for amino
acids are given. Hydrogen bonds are shown as blue lines. π-π stacking interactions are shown as
green dashes. Hydrophobic interactions are shown as grey dots. The PubChem CID is shown above
each compound.
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Five hits entered focused docking in AutoDock 4.2 (Scripps Research, San Diego, CA, 
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Figure 10. Two-dimensional protein-ligand interactions predicted for two best scoring analogues of
compound 121589399 by Maestro. (a) Reference ligand GRL-0617’s interactions with PLpro residues;
(b) Compound 121558793’s interactions with PLpro residues; (c) Compound 132344896’s interactions
with PLpro residues; π-π stacking interactions are represented by green lines. π-cation interactions are
represented by red lines. Hydrogen bonds are represented by purple dashed arrows. Hydrophobic
residues are shown as green circles. Positively charged residues are shown as purple circles. Nega-
tively charged residues are shown as red circles. Polar residues are shown as cyan circles. Glycines
are shown as light-yellow circles. A salt-bridge is shown as a multi-color (purple/red fusion) line.
The PubChem CID is shown above each compound.

2.4. MM-GBSA Binding Energy Calculations

Selected docked compounds from the AutoDock 4.2-based focused docking were
subjected to re-scoring through the Molecular Mechanics/Generalized Born Surface Area
(MM-GBSA) method [68] implemented in Prime 3.0 (Schrödinger, L.L.C., New York, NY,
USA) [74–76]. As shown in Table 1, the reference, GRL-0617, obtained the best (most
negative) score of −61.9 ± 0.92 kcal/mol (n = 5). The molecule with the best score derived
through this method was 121558793 (−57.5 ± 0.58 kcal/mol; n = 5), in consensus with the
AutoDock Vina (blind docking) and AutoDock 4.2 (focused docking) results, which also
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ranked this molecule as the top in the set. In further agreement with the AutoDock tools,
compound 132344896 obtained the second-best score of −52.01 ± 2.4 (n = 5).
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Figure 11. Comparison of poses from blind docking in Vina and focused docking (pose refinement) in
AutoDock 4.2. The protein (PDB ID: 4JRN) is shown as white ribbons. (a) Reference ligand GRL-0617
docked pose from Vina (cyan sticks) and AutoDock 4.2 (gold sticks), relative to the co-crystallised pose
(pink sticks); (b) Compound 121589399 docked pose from Vina (cyan sticks) and AutoDock 4.2 (gold
sticks), relative to the co-crystallised pose of GRL-0617 (pink sticks); (c) Compound 5384279 docked
pose from Vina (cyan sticks) and AutoDock 4.2 (gold sticks), relative to the co-crystallised pose of GRL-
0617 (pink sticks); (d) Compound 5183914 docked pose from Vina (cyan sticks) and AutoDock 4.2
(gold sticks), relative to the co-crystallised pose of GRL-0617 (pink sticks); (e) Compound 121558793
docked pose from Vina (cyan sticks) and AutoDock 4.2 (gold sticks), relative to the co-crystallised
pose of GRL-0617 (pink sticks); (f) Compound 132344896 docked pose from Vina (cyan sticks) and
AutoDock 4.2 (gold sticks), relative to the co-crystallised pose of GRL-0617 (pink sticks).

Table 1. The relative free energy of binding of selected molecules through MM-GBSA based re-scoring.

Molecule MM-GBSA Re-Scoring (∆Gbind, kcal/mol) *

GRL-0617 −61.9 ± 0.92
5183914 −38.5 ± 2.4

121589399 −40.3 ± 2.1
5384279 −50.7 ± 1.6

121558793 −57.5 ± 0.58
132344896 −52.01 ± 2.4

* values represent mean ± SEM from n = 5 independent runs of MM-GBSA protocol implemented in Prime 3.0
(Schrödinger, L.L.C., New York, NY, USA) [76].

The remaining three compounds obtained scores in the following order: 5384279
(−50.7 ± 1.6; n = 5), 121589399 (−40.3 ± 2.1; n = 5), and 5183914 (38.5 ± 2.4; n = 5). In
contrast, the AutoDock tools had ranked compound 121589399 as higher than compound
5384279, however compound 5183914 had obtained the least desirable score in both the
docking and MM-GBSA re-scoring.

2.5. Round 4: Scaffolds’ Drug-Likeness

The chemical structures of the five hits mentioned above were analysed to determine
drug-likeness (Table 2), using the SwissADME tool (Swiss Institute of Bioinformatics,
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Quartier Sorge, Lausanne, Switzerland) [77], (www.swissadme.ch). The Lipinski (Pfizer,
New York, NY, USA), Ghose (Amgen, Thousand Oaks, CA, USA), Veber (GlaxoSmithKline
(GSK), Hong Kong), Egan (Pharmacia, Stockholm, Sweden), and Muegge (Bayer, Lev-
erkusen, Germany) filters were used (Supporting Information, Table S6). Each of the five
compounds complied with all the rules of drug-likeness constituted in each filter. Water
solubility was predicted using the same tool and three compounds were predicted to be
soluble (PubChem CIDs 121589399, 5183914, and 132344896), whilst two were predicted
to be moderately soluble (PubChem CIDs 5384279 and 121558793). Four compounds all
obtained an iLOGP > 2, reflecting good lipophilicity (121589399: 2.17, 132344896: 2.42,
5384279: 3.32, 121558793: 2.41), similar to GRL-0617’s iLOGP value of 2.69. However,
compound 5183914 obtained an iLOGP of 1.54, reflecting poor lipophilicity. At this final
stage, compound 5183914 was eliminated from the work as a promising scaffold, given it
is unlikely to penetrate the plasma membrane of cells to reach the desired target protein
in vitro. Lastly, medicinal chemistry analysis in the SwissADME tool revealed that none
of the four remaining scaffolds were Pan Assay Interference Structures (PAINS) [78,79].
The compounds were also analysed for toxic chemical moieties (‘Brenk’ alerts) [80]. Com-
pounds 121558793 and 132344896 contained no toxic groups. However, like GRL-0617,
compound 121589399 contained an aniline group. Meanwhile, compound 5384279 was
found to have two Brenk alerts: an imine group, and an oxygen-nitrogen single bond.

Table 2. Evaluation of scaffolds’ drug-likeness using SwissADME tool. The results show that the reference GRL-0617 and
selected scaffolds (PubChem CIDs are shown) successfully passed five different filters with individual pharma rules of
drug-likeness. Also shown are compounds’ solubility, lipophilicity, and 2D structures (drawn in MarvinSketch).

GRL-0617 121589399 5384279 5183914 121558793 132344896
Lipinski
(Pfizer)

√ √ √ √ √ √

Ghose
(Amgen)

√ √ √ √ √ √

Veber
(GSK)

√ √ √ √ √ √

Egan
(Pharmacia)

√ √ √ √ √ √

Muegge
(Bayer)

√ √ √ √ √ √

Water solubility
(Log S (Ali))

Moderate
(−4.89)

Soluble
(−3.61 )

Moderate
(−4.91)

Soluble
(−3.22)

Moderate
(−4.48)

Soluble
(−3.88)

Lipophilicity
(iLOGP)

Good
2.69

Good
2.17

Good
3.32

Poor
1.54

Good
2.41

Good
2.42

Structure
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2.7. Scaffold Novelty and Scale of the Study 
To evaluate scaffold novelty, we used our four hits to screen 1,474 molecules, and 

8,904 molecules, annotated with the keyword ‘SARS-CoV-2’ in PubChem (www.pub-
chem.ncbi.nlm.nih.gov), and the ChemBL database [81] (www.ebi.ac.uk/chembl), respec-
tively, using DataWarrior’s,version 5.2.1 (www.openmolecules.org) [82] default finger-
print descriptor FragFp, but found no hits. Likewise, we found no similar hits when we 
analysed the structures submitted to the COVID Moonshot Initiative [83] 
(www.covid.postera.ai/covid), and IUPHAR/BPS Guide to Pharmacology [36,37] 
(www.guidetopharmacology.org). Additionally, the compounds’ PubChem Bioassay 
profiles were also checked. The scaffolds were found to be novel in all cases, with none 
previously tested against the PLpro, or submitted for testing. Three of the molecules have 
no PubChem Bioassay data, whilst compound 5384279 has one PubChem bioassay record 
(Bioassay ID:1159607), where the molecule was found inactive against a non-viral target 
protein. Moreover, using keyword searches in PubMed (www.pub-
med.ncbi.nlm.nih.gov), Web of Science (www.webofknowledge.com), Scopus (www.sco-
pus.com), and Google Scholar (www.scholar.google.com), papers were collected which 
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2.6. Predicted Off-Target Interactions

The similarity ensemble approach (SEA) was used to predict potential off-target in-
teractions for the scaffolds by entering each compound’s SMILES into the SEA Search
Server by Shoichet Lab (www.sea.bkslab.org). Only human proteins were considered
potential targets. The server highlighted targets that had obtained p-values with an ex-
ponent of −16 (e-16), or more negative, as significant. GRL-0617 itself was predicted to
interact with 14 human protein targets using the specified score threshold, including the
potassium voltage-gated channel subfamily B member 2, extracellular calcium-sensing
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receptor, and glycogen phosphorylase (liver form). It was also predicted to interact with
the prostaglandin E2 receptor EP4 subtype, ribonucleotide-diphosphate reductase (large
subunit), ADP-ribosyl cyclase, ATP-dependent RNA helicase, cathepsin G, and peroxisome
proliferator-activated receptor-gamma. Compound 121589399 was not predicted to inter-
act with any human protein targets using the score threshold. Compound 5384279 was
predicted to interact with one human protein target, the thyrotropin receptor. Compound
121558793 was predicted to interact with three human protein targets: RAS guanyl-releasing
protein 1, prostaglandin E2 receptor EP3 subtype, and the prostaglandin F2-alpha receptor.
Compound 132344896 was not predicted to interact with any human proteins using the
score threshold. All the selected scaffolds were predicted to have fewer (or no) off-target
interactions, compared to GRL-0617.

2.7. Scaffold Novelty and Scale of the Study

To evaluate scaffold novelty, we used our four hits to screen 1474 molecules, and 8904
molecules, annotated with the keyword ‘SARS-CoV-2’ in PubChem (www.pubchem.ncbi.
nlm.nih.gov), and the ChemBL database [81] (www.ebi.ac.uk/chembl), respectively, using
DataWarrior’s, version 5.2.1 (www.openmolecules.org) [82] default fingerprint descriptor
FragFp, but found no hits. Likewise, we found no similar hits when we analysed the
structures submitted to the COVID Moonshot Initiative [83] (www.covid.postera.ai/covid),
and IUPHAR/BPS Guide to Pharmacology [36,37] (www.guidetopharmacology.org). Addi-
tionally, the compounds’ PubChem Bioassay profiles were also checked. The scaffolds were
found to be novel in all cases, with none previously tested against the PLpro, or submitted
for testing. Three of the molecules have no PubChem Bioassay data, whilst compound
5384279 has one PubChem bioassay record (Bioassay ID:1159607), where the molecule was
found inactive against a non-viral target protein. Moreover, using keyword searches in
PubMed (www.pubmed.ncbi.nlm.nih.gov), Web of Science (www.webofknowledge.com),
Scopus (www.scopus.com), and Google Scholar (www.scholar.google.com), papers were
collected which involved virtual screening of novel molecules (but not approved drugs)
against PLpro. From the collection of papers we could find and analyse, our virtual screen
was found to be the largest ligand-based screen against GRL-0617. Additionally, we did
not find any of our scaffolds previously mentioned in any papers.

3. Discussion

In this work, we present the largest virtual screen against the PLpro non-covalent
inhibitor GRL-0617 which, in combination with multiple rounds of docking, resulted in the
identification of four novel, lipophilic, and commercially available, scaffolds for in vitro
validation against PLpro and viral replication. The scale of exploration meant we could
search unchartered and diverse regions of chemical space to find the most similar scaffolds
to GRL-0617. Our integrative 4-step approach consisted of a ligand-based screen where
shape, groups, and electrostatic fields of compounds were analysed, and a structure-based
modelling approach that explored the compounds’ predicted binding affinity, location, and
poses against PLpro, as well as protein-ligand interactions. Analogues were found for the
best hit from blind docking, which led to two additional scaffolds with better predicted
binding affinities. The docking results were further refined using MM-GBSA calculations.
Finally, leads were all evaluated using various pharma rules of drug-likeness to ensure
only the most promising scaffolds are presented for further testing. Predicted off-target
interactions were also explored. Importantly, we intentionally focused on libraries of
commercially available small-molecules to ensure that research groups will be able to
purchase, and validate, our hits against the virus in vitro.

Although molecules obtained from virtual screens have previously been deposited
in the literature for prospective testing against PLpro [84–88], these were mainly docking
studies, and we could not find any paper where a ligand-based virtual screen of such
scale had been performed against GRL-0617 before docking. Additionally, and in contrast
to our work, the docking had commonly been performed against the PLpro catalytic site

www.pubchem.ncbi.nlm.nih.gov
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www.ebi.ac.uk/chembl
www.openmolecules.org
www.covid.postera.ai/covid
www.guidetopharmacology.org
www.pubmed.ncbi.nlm.nih.gov
www.webofknowledge.com
www.scopus.com
www.scholar.google.com


Molecules 2021, 26, 1134 15 of 24

and not the GRL-0617 binding site, which is distinctly different. Furthermore, all our
scaffolds are novel and have not previously been tested against the PLpro, or presented
for testing, when checked against several databases. Aside from GRL-0617, which has
been reported by the IUPHAR/BPS Guide to Pharmacology as the only PLpro inhibitor to
date (with a peer-reviewed article), and the only small-molecule inhibitor which has been
co-crystallised with PLpro [40], other inhibitory scaffolds against PLpro with experimental
validation do exist [38]. The dissemination of such scaffolds is critical to drug discovery
and development, and the higher the number of structure-activity relationships delineated,
and functional data available, we can begin to establish the key pharmacophore features
required for a specific and potent antiviral inhibitor against PLpro. The four scaffolds we
present in this work may enrich this small collection, and further inform drug discovery
efforts. Importantly, the scaffolds were predicted to have none or far fewer off-target
interactions than GRL-0617, which is a desired feature in the drug discovery, process, where
the availability of selective scaffolds may facilitate the development of safer medicines
with fewer side effects [89,90]. Moreover, compounds 121558793 and 132344896 had no
toxic chemical moieties.

The use of GRL-0617 as a reference in the virtual screens facilitated the initial identi-
fication of 24 distinct scaffolds. Scaffold hopping has consistently been employed as an
important tool in drug discovery and has yielded many active ligands thus far [91–93].
The availability of more than one scaffold is an advantageous starting point in any drug
development process, given that attrition rates are high due to either lack of potency
or poor pharmacokinetic profiles. In the ligand-based work, compound 121589399 had
notably obtained the best Shape Tanimoto score, and a field score of above 0.8, and as well
as the most favourable predicted free energy of binding in the initial blind docking. ROCS
and Forge have previously been demonstrated to yield bioactive ligands [67,94]. Before
blind docking, we first tested several programs to find out which would reproduce the
co-crystallised GRL-0617 pose with the lowest RMSD between docked and co-crystallised
pose, in which AutoDock Vina outperformed the other programs.

In our docking studies, we used the two AutoDock tools created by the Scripps
Research Institute (San Diego, CA, USA): firstly, AutoDock Vina for blind docking, and
subsequently, AutoDock 4.2 for focused docking. Our aim in the focused docking round
was to establish whether the scores and poses from AutoDock Vina could be reproduced in
a related program with a different docking algorithm. In the analogue-based work, both
programs had predicted compound 121558793 to have the most favourable predicted bind-
ing affinity against the GRL-0617 binding site. Compounds that obtain promising scores
in different programs are often regarded as promising hits in computational work [95].
Additionally, the score rank of compounds was the same in both programs (GRL-0617
< 121558793 < 132344896 < 121589399 < 5384279 < 5183914). However, AutoDock 4.2
suggested alternative poses for some of the compounds, than that obtained in AutoDock
Vina. Interestingly, it has been reported by numerous studies that AutoDock Vina outper-
forms AutoDock 4.2 in pose prediction [69,96–100], which is why we rely on our presented
AutoDock Vina poses and their respective protein-ligand interactions. Furthermore, a
correlation has been suggested between Vina scores and in vitro pIC50 values [100]. Vina
has previously yielded multiple active ligands in vitro [101–104].

Vina’s algorithm is based on a hybrid scoring function (empirical and knowledge-
based) [69], whereas AutoDock 4.2’s scoring algorithm is based on the Assisted Model
Building with Energy Refinement (AMBER) force field [72]. Physics-based scoring func-
tions, such as that employed by AutoDock 4.2, have previously been regarded as less
accurate in pose prediction than knowledge-based scoring functions [100]. However, in
another study AutoDock 4.2 has been reported as more accurate in predicting free energy
of binding (scores), than AutoDock Vina [98]. In either case, our use of AutoDock 4.2 for
focused docking was useful for establishing patterns in compound scores between the
two programs, and since the compounds’ rank in both programs was identical, deciding
on which program was the more accurate determiner of scores did not seem to matter
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much in this case. Both programs had predicted the control ligand to have the best pre-
dicted binding affinity, which demonstrated the accuracy in predicting power of the two
algorithms. Furthermore, we ran five independent docking runs for each compound, due
to the stochastic nature of the programs. The programs could repeatedly reproduce the
co-crystallised pose of GRL-0617, further reflecting their sampling power, and emphasising
their reliability to dock the test scaffolds. Additionally, when we performed Molecular Me-
chanics/Generalised Born Surface Area (MM-GBSA) calculations in Prime, the top-scoring
molecules were 121558793 and 132344896, in agreement with the focused and blind docking
results from the AutoDock tools. Hence, re-scoring the docked compounds’ free energy of
binding using the MM-GBSA method allowed us to further refine and validate the docking
results. Previously, such re-scoring with MM-GBSA has provided good correlation with
experimentally-obtained binding data [105–109].

Moreover, we used a two-dimensional and three-dimensional approach (and a combi-
nation of the two) when analysing protein-ligand interactions of poses obtained from the
docking programs, which allowed us to perform an in-depth analysis of predicted residues
involved in ligand binding. Our approach was also highly stringent, as we considered all
of the control ligand’s interactions as criteria to compare the test compounds’ interactions
against, since it is not fully known which, or how many of the predicted residues, play
a central role in GRL-0617 binding. In general, although the protein-ligand interactions
predicted by PLIP (3D) and Maestro (2D) cannot be directly compared due to their different
prediction algorithms, and number of predicted interactions, using both programs allowed
us to build a multi-layered and comprehensive perspective of protein-ligand interactions.

Our analogue-based approach, which was based on compound 121589399, facilitated
the discovery of two hits with closer predicted binding affinities to the control ligand, which
reflected the practicality and usefulness of such an approach. Additionally, analogues of
our hits may be further explored in future work to find other scaffolds with favourable
predicted binding affinities in the search for more potent inhibitors of PLpro. As these
scaffolds were found using the GRL-0617 structural template, they may also facilitate
establishing SAR around the GRL-0617 scaffold. This may be useful in the design of more
potent inhibitors. Importantly, aside from potency, collections of our and other scaffolds
may be useful in structural optimization to achieve desirable pharmacokinetic profiles [110].
This is because, for any drug discovery initiative, it is advisable to start with several distinct
scaffolds as hits or leads, as not all scaffolds will necessarily survive various rigorous steps
during the pre-clinical stage.

Thus far, there is no approved drug against the SARS coronaviruses. The growing
worldwide mortality rate resulting from the COVID-19 crisis demands an urgent need for
an effective inhibitor. An approved drug against SARS-CoV-2 may likely be repurposed
against another novel coronavirus. Hence, the availability of multiple inhibitory scaffolds
may be of paramount importance in our toolkit to develop safe medicines in the fight
against future coronavirus pandemics. This is because an available drug may dramatically
lower mortality rates and help to contain epidemics at the source to prevent worldwide
transmission. Although an approved vaccine is also of critical importance in preventing
morbidity, it may also be considered that a vaccine may not retain its efficacy against a
mutated form of the virus [111–113]. However, this problem may still be overcome with
an approved drug against either Mpro or PLpro (or a ‘gold-standard’ cocktail drug with a
combination of molecules against both). The four novel scaffolds we present in this work
may be employed for experimental validation in the pursuit of novel inhibitory scaffolds
against the SARS-CoV-2 PLpro.

4. Materials and Methods
4.1. Chemical Libraries

Three chemical libraries containing novel screening compounds were obtained for
ligand-based virtual screening-the ChemDiv Diversity® library (52,000 small-molecules)
(www.chemdiv.com), the MayBridge Hit Locator® library (53,000 small-molecules) (www.
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maybridge.com), and the Enamine Hit Locator® library (234,240 small-molecules) (www.
enamine.net).

4.2. Ligand-Structure Preparation

The three-dimensional structures of molecules contained in the screening libraries,
as well as the co-crystallised non-covalent inhibitor, GRL-0617, which had been obtained
from PubChem (www.pubchem.ncbi.nlm.nih.gov), were energy-minimised in the Molec-
ular Operating Environment (MOE) [114], version 2019.01 (Chemical Computing Group,
Montreal, QC, Canada).

4.3. Ligand-Based Virtual Screening

ROCS [63,64], version 3.4.1.0 (OpenEye Scientific Software, Santa Fe, NM, USA),
was employed for virtual screening. The three-dimensional structure of GRL-0617 was
used as the query molecule. The three libraries were screened for hits with similar 3D
shape/structural and chemical similarity to GRL-0617. The Shape Tanimoto score de-
noted structural similarity (maximum obtainable score: 1), and the Color Tanimoto score
(maximum obtainable score: 1) denoted chemical group similarity. A ROCS Report was
created using the OpenEye command line. Subsequently, the highest-scoring hits were
aligned to the query molecule GRL-0617 in Forge [65–67], version 10.4.2 (Cresset, Litlington,
Cambridgeshire, UK), and electrostatic field similarity was manually inspected to select a
sub-set of molecules for molecular docking. The molecules’ field scores were noted.

4.4. Protein-Structure Preparation

The three-dimensional protein structure of the SARS-CoV-2 PLpro was obtained from
the PDB (www.rcsb.org) (PDB ID: 7JRN). The protein was prepared for molecular docking
using ICM-Pro [115], version 3.8 (Molsoft, L.L.C., San Diego, CA, USA). These preparations
included the removal of water molecules and ligands and the addition of hydrogen groups.

4.5. Molecular Docking
4.5.1. Blind Docking

Validation blind docking was first performed using different docking software to find
the program which could best reproduce the GRL-0617 co-crystallised pose. AutoDock
Vina, version 1.1.2 (Scripps Research, San Diego, CA, USA; www.scripps.edu) [69] (also
referred to as just ‘Vina’), AutoDock 4.2, version 4.2.6 (also referred to as ‘AD 4.2’, or
‘AutoDock 4’) [72,73], SwissDock webserver (www.swissdock.ch) [116], and the Genetic
Optimisation for Ligand Docking (GOLD) suite, version 5.8.0 [117] (The Cambridge Crystal-
lographic Data Centre, Cambridge, Cambridgeshire, UK), were tested. An exhaustiveness
value of 24 was used in AutoDock Vina, with the AutoGrid maximised to encapsulate the
entire structure of the protein. In AutoDock 4.2, the AutoGrid was also maximised, and the
Lamarckian genetic algorithm was opted for. The zinc ion was removed before docking in
AutoDock 4.2. AutoDock Vina and AutoDock 4.2 were both run in the PyRx [118] interface,
version 0.8 (www.sourceforge.net).Compounds were converted to ‘AutoDock Ligand’ using
OpenBabel [119], version 2.4.0 (also in PyRx), and the protein structure was imported and
converted to ‘AutoDock Macromolecule’ before docking. ‘Pseudo’ blind docking was per-
formed in GOLD. The binding site was defined as the center mass of the bound GRL-01617
(X, Y, Z, coordinates: 10.875, Y: −11.327, 31.594, respectively). Atoms within a 10 Å radius
of this location were used as the search space for blind docking. For each program, the
highest-ranked pose with the best (most negative) predicted free energy of binding, Gibbs
free energy (∆G) in(kcal/mol), or ChemPLP score (GOLD), was superimposed against the
GRL-0617 co-crystallised pose, to calculate an RMSD value in DockRMSD, version 1.1 [120]
(Zhang Lab, University of Michigan; www.zhanglab.ccmb.med.umich.edu/DockRMSD).
The AutoDock tools measure predicted free energy of binding (∆G), but scores are com-
monly reported as predicted binding affinity. Thus, the terms ‘∆G’ and ‘binding affinity’
are used interchangeably throughout the text. Where mean ± SEM is shown, five inde-
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pendent docking runs were performed to calculate these values. All presented docking
poses are that of the highest-ranked pose. The highest-ranking pose for each compound
was superimposed against the GRL-0617 co-crystallised pose, in UCSF Chimera [121],
version 1.14 (University of California, San Francisco, CA, USA).

4.5.2. Refinement Using Focused Docking

The best molecules from blind docking were further analysed using focused docking,
which was performed using AutoDock 4.2 [72]. The molecule poses from blind docking
were converted to ‘AutoDock Ligand’ using OpenBabel, version 3.3.0, implemented in
the PyRx interface. Before importing the protein structure, its zinc ion was removed. The
AutoGrid was focused-in on the GRL-0617 binding site. The Lamarckian genetic algorithm
was opted for. Validation of the docking protocol was performed using GRL-0617. The
highest-ranking pose for each compound was superimposed against its Vina blind docking
pose, and the GRL-0617 co-crystallised pose, in UCSF Chimera [121].

4.6. MM-GBSA Binding Energy Calculations

Selected docked compounds were subjected to re-scoring through the Molecular
Mechanics/Generalized Born Surface Area (MM-GBSA) method implemented in Prime,
version 3.0 (Schrödinger, L.L.C., New York, NY, USA) [74–76] as per published protocol [68].
The relative free energy of binding (∆G, kcal/mol) was calculated for each molecule as an
average of five independent runs of the Prime MM-GBSA protocol.

4.7. Analogue Search

The MolPort SMILES and SMARTS search tool (www.molport.com/shop/find-chemicals-
by-smiles) was used to find analogues. A 2D Tanimoto cutoff of 0.7 was used. The ana-
logues were energy-minimised and docked, as described above.

4.8. Analysis of Protein-Ligand Interactions

PLIP (BIOTEC, Tatzberg, Dresden; www.projects.biotec.tu-dresden.de/plip-web/
plip) [70] was used to analyse protein-ligand interactions in 3D. Additionally, 2D protein-
ligand interaction diagrams were created using the Maestro suite (Schrödinger, L.L.C., New
York, NY, USA) [71].

4.9. Molecular Visualization

PyMOL, version 2.4 (Schrödinger, L.L.C., New York, NY, USA) and UCSF Chimera [121]
were used to visualise poses against the protein binding pocket. Open Babel and Molegro
Molecular Viewer (MMV) [122], version 7.0 (Molexus IVS, Odder, Denmark)) were used
for processing files from docking. MarvinSketch, version 20.16 (ChemAxon Ltd., Budapest,
Hungary) [123] was used to draw two-dimensional chemical structures.

4.10. Assessing Molecules’ Drug-Likeness

The molecules’ SMILES were entered into the SwissADME web server [77] (www.
swissadme.ch) to determine drug-likeness using the Lipinski (Pfizer), Ghose (Amgen),
Veber (GlaxoSmithKline), Egan (Pharmacia), and Muegge (Bayer) filters, with each having
set rules for drug-likeness (Supporting Information, Table S6). The SwissADME tool
was also used to predict the compounds’ water solubility using Log S (Ali) [124] and
lipophilicity with calculated iLOGP [125,126] values, as well as their medicinal chemistry
(PAINS analysis [78,79], and toxic chemical moieties (Brenk alerts) [80]).

4.11. Predicted Off-Target Interactions

The similarity ensemble approach (SEA) was used to predict potential off-target
interactions for the scaffolds by entering each compound’s SMILES into the SEA Search
Server by Shoichet Lab (www.sea.bkslab.org). Only human proteins were considered. The
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server highlighted targets that had obtained p-values with an exponent of −16 (e-16), or
more negative, as significant.

4.12. Scaffold Novelty and Scale of the Study

To evaluate scaffold novelty, we used our five hits to screen 1474 molecules and 8904
molecules annotated (accessed on 14 February 2021) with the keyword ‘SARS-CoV-2’ in Pub-
Chem (www.pubchem.ncbi.nlm.nih.gov) and the ChemBL database [81] (www.ebi.ac.uk/
chembl), respectively, using DataWarrior’s, version 5.2.1, (www.openmolecules.org) [82]
default fingerprint descriptor FragFp. Likewise, the COVID Moonshot Initiative [83]
(www.covid.postera.ai/covid/structures), IUPHAR/BPS Guide to Pharmacology [36,37]
(www.guidetopharmacology.com), and PubChem Bioassay data, were searched to confirm
scaffold novelty.

To confirm whether this work contained the largest virtual screen against the SARS-
CoV-2 PLpro, keyword searches were performed in PubMed (www.pubmed.ncbi.nlm.nih.
gov), Web of Science (www.webofknowledge.com), Scopus (www.scopus.com), and Google
Scholar (www.scholar.google.com) to find papers where virtual ligand-based screens had
been conducted in the search for novel inhibitors against PLpro. Any hits presented in such
papers were also visually compared to our hits to further check scaffold novelty.

Supplementary Materials: The following are available online. Figure S1: Two-dimensional struc-
tures of 24 hits obtained from ligand-based virtual screening; Table S1: Commercial availability of
24 hits obtained from ligand-based screens, Figure S2: ROCS result for 24 hits from ligand-based
screening; Figure S3: Hits’ electrostatic field comparison to the reference (Forge results); Table S2:
Vina results for docking control and 24 hits from ligand-based screening against PLpro; Figure S4:
Venn diagrams showing the combination of PLIP and Maestro results for the reference and five se-
lected hits; Figure S5: Two-dimensional structures of the analogues of compound 121589399; Table S3:
Commercial availability of 27 analogues of compound 121589399; Table S4: Vina results for docking
control and 27 analogues of compound 121589399; Table S5: Focused docking of the control and the
five selected hits in AutoDock 4.2; Details of drug-likeness filters (rules) used in the SwissADME tool.
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44. Limban, C.; Nuţă, D.C.; Chiriţă, C.; Negres, , S.; Arsene, A.L.; Goumenou, M.; Karakitsios, S.P.; Tsatsakis, A.M.; Sarigiannis, D.A.
The use of structural alerts to avoid the toxicity of pharmaceuticals. Toxicol. Rep. 2018, 5, 943–953. [CrossRef] [PubMed]

45. Kalgutkar, A.S. Should the incorporation of structural alerts be restricted in drug design? An analysis of structure-toxicity trends
with aniline-based drugs. Curr. Med. Chem. 2015, 22, 438–464. [CrossRef] [PubMed]

46. Sodano, T.M.; Combee, L.A.; Stephenson, C.R.J. Recent Advances and Outlook for the Isosteric Replacement of Anilines. ACS
Med. Chem. Lett. 2020, 11, 1785–1788. [CrossRef] [PubMed]

47. Stepan, A.F.; Walker, D.P.; Bauman, J.; Price, D.A.; Baillie, T.A.; Kalgutkar, A.S.; Aleo, M.D. Structural Alert/Reactive Metabolite
Concept as Applied in Medicinal Chemistry to Mitigate the Risk of Idiosyncratic Drug Toxicity: A Perspective Based on the
Critical Examination of Trends in the Top 200 Drugs Marketed in the United States. Chem. Res. Toxicol. 2011, 24, 1345–1410.
[CrossRef]

48. Hwang, T.J.; Carpenter, D.; Lauffenburger, J.C.; Wang, B.; Franklin, J.M.; Kesselheim, A.S. Failure of Investigational Drugs in
Late-Stage Clinical Development and Publication of Trial Results. JAMA Intern. Med. 2016, 176, 1826–1833. [CrossRef] [PubMed]

49. Fogel, D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review.
Contemp. Clin. Trials Commun. 2018, 11, 156–164. [CrossRef]

50. Báez-Santos, Y.M.; John, S.E.S.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and inhibition by
designed antiviral compounds. Antivir. Res. 2015, 115, 21–38. [CrossRef] [PubMed]

51. V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat.
Rev. Microbiol. 2020. [CrossRef]

52. Xu, C.; Ke, Z.; Liu, C.; Wang, Z.; Liu, D.; Zhang, L.; Wang, J.; He, W.; Xu, Z.; Li, Y.; et al. Systemic In Silico Screening in Drug
Discovery for Coronavirus Disease (COVID-19) with an Online Interactive Web Server. J. Chem. Inf. Model. 2020, 60, 5735–5745.
[CrossRef] [PubMed]

53. Gao, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease.
Acta Pharm. Sin. B 2021, 11, 237–245. [CrossRef]

54. Bosken, Y.K.; Cholko, T.; Lou, Y.-C.; Wu, K.-P.; Chang, C.E.A. Insights Into Dynamics of Inhibitor and Ubiquitin-Like Protein
Binding in SARS-CoV-2 Papain-Like Protease. Front. Mol. Biosci. 2020, 7. [CrossRef] [PubMed]

55. Shin, D.; Mukherjee, R.; Grewe, D.; Bojkova, D.; Baek, K.; Bhattacharya, A.; Schulz, L.; Widera, M.; Mehdipour, A.R.;
Tascher, G.; et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature 2020, 587, 657–662.
[CrossRef]

56. Matveeva, T.; Khafizova, G.; Sokornova, S. In Search of Herbal Anti-SARS-Cov2 Compounds. Front. Plant. Sci. 2020, 11. [CrossRef]
57. Klemm, T.; Ebert, G.; Calleja, D.J.; Allison, C.C.; Richardson, L.W.; Bernardini, J.P.; Lu, B.G.; Kuchel, N.W.; Grohmann, C.;

Shibata, Y.; et al. Mechanism and inhibition of the papain-like protease, PLpro, of SARS-CoV-2. EMBO J. 2020, 39, e106275.
[CrossRef]

58. Angeletti, S.; Benvenuto, D.; Bianchi, M.; Giovanetti, M.; Pascarella, S.; Ciccozzi, M. COVID-2019: The role of the nsp2 and nsp3
in its pathogenesis. J. Med. Virol. 2020, 92, 584–588. [CrossRef]

https://www.nejm.org/doi/full/10.1056/NEJMoa2023184
http://doi.org/10.1016/S0140-6736(20)31022-9
http://doi.org/10.1136/bmj.m4120
https://www.guidetopharmacology.org/coronavirus.jsp
http://doi.org/10.2218/gtopdb/F1034/2020.2
http://doi.org/10.1021/acsinfecdis.0c00168
http://doi.org/10.1101/2020.05.17.100768
http://doi.org/10.1038/s41467-020-20718-8
http://doi.org/10.1073/pnas.0805240105
http://www.ncbi.nlm.nih.gov/pubmed/18852458
http://doi.org/10.1126/sciadv.abd4596
http://doi.org/10.1038/s41392-020-00335-z
http://www.ncbi.nlm.nih.gov/pubmed/33024071
http://doi.org/10.1016/j.toxrep.2018.08.017
http://www.ncbi.nlm.nih.gov/pubmed/30258789
http://doi.org/10.2174/0929867321666141112122118
http://www.ncbi.nlm.nih.gov/pubmed/25388012
http://doi.org/10.1021/acsmedchemlett.9b00687
http://www.ncbi.nlm.nih.gov/pubmed/33062152
http://doi.org/10.1021/tx200168d
http://doi.org/10.1001/jamainternmed.2016.6008
http://www.ncbi.nlm.nih.gov/pubmed/27723879
http://doi.org/10.1016/j.conctc.2018.08.001
http://doi.org/10.1016/j.antiviral.2014.12.015
http://www.ncbi.nlm.nih.gov/pubmed/25554382
http://doi.org/10.1038/s41579-020-00468-6
http://doi.org/10.1021/acs.jcim.0c00821
http://www.ncbi.nlm.nih.gov/pubmed/32786695
http://doi.org/10.1016/j.apsb.2020.08.014
http://doi.org/10.3389/fmolb.2020.00174
http://www.ncbi.nlm.nih.gov/pubmed/32850963
http://doi.org/10.1038/s41586-020-2601-5
http://doi.org/10.3389/fpls.2020.589998
http://doi.org/10.15252/embj.2020106275
http://doi.org/10.1002/jmv.25719


Molecules 2021, 26, 1134 22 of 24

59. Ionescu, M.I. An Overview of the Crystallized Structures of the SARS-CoV-2. Protein J. 2020, 39, 600–618. [CrossRef]
60. Barretto, N.; Jukneliene, D.; Ratia, K.; Chen, Z.; Mesecar, A.D.; Baker, S.C. The Papain-Like Protease of Severe Acute Respiratory

Syndrome Coronavirus Has Deubiquitinating Activity. J. Virol. 2005, 79, 15189–15198. [CrossRef] [PubMed]
61. Maiti, B.K. Can Papain-like Protease Inhibitors Halt SARS-CoV-2 Replication? ACS Pharmacol. Transl. Sci. 2020, 3, 1017–1019.

[CrossRef]
62. Lee, H.; Lei, H.; Santarsiero, B.D.; Gatuz, J.L.; Cao, S.; Rice, A.J.; Patel, K.; Szypulinski, M.Z.; Ojeda, I.; Ghosh, A.K.; et al.

Inhibitor Recognition Specificity of MERS-CoV Papain-like Protease May Differ from That of SARS-CoV. ACS Chem. Biol. 2015,
10, 1456–1465. [CrossRef] [PubMed]

63. OpenEye Scientific Software. ROCS Version 3.4.1.0; OpenEye Scientific Software: Santa Fe, NM, USA, 2020.
64. Hawkins, P.C.; Skillman, A.G.; Nicholls, A. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem.

2007, 50, 74–82. [CrossRef]
65. Cresset®. Forge, Version 10.6; Cresset Group: Cambridgeshire, UK, 2020.
66. Cheeseright, T.J.; Mackey, M.D.; Scoffin, R.A. High content pharmacophores from molecular fields: A biologically relevant

method for comparing and understanding ligands. Curr. Comput. Aided Drug Des. 2011, 7, 190–205. [CrossRef] [PubMed]
67. Callejo, G.; Pattison, L.A.; Greenhalgh, J.C.; Chakrabarti, S.; Andreopoulou, E.; Hockley, J.R.F.; Smith, E.S.J.; Rahman, T. In silico

screening of GMQ-like compounds reveals guanabenz and sephin1 as new allosteric modulators of acid-sensing ion channel 3.
Biochem. Pharmacol. 2020, 174, 113834. [CrossRef]

68. Greenhalgh, J.C.; Chandran, A.; Harper, M.T.; Ladds, G.; Rahman, T. Proposed model of the Dictyostelium cAMP receptors
bound to cAMP. J. Mol. Graph. Model. 2020, 100, 107662. [CrossRef]

69. Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [CrossRef]

70. Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein—Ligand interaction profiler.
Nucleic Acids Res. 2015, 43, W443–W447. [CrossRef]

71. Schrödinger, L.L.C. Schrödinger, Release 2020-4: Maestro; Schrödinger, L.L.C.: New York, NY, USA, 2020.
72. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4:

Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [CrossRef]
73. Huey, R.; Morris, G.M.; Olson, A.J.; Goodsell, D.S. A semiempirical free energy force field with charge-based desolvation.

J. Comput. Chem. 2007, 28, 1145–1152. [CrossRef] [PubMed]
74. Jacobson, M.P.; Pincus, D.L.; Rapp, C.S.; Day, T.J.; Honig, B.; Shaw, D.E.; Friesner, R.A. A hierarchical approach to all-atom protein

loop prediction. Proteins Struct. Funct. Bioinform. 2004, 55, 351–367. [CrossRef]
75. Jacobson, M.P.; Friesner, R.A.; Xiang, Z.; Honig, B. On the role of the crystal environment in determining protein side-chain

conformations. J. Mol. Biol. 2002, 320, 597–608. [CrossRef]
76. Schrödinger, L.L.C. Prime 3.0; Schrödinger, L.L.C.: New York, NY, USA, 2020.
77. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal

chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]
78. Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening

libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [CrossRef] [PubMed]
79. Baell, J.B.; Nissink, J.W.M. Seven Year Itch: Pan-Assay Interference Compounds (PAINS) in 2017—Utility and Limitations. ACS

Chem. Biol. 2018, 13, 36–44. [CrossRef] [PubMed]
80. Brenk, R.; Schipani, A.; James, D.; Krasowski, A.; Gilbert, I.H.; Frearson, J.; Wyatt, P.G. Lessons learnt from assembling screening

libraries for drug discovery for neglected diseases. ChemMedChem 2008, 3, 435–444. [CrossRef]
81. Mendez, D.; Gaulton, A.; Bento, A.P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, M.P.; Mosquera, J.F.; Mutowo, P.; Nowotka, M.

ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019, 47, D930–D940. [CrossRef] [PubMed]
82. Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization

and analysis. J. Chem. Inf. Model. 2015, 55, 460–473. [CrossRef]
83. Chodera, J.; Lee, A.A.; London, N.; von Delft, F. Crowdsourcing drug discovery for pandemics. Nat. Chem. 2020, 12, 581.

[CrossRef]
84. Alamri, M.A.; Qamar, M.T.U.; Mirza, M.U.; Alqahtani, S.M.; Froeyen, M.; Chen, L.-L. Discovery of human coronaviruses

pan-papain-like protease inhibitors using computational approaches. J. Pharm. Anal. 2020, 10, 546–559. [CrossRef]
85. Gorgulla, C.; PadmanabhaDas, K.; Leigh, K.E.; Cespugli, M.; Fischer, P.D.; Wang, Z.-F.; Tesseyre, G.; Pandita, S.; Shnapir, A.;

Calderaio, A.; et al. A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening. iScience
2021, 24. [CrossRef]

86. Quimque, M.T.; Notarte, K.I.; Fernandez, R.A.; Mendoza, M.A.; Liman, R.A.; Lim, J.A.; Pilapil, L.A.; Ong, J.K.; Pastrana, A.M.;
Khan, A.; et al. Virtual screening-driven drug discovery of SARS-CoV2 enzyme inhibitors targeting viral attachment, replication,
post-translational modification and host immunity evasion infection mechanisms. J. Biomol. Struct. Dyn. 2020, 1–18. [CrossRef]

87. Siddiqui, S.; Upadhyay, S.; Ahmad, R.; Gupta, A.; Srivastava, A.; Trivedi, A.; Husain, I.; Ahmad, B.; Ahamed, M.; Khan, M.A.
Virtual screening of phytoconstituents from miracle herb nigella sativa targeting nucleocapsid protein and papain-like protease
of SARS-CoV-2 for COVID-19 treatment. J. Biomol. Struct. Dyn. 2020, 1–21. [CrossRef]

http://doi.org/10.1007/s10930-020-09933-w
http://doi.org/10.1128/JVI.79.24.15189-15198.2005
http://www.ncbi.nlm.nih.gov/pubmed/16306590
http://doi.org/10.1021/acsptsci.0c00093
http://doi.org/10.1021/cb500917m
http://www.ncbi.nlm.nih.gov/pubmed/25746232
http://doi.org/10.1021/jm0603365
http://doi.org/10.2174/157340911796504314
http://www.ncbi.nlm.nih.gov/pubmed/21726191
http://doi.org/10.1016/j.bcp.2020.113834
http://doi.org/10.1016/j.jmgm.2020.107662
http://doi.org/10.1002/jcc.21334
http://doi.org/10.1093/nar/gkv315
http://doi.org/10.1002/jcc.21256
http://doi.org/10.1002/jcc.20634
http://www.ncbi.nlm.nih.gov/pubmed/17274016
http://doi.org/10.1002/prot.10613
http://doi.org/10.1016/S0022-2836(02)00470-9
http://doi.org/10.1038/srep42717
http://www.ncbi.nlm.nih.gov/pubmed/28256516
http://doi.org/10.1021/jm901137j
http://www.ncbi.nlm.nih.gov/pubmed/20131845
http://doi.org/10.1021/acschembio.7b00903
http://www.ncbi.nlm.nih.gov/pubmed/29202222
http://doi.org/10.1002/cmdc.200700139
http://doi.org/10.1093/nar/gky1075
http://www.ncbi.nlm.nih.gov/pubmed/30398643
http://doi.org/10.1021/ci500588j
http://doi.org/10.1038/s41557-020-0496-2
http://doi.org/10.1016/j.jpha.2020.08.012
http://doi.org/10.1016/j.isci.2020.102021
http://doi.org/10.1080/07391102.2020.1776639
http://doi.org/10.1080/07391102.2020.1852117


Molecules 2021, 26, 1134 23 of 24

88. Contreras-Puentes, N.; Alviz-Amador, A. Virtual screening of natural metabolites and antiviral drugs with potential inhibitory
activity against 3CL-PRO and PL-PRO. Biomed. Pharmacol. J. 2020, 13, 933–941. [CrossRef]

89. Rudmann, D.G. On-target and off-target-based toxicologic effects. Toxicol. Pathol. 2013, 41, 310–314. [CrossRef]
90. Huang, Y.; Furuno, M.; Arakawa, T.; Takizawa, S.; de Hoon, M.; Suzuki, H.; Arner, E. A framework for identification of on- and

off-target transcriptional responses to drug treatment. Sci. Rep. 2019, 9, 17603. [CrossRef] [PubMed]
91. El Kerdawy, A.M.; Osman, A.A.; Zaater, M.A. Receptor-based pharmacophore modeling, virtual screening, and molecular

docking studies for the discovery of novel GSK-3β inhibitors. J. Mol. Model. 2019, 25, 171. [CrossRef]
92. Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in Scaffold Hopping. J. Med. Chem. 2017, 60, 1238–1246. [CrossRef]
93. Grisoni, F.; Merk, D.; Byrne, R.; Schneider, G. Scaffold-Hopping from Synthetic Drugs by Holistic Molecular Representation.

Sci. Rep. 2018, 8, 16469. [CrossRef]
94. Millington-Burgess, S.L.; Bonna, A.M.; Rahman, T.; Harper, M.T. Ethaninidothioic acid (R5421) is not a selective inhibitor of

platelet phospholipid scramblase activity. Br. J. Pharmacol. 2020, 177, 4007–4020. [CrossRef]
95. Sliwoski, G.; Kothiwale, S.; Meiler, J.; Lowe, E.W. Computational methods in drug discovery. Pharmacol. Rev. 2014, 66, 334–395.

[CrossRef]
96. Wang, Z.; Sun, H.; Yao, X.; Li, D.; Xu, L.; Li, Y.; Tian, S.; Hou, T. Comprehensive evaluation of ten docking programs on a diverse

set of protein-ligand complexes: The prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys. 2016,
18, 12964–12975. [CrossRef]

97. Vieira, T.F.; Sousa, S.F. Comparing AutoDock and Vina in Ligand/Decoy Discrimination for Virtual Screening. Appl. Sci. 2019,
9, 4538. [CrossRef]

98. Nguyen, N.T.; Nguyen, T.H.; Pham, T.N.H.; Huy, N.T.; Bay, M.V.; Pham, M.Q.; Nam, P.C.; Vu, V.V.; Ngo, S.T. Autodock Vina
Adopts More Accurate Binding Poses but Autodock4 Forms Better Binding Affinity. J. Chem. Inf. Model. 2020, 60, 204–211.
[CrossRef]

99. Gaillard, T. Evaluation of AutoDock and AutoDock Vina on the CASF-2013 Benchmark. J. Chem. Inf. Model. 2018, 58, 1697–1706.
[CrossRef]

100. Boittier, E.D.; Tang, Y.Y.; Buckley, M.E.; Schuurs, Z.P.; Richard, D.J.; Gandhi, N.S. Assessing Molecular Docking Tools to Guide
Targeted Drug Discovery of CD38 Inhibitors. Int. J. Mol. Sci. 2020, 21, 5183. [CrossRef]

101. Chen, P.; Ke, Y.; Lu, Y.; Du, Y.; Li, J.; Yan, H.; Zhao, H.; Zhou, Y.; Yang, Y. DLIGAND2: An improved knowledge-based energy
function for protein-ligand interactions using the distance-scaled, finite, ideal-gas reference state. J. Cheminform. 2019, 11, 52.
[CrossRef]

102. Theerawatanasirikul, S.; Kuo, C.J.; Phetcharat, N.; Lekcharoensuk, P. In silico and in vitro analysis of small molecules and natural
compounds targeting the 3CL protease of feline infectious peritonitis virus. Antivir. Res. 2020, 174, 104697. [CrossRef] [PubMed]

103. Jeong, J.; Kim, H.; Choi, J. In Silico Molecular Docking and In Vivo Validation with Caenorhabditis elegans to Discover Molecular
Initiating Events in Adverse Outcome Pathway Framework: Case Study on Endocrine-Disrupting Chemicals with Estrogen and
Androgen Receptors. Int. J. Mol. Sci. 2019, 20, 1209. [CrossRef] [PubMed]

104. Cuccioloni, M.; Bonfili, L.; Cecarini, V.; Cocchioni, F.; Petrelli, D.; Crotti, E.; Zanchi, R.; Eleuteri, A.M.; Angeletti, M. Struc-
ture/activity virtual screening and in vitro testing of small molecule inhibitors of 8-hydroxy-5-deazaflavin: NADPH oxidoreduc-
tase from gut methanogenic bacteria. Sci. Rep. 2020, 10, 1–11. [CrossRef]

105. Hu, G.; Kuang, G.; Xiao, W.; Li, W.; Liu, G.; Tang, Y. Performance Evaluation of 2D Fingerprint and 3D Shape Similarity Methods
in Virtual Screening. J. Chem. Inf. Model. 2012, 52, 1103–1113. [CrossRef]

106. Tripathi, M.K.; Sharma, P.; Tripathi, A.; Tripathi, P.N.; Srivastava, P.; Seth, A.; Shrivastava, S.K. Computational exploration and
experimental validation to identify a dual inhibitor of cholinesterase and amyloid-beta for the treatment of Alzheimer’s disease.
J. Comput. Aided Mol. Des. 2020, 34, 983–1002. [CrossRef]

107. Mulakala, C.; Viswanadhan, V.N. Could MM-GBSA be accurate enough for calculation of absolute protein/ligand binding free
energies? J. Mol. Graph. Model. 2013, 46, 41–51. [CrossRef]

108. Hou, T.; Wang, J.; Li, Y.; Wang, W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of
Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011, 51, 69–82. [CrossRef]

109. Wang, E.; Sun, H.; Wang, J.; Wang, Z.; Liu, H.; Zhang, J.Z.H.; Hou, T. End-Point Binding Free Energy Calculation with MM/PBSA
and MM/GBSA: Strategies and Applications in Drug Design. Chem. Rev. 2019, 119, 9478–9508. [CrossRef] [PubMed]

110. Anan, K.; Masui, M.; Tazawa, A.; Tomida, M.; Haga, Y.; Kume, M.; Yamamoto, S.; Shinohara, S.; Tsuji, H.; Shimada, S.; et al.
Discovery of NR2B-selective antagonists via scaffold hopping and pharmacokinetic profile optimization. Bioorgan. Med. Chem.
Lett. 2019, 29, 1143–1147. [CrossRef]

111. Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.;
Foley, B.; et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell
2020, 182, 812–827.e19. [CrossRef] [PubMed]

112. Krammer, F. SARS-CoV-2 vaccines in development. Nature 2020, 586, 516–527. [CrossRef]
113. Knipe, D.M.; Levy, O.; Fitzgerald, K.A.; Mühlberger, E. Ensuring vaccine safety. Science 2020, 370, 1274–1275. [CrossRef] [PubMed]
114. Chemical Computing Group ULC. Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group: Montreal, QC,

Canada, 2020.

http://doi.org/10.13005/bpj/1962
http://doi.org/10.1177/0192623312464311
http://doi.org/10.1038/s41598-019-54180-4
http://www.ncbi.nlm.nih.gov/pubmed/31772269
http://doi.org/10.1007/s00894-019-4032-5
http://doi.org/10.1021/acs.jmedchem.6b01437
http://doi.org/10.1038/s41598-018-34677-0
http://doi.org/10.1111/bph.15152
http://doi.org/10.1124/pr.112.007336
http://doi.org/10.1039/C6CP01555G
http://doi.org/10.3390/app9214538
http://doi.org/10.1021/acs.jcim.9b00778
http://doi.org/10.1021/acs.jcim.8b00312
http://doi.org/10.3390/ijms21155183
http://doi.org/10.1186/s13321-019-0373-4
http://doi.org/10.1016/j.antiviral.2019.104697
http://www.ncbi.nlm.nih.gov/pubmed/31863793
http://doi.org/10.3390/ijms20051209
http://www.ncbi.nlm.nih.gov/pubmed/30857347
http://doi.org/10.1038/s41598-020-70042-w
http://doi.org/10.1021/ci300030u
http://doi.org/10.1007/s10822-020-00318-w
http://doi.org/10.1016/j.jmgm.2013.09.005
http://doi.org/10.1021/ci100275a
http://doi.org/10.1021/acs.chemrev.9b00055
http://www.ncbi.nlm.nih.gov/pubmed/31244000
http://doi.org/10.1016/j.bmcl.2019.02.017
http://doi.org/10.1016/j.cell.2020.06.043
http://www.ncbi.nlm.nih.gov/pubmed/32697968
http://doi.org/10.1038/s41586-020-2798-3
http://doi.org/10.1126/science.abf0357
http://www.ncbi.nlm.nih.gov/pubmed/33203781


Molecules 2021, 26, 1134 24 of 24

115. Abagyan, R.; Totrov, M.; Kuznetsov, D. ICM—A new method for protein modeling and design: Applications to docking and
structure prediction from the distorted native conformation. J. Comput. Chem. 1994, 15, 488–506. [CrossRef]

116. Grosdidier, A.; Zoete, V.; Michielin, O. Fast docking using the CHARMM force field with EADock DSS. J. Comput. Chem. 2011,
32, 2149–2159. [CrossRef]

117. Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking.
J. Mol. Biol. 1997, 267, 727–748. [CrossRef]

118. Dallakyan, S.; Olson, A.J. Small-Molecule Library Screening by Docking with PyRx. In Chemical Biology; Springer: Berlin/
Heidelberg, Germany, 2015; pp. 243–250.

119. O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox.
J. Cheminform. 2011, 3, 33. [CrossRef] [PubMed]

120. Bell, E.W.; Zhang, Y. DockRMSD: An open-source tool for atom mapping and RMSD calculation of symmetric molecules through
graph isomorphism. J. Cheminform. 2019, 11, 40. [CrossRef] [PubMed]

121. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera–a visualization
system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef]

122. Molexus IVS. Molegro Molecular Viewer (MMV), Version 7.0.; Molexus: Rodder, Denmark, 2020.
123. ChemAxon. MarvinSketch, Version 20.16; ChemAxon Ltd.: Budapest, Hungary, 2020.
124. Ali, J.; Camilleri, P.; Brown, M.B.; Hutt, A.J.; Kirton, S.B. Revisiting the general solubility equation: In silico prediction of aqueous

solubility incorporating the effect of topographical polar surface area. J. Chem. Inf. Model. 2012, 52, 420–428. [CrossRef]
125. Daina, A.; Michielin, O.; Zoete, V. iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for

drug design using the GB/SA approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [CrossRef] [PubMed]
126. Moriguchi, I.; Hirono, S.; Liu, Q.; Nakagome, I.; Matsushita, Y. Simple Method of Calculating Octanol/Water Partition Coefficient.

Chem. Pharm. Bull. 1992, 40, 127–130. [CrossRef]

http://doi.org/10.1002/jcc.540150503
http://doi.org/10.1002/jcc.21797
http://doi.org/10.1006/jmbi.1996.0897
http://doi.org/10.1186/1758-2946-3-33
http://www.ncbi.nlm.nih.gov/pubmed/21982300
http://doi.org/10.1186/s13321-019-0362-7
http://www.ncbi.nlm.nih.gov/pubmed/31175455
http://doi.org/10.1002/jcc.20084
http://doi.org/10.1021/ci200387c
http://doi.org/10.1021/ci500467k
http://www.ncbi.nlm.nih.gov/pubmed/25382374
http://doi.org/10.1248/cpb.40.127

	Introduction 
	Results 
	Round 1: Ligand-Based Virtual Screening 
	Validation of the Docking Protocol 
	Evaluation of Hits from Virtual Screening Using Molecular Docking 
	Round 2: Docking 24 Hits from ROCS 
	Round 3: Docking the Analogues of the Best Hit from Round 2 
	Refinement Using Focused Docking 

	MM-GBSA Binding Energy Calculations 
	Round 4: Scaffolds’ Drug-Likeness 
	Predicted Off-Target Interactions 
	Scaffold Novelty and Scale of the Study 

	Discussion 
	Materials and Methods 
	Chemical Libraries 
	Ligand-Structure Preparation 
	Ligand-Based Virtual Screening 
	Protein-Structure Preparation 
	Molecular Docking 
	Blind Docking 
	Refinement Using Focused Docking 

	MM-GBSA Binding Energy Calculations 
	Analogue Search 
	Analysis of Protein-Ligand Interactions 
	Molecular Visualization 
	Assessing Molecules’ Drug-Likeness 
	Predicted Off-Target Interactions 
	Scaffold Novelty and Scale of the Study 

	References

