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Abstract: Recovering height information from a single aerial image is a key problem in the fields
of computer vision and remote sensing. At present, supervised learning methods have achieved
impressive results, but, due to domain bias, the trained model cannot be directly applied to a new
scene. In this paper, we propose a novel semi-supervised framework, StyHighNet, for accurately
estimating the height of a single aerial image in a new city that requires only a small number of
labeled data. The core is to transfer multi-source images to a unified style, making the unlabeled
data provide the appearance distribution as additional supervision signals. The framework mainly
contains three sub-networks: (1) the style transferring sub-network maps multi-source images into
unified style distribution maps (USDMs); (2) the height regression sub-network, with the function
of predicting the height maps from USDMs; and (3) the style discrimination sub-network, used
to distinguish the sources of USDMs. Among them, the style transferring sub-network shoulders
dual responsibilities: On the one hand, it needs to compute USDMs with obvious characteristics,
so that the height regression sub-network can accurately estimate the height maps. On the other
hand, it is necessary that the USDMs have consistent distribution to confuse the style discrimination
sub-network, so as to achieve the goal of domain adaptation. Unlike previous methods, our style
distribution function is learned unsupervised, thus it is of greater flexibility and better accuracy.
Furthermore, when the style discrimination sub-network is shielded, this framework can also be
used for supervised learning. We performed qualitatively and quantitative evaluations on two sets
of public data, Vaihingen and Potsdam. Experiments show that the framework achieved superior
performance in both supervised and semi-supervised learning modes.

Keywords: height estimation; semi-supervised learning; style transfer; convolutional neural network;
domain adaptation

1. Introduction

With the development of remote sensing and image acquisition technology, high-
resolution aerial images are widely used, e.g., in urban planning, disaster monitoring,
emergency management, and so on. If height information could be automatically extracted
from aerial images, it would further improve the intelligent level of downstream applica-
tions, such as automated city modeling [1,2], augmented reality [3,4], etc. However, it is a
technically ill-posed problem to extract height from a single image [5], especially for the
scenes with complex structure. Most traditional solutions are based on handcrafted visual
features and probabilistic graphical models (PGMs), which rely on strong assumptions
about the geometry of the scene, seriously affected by issues of flexibility and stability [6].
In recent years, with the growth of deep learning and the emergence of large-scale datasets,
image-to-height mapping can be trained end-to-end. Most of them use an encoder–decoder
network structure [7], where the encoder is responsible for extracting multi-scale spatial
features, while the decoder gradually up-samples these features to the original size to
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obtain dense height values. Although excellent performance has been achieved through
supervised learning, there are still some problems in practice: (1) Making training labels is
expensive. At present, the mainstream method for obtaining depth/height labels is based
on LiDAR or multi-view stereo vision (MVS) 3D reconstruction, both of which require
complex and expensive pre/post-processing. Therefore, currently available aerial height
estimation datasets are limited in number and scale; thus, training on these datasets easily
leads to overfitting. (2) Due to historical, climatic, and cultural reasons, the appearances of
different cities are significantly different (domain bias [8]), which means models trained in
one city cannot be properly applied to other cities.

To solve the above problems, researchers have proposed many solutions. The authors
of [9–11] generated synthetic datasets. The virtual 3D world is constructed manually or
semi-automatically, and then samples and labels are exported automatically or interactively.
This kind of data has the advantages of low cost, fast generation, and no noise, which
can effectively make up for the shortcomings of the real dataset. However, there exists a
problem named domain bias [8] caused by the difference between the real world and the
virtual scenes. Zhou et al. [12] proposed the fine-tuning method to deal with the situation
where only a small amount of training data available in the new scene, which locks most
of the model parameters trained on the original data and then retrains the remaining
parameters on the target data. Although the convergence rate is faster, it can easily cause
the phenomena of overfitting and catastrophic forgetting [13]. Atapour et al. [14] proposed
a domain adapting method. By firstly training a deep model on synthetic data, and then
mapping the real data to synthetic data, it easily gives rise to semantic deviation when the
appearance difference between two domains is large (such as two cities).

In this paper, we propose a novel semi-supervised deep neural framework, named
StyHighNet, that can accurately estimate the height map from a single aerial image that
only requires a small count of training labels. The core is to transfer multi-source data
(source domain data with a large number of labels, target domain data with a small number
of labels, and synthetic data) into a kind of unified style distribution maps, and then infer
the height maps from them. This framework contains three sub-networks: (1) the style
transferring sub-network (STN), which converts multi-source images into unified style
distribution maps (USDMs); (2) the height regression sub-network (HRN), which infers the
dense height map from USDMs; and (3) the style discrimination sub-network (SDN), which
determines the source type of USDMs. Among them, STN has a dual responsibility: On
the one hand, it tries to estimate the height map accurately together with HRN, therefore
making USDMs have sufficient characteristics to regress from. On the other hand, it
attempts to confuse SDN in an adversarial manner, making the distribution of USDMs
similar, to achieve the goal of domain adaptation [15]. Compared with previous work,
the differences in our work are as follows: (1) We discriminate the data source in a dense
manner using pixel-wise prediction of the probability distribution of source category, which
refines the control of style distribution. (2) We use dual networks to estimate the height
maps, which has more learning ability to deal with complex scenes. (3) The distribution of
USDMs is learned unsupervised, thus it has great flexibility and stability, especially when
there are significant differences between the data sources. In addition, StyHighNet can
be regarded as a general learning framework because it is compatible with supervised
and semi-supervised learning modes. In summary, the contributions of this article are
as follows:

1. We propose a novel network framework that can semi-supervised learn height esti-
mation from a single image based on unified style transferring.

2. We generate a small-scale synthetic dataset automatically through city modeling
software and a game engine to make up for the lack of real-world data.

3. We design a set of loss functions that enable three sub-networks to work orderly to
achieve the goal of semi-supervised learning.

We conducted quantitative and qualitative evaluations on two public datasets of Vai-
hingen and Potsdam. The experiments showed that our framework outperforms previous
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methods in both supervised and semi-supervised mode. We also verified the effects of
hyperparameters through an ablation study.

2. Related Works

In this section, we review the the three most relevant aspects to the method pro-
posed in this paper, namely monocular depth/height estimation, domain adaptation, and
style transfer.

2.1. Monocular Depth/Height Estimation

The purpose of monocular depth/height estimation is to determine the depth/height
value corresponding to each pixel in the image. It is a basic problem in many computer
vision tasks and has received extensive attention. Early methods are mainly based on
handcrafted features and probabilistic graph models (PGMs). Saxena et al. [16,17] used
Markov Random Fields (MRF) and combined local/global features to infer the depth
from the monocular image, and introduce super-pixels to achieve neighboring constraints.
Comber et al. [18] calculated the height of the building based on the relationship between
length of the shadow and the pose of the sun. Qi et al. [19,20] used the information
provided by Google Earth to propose CSLR (corner shadow length ratio) to calculate the
height of the building. These methods rely on the strong assumption of the input image
thus have some limitations in practical applications.

In terms of deep learning, Baig et al. [21] used sparse coding to estimate the depth
of the entire scene. The authors of [22,23] used a two-scale network to learn the mapping
of RGB images to depth. Since then, there have been multiple improved versions [24–27]. In
the field of remote sensing, several networks for predicting height have been
proposed [5,28–31]. The above methods generally adopt decoder–decoder structures,
where the encoder extracts multi-scale features, and the decoder up-samples and com-
bines these features to regress the pixel-wise height. However, due to the lack of high-
quality/large-scale training data, these supervised learning methods suffer from the prob-
lems of stability and integrity [32]. Recently, Xie et al. [33] proposed a self-supervised
learning method, Deep3D network, to predict the depth map from stereo images without
training labels, which reconstructs a virtual right image with a predicted depth map and
known camera translation, and the consistency relative to the left image is utilized as
mainly leaning signal. Godard et al. [34] used bilinear difference and left-right consistency
cross-validation to obtain higher accuracy. Although such methods achieve superior qual-
ity to the supervised version, the stereo image pairs require strict synchronization and
calibration that still limit the training data. Zhou et al. [35] simultaneously estimated the
depth map and ego-motion of the adjacent frame within a monocular video, which further
reduced the threshold of training data, but the dynamic objects in the scene violate the
assumption of rigid transformation, leading to a fuzzy and incomplete result. Subsequent
work made improvements in this area by off-line masking [36–38], optical-flow [39] or
on-line masking [32,40,41]. The authors of [42,43] proposed a semi-supervised learning
depth estimation method, which combines the use of LiDAR labels and the consistency of
the novel view of adjacent frames to ensure the correct prediction. Sex et al. [44] proposed
a method that semi-supervised learns the depth estimation of a single image through the
relationship between semantic labels and geometric information. Although the above
methods achieved high fidelity on the training data, the situation of cross-domain is not
considered. Moreover, in the field of remote sensing, isolated images without spatiotem-
poral adjacent frames are the mainstream data format. Therefore, we take advantage of
both height labels and unified style distribution as learning signals to achieve accuracy and
domain adaptability simultaneously.



Sensors 2021, 21, 2272 4 of 15

2.2. Domain Adaptation

Due to the lack of comprehensive training datasets for depth/height estimation,
synthetic datasets [9–11] were generated as a complement for the real-world datasets
through their low cost and perfect pixels. However, the inevitable bias that comes from
the virtual modeling and rendering process makes the networks trained on synthetic
images cannot directly apply to real-world scenes. Zhou et al. [12] proposed a fine-tuning
method that retrains the model on a small count of target data, but it faces the issues
of overfitting and catastrophic forgetting [13]. Domain adaptation methods [8,15,45–49]
minimize the difference between the source data and the target data by a pre-trained model,
but they tend to fail when the difference between two data sources is large (e.g., two cities).
Here, we learn a unified style distribution unsupervised to avoid the phenomenon of
adaptation failure.

2.3. Style Transfer

The method of Gatys et al. [50] firstly converts source images to another style via a
convolutional neural network. The subsequent methods directly update the pixel value of
the output image [51–54] or learn the specified image style from a large amount of training
data [55–59]. Among them, the Gram Matrix is usually used to evaluate the consistency
of the distribution. Inspired by this idea, we transfer multi-source images to a unified
style distribution and preserve the obvious characteristics at the same time to ensure the
robustness of height estimation.

3. Method

In the following subsection, we introduce the implementation details of the proposed
framework, namely pipeline overview, running mechanism, and loss functions.

3.1. Pipeline Overview

The framework is composed of three sub-networks: (1) The style transferring network
Nt, which converts the original image X? ∈ RH×W×3 from multiple sources into the style
distribution maps T? ∈ RH×W×Ct , where ? ∈ {sup, sem, syn} represents the three types of
input images, sup represents to the real data with a large number of labels, sem means the
real data with a small number of labels, and syn refers to the synthetic data; (2) the height
regression network Nh, which regresses the height maps Y? ∈ RH×W×1 from T?; and (3)
the style discrimination network Nd, with inputs T? and outputs D? ∈ RH×W×3, which
represent the probability distribution of source category of T?. These three sub-networks
are coupled together to achieve the goal of height estimation and domain adaptation
through three loss functions (lossh, lossd, lossc), as shown in Figure 1.

3.2. Implementation Mechanism of StyHighNet

In our pipeline, there are two workflows trained simultaneously: one is supervised
learning of height regression (includingNt andNh) and the other is unsupervised learning
of unified style distribution (including Nt, and Nd). It can see that Nt undertakes dual
tasks in these two workflows to achieve the purpose of semi-supervised learning.

3.2.1. Supervised Height Regression

Unlike the previous supervised method [29,60], our height estimation adopts a dual-
network serial inference strategy. The style transferring network Nt converts the multi-
source images X = {X?|? = sup, sem, syn} into the style distribution maps T and regresses
them by height regression networkNh to the corresponding height maps Y. There are three
types of sources of input data forNt, each of them playing a different role: (1) real data with
many labels Xsup are the main force of supervised learning and are the source domain in
terms of domain adaptation; (2) real data with few labels Xsem, which, although the number
is not large, provide the key guidance to style distribution and are the target domain in
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terms of domain adaptation; and (3) synthetic data Xsyn are used as a complement to Xsup
because of their low cost and perfect pixels.

We employ a popular encoder–decoder structure [7] for both Nt and Nh. The encoder
adopts the MobileNetV2 architecture [61] to improve the computational efficiency. The
decoder uses deconvolution as the up-sampling function. The feature maps with the same
size in the encoder and decoder are skipped and connected to preserve the geometric
details. The input and output sizes of the two networks are the same, and the number
of channels of T is set to 3 for the convenience of visualization and analysis. The output
activation functions ofNt andNh are both sigmoid. The specific network structure is shown
in Figure 2.

Figure 1. Pipeline overview. The framework contains three sub-networks: style transferring sub-
network (Nt), height regression sub-network (Nh), and style discrimination sub-network (Nd). They
work together to complete the task of semi-supervised height regression.

3.2.2. Unsupervised Style Transferring

The task of unsupervised style transferring is jointly completed by the style transfer
networkNt and the style discrimination networkNd. Their relationship is similar to that of
generator and discriminator in Generative Adversarial Networks (GANs) [62]. Nd is used
to judge (classify) the source category of the T = {T∗|∗ = sup, sem, syn}, output number
of channels is the number of source categories (here is 3), and the activation function is
so f tmax to form the probability distribution of classification. Nt tries to confuse Nd, which
makes the distribution of T from multi-source images as similar as possible, to achieve the
purpose of domain adaptation. The unified style distribution is not known in advance; it
is learned unsupervised and tends to be stable during the adversarial process. However,
two points are different from the classic generative confrontation network [62]: (1) The
Nd network performs the classification task for each pixel, rather than summarizes them
into a scalar to distinguish, making control and analysis further improved. (2) Our style
distribution maps T are derived from the multi-source images X instead of a random vector.
We use the same network structure for Nd, as shown in Figure 2.
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Figure 2. Sub-network architecture. The three sub-networks use the same network structure, but
according to different specific tasks, the input and output data are different.

3.2.3. Semi-Supervised Learning

During the training process, the two workflows mentioned above are carried out at
the same time. It is clear that the style transfer network Nt shoulders dual tasks simultane-
ously: On the one hand, it supervised learns a style transferring function together with
height estimation network Nh to recover the height map from multi-source images. The
characteristics of the style distribution map T need to be obvious to achieve the goal of
accurate height regression. On the other hand, it cooperates with the style discrimination
network Nd in an adversarial manner to make the T as similar as possible to achieve do-
main adaptation. Therefore, the images without labels can also contribute their supervising
signals on style distribution. Note that the labeled data only enter the height regression
workflow, while all of the data enter the style transferring workflow, which forms a semi-
supervised learning mechanism. In the training phase, these two workflows are performed
cooperatively in parallel.

3.3. Loss Functions

Style transferring sub-network Nt and height regression sub-network participate in
supervised learning to recover the height map from multi-source images. The binary-cross-
entropy (BCE) lossh is used to optimize the parameters in these two sub-networks, namely

lossh = − 1
N ∑

i
∑
?
[Ŷ?,i log(Y?,i) + (1− Ŷ?,i) log(1−Y?,i)], ? ∈ {sup, sem, syn} (1)

where
Y∗ = F (Nh, F (Nt, X?)) (2)

is the predicted height map, F (·, ·) denotes the network mapping function, N is the
number of all pixels, i is the pixel index, and Ŷ? is the corresponding height labels.

In the optimization process, the output style distribution maps T? = F (Mt, X?) from
the style transferring sub-network Nt are originally unconstrained, thus images from the
different data source may have different styles, which leads to domain bias. To this end,
we introduce a style discrimination network Nd to unify the style distribution, where two
losses are involved (lossd and lossc). lossd is to evaluate the effect of classification for data
categories, achieved by the cross-entropy function [63] similar to the tasks of semantic
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segmentation [64]. In contrast, lossc aims at confusing the style discrimination network
Nd, making the Ts from three data categories as similar as possible. They are defined
as follows:

lossd =
1
N ∑

i
[−log(Dm

m,i)], (3)

lossc =
1
N ∑

i
[−log(D0

m,i)] (4)

where D ∈ RH,W,3 is the output of style discriminant sub-networkNd, which is normalized
by a so f tmax activation. Dl

m,i is the discriminant probability inferred from mth data source
category at the position of pixel i and in the mth channel, where m, l ∈ {0, 1, 2}.

If we treat D as an RGB image, the style discriminant network Nd tries to output
three pure color images for three data categories: red for Tsup, green for Tsem and blue
for Tsyn. In Equation (4), we set the target category always be 0, as Xsup has the most
learning signals that can avoid the phenomenon of excessive smoothness. Other style
distribution maps (Tsem and Tsyn are constrained to be closed with Tsup to accomplish the
task of domain adaptation.

The height regression sub-network Nh and style discriminant sub-network Nd are
optimized by lossh and lossd, respectively, as they are both independent modules. However,
style transferring sub-networkNt is a dual-task module, so it has a combined loss function:

losst = lossh + λlossc. (5)

where the coefficient λ is a fusing weight, and set to be 0.1 in practice.

4. Experiment

To verify the performance of the ThickSeg, we built a synthetic dataset and made a
qualitative and quantitative evaluation on two open datasets of Vaihengen and Potsdam.
We also performed an ablation study to observe the effects of hyper-parameters.

4.1. Datasets

Vaihingen dataset includes 33 regions of different sizes, each of them containing a
top view taken from the mosaic and the corresponding height map. The ground sampling
interval of the two types of images is all 9 cm. The height maps are generated by Trimble
INPHO 5.3 software, and the top views are stitched by Trimble INPHO OthoVista. To
avoid data loss, these 33 areas are sliced in the center part of the reconstructed scene, where
interpolation is used to remove missing data.

Potsdam dataset contains 38 areas with the same size, where top views and height
maps are both taken from the mosaic with 5 cm sampling spacing. The top view images
are in TIFF format and have different channel combinations: (1) IRRG with three channels
(IR-RG); (2) RGB with three channels (RGB); and (3) RGBIR with four channels (RGB-IR).
Users can choose the appropriate channel mode, and here we use RGB mode. The height
maps are also in TIFF format but with one channel, and are coded as a 32 bit floating point
in meters.

Synthetic dataset, similar to the one in [65], is generated automatically by modeling
software and a game engine. Objects are randomly distributed in the virtual city, including
roads, buildings, trees, lawns, etc. The 3D models are imported into the game engine
through obj format, containing shapes, materials, and textures. The color maps and height
maps are sampled and rendered at random positions, both in the format of PNG. Some
examples are given in Figure 3.
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Figure 3. Synthetic dataset. The first and third columns are rendered color images and the second
and fourth columns are the corresponding height maps where the intensity is proportional to their
height values.

4.2. Implementation Details

We implemented the proposed network using the open deep learning framework
PyTorch [66]. For training, we used Adam optimizer [67] with lr = 10−4, β1 = 0.9,
β2 = 0.999, and ε = 10−8. The learning rate was scheduled via exponential decay with
d = 0.96. The total number of epochs was set to 50 with batch size 32 on a workstation
equipped with four NVIDIA 1080ti GPUs for all experiments in this work.

All three sub-networks adopted U-Net architecture [7] with MobileNet-v2 [61] encoder
and de-convolutional decoder. All outputs of sub-networks were filtered by Sigmoid
activation for normalization, except for the style discriminant sub-network. for which the
output was activated by so f tmax function for pixel-wise classification. Two workflows of
height regression and style transferring were parallel on the macro-level and serial on the
micro-level, which means they were trained in turn on each batch.

To avoid overfitting, we augmented images before input to the network using ran-
dom rotation in the range of [−π,+π] as well as random contrast, brightness, and color
adjustment in a range of [0.8, 1.2], with 50% of chance. The images were also randomly
cropped to 512× 512 and 1024× 1024 for training and testing, respectively. Training data
and testing data were randomly split according to the radio of 6:4. All test results shown in
this section were obtained from the average of five independent experiments. For Potsdam
dataset, all original data were down-sampled by radio 2 to expand the sampling distance
from 5 to 10 cm.

We used the same numerical metrics as in [29,60] to evaluate the quality of height
regression, root-mean-square error (RMSE) and the zero-mean normalized cross-correlation
(ZNCC), which are defined as:

RSME =

√√√√ 1
N

N

∑
i
(xi − yi)2 (6)
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ZNCC =
1
N

N

∑
i

1
σxσy (xi − µx)(yi − µy). (7)

where x and y denote output and ground truth, respectively, with n pixels. µx and µy are
the mean values of x and y, while σx and σy are the standard deviations of x and y.

4.3. Supervised Mode

Our framework supports supervised learning by simply neglecting the style discrim-
inant sub-network. In this learning mode, two datasets (Vaihingen and Potsdam) were
trained separately as only one source data (Xsup) is needed. Xsup was firstly inputted into
style transferring sub-network Nt to get a style distribution map T, and then, T was fed to
the height regression sub-network Nh to regress the height maps where the only lossh was
minimized to optimize both sub-networks jointly. As shown in Table 1, measurements of
RMSE and ZNN were improved by 2% and 3%, respectively, compared to state-of-the-art
work [60]. Visualized results are shown in Figure 4 and compared with IMG2DSM [29],
where can be inferred that our result is sharper than that of IMG2DSM [29].

Figure 4. Two examples from the Potsdam dataset (top two rows) and two examples from the
Vaihingen dataset (bottom two rows). From left to right, we show the input images, ground truth,
predicted height maps of IMG2DSM (our implementation), predicted height maps of our method,
height difference maps using IMG2DSM, and height difference maps of our result, respectively.

Table 1. Comparison height estimation results in supervised learning mode with the previous works
of IMG2DSM [29] and MPFupsion [60]. Best results in each category are in bold.

Vaihingen Potsdam

Method RMSE ZNCC RMSE ZNCC

IMG2DSM [29] 2.58 0.759 3.89 0.718

MPFusion [60] 2.45 0.847 3.90 0.821

Ours 2.40 0.872 3.83 0.845
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Although StyHighNet needs two cascaded sub-networks to predict the height maps,
it still achieves a high level of time and space efficiency. All sub-networks in StyHighNet
were implemented by a lightweight structure of MobileNetV2 [61], which only contains
12M parameters parameters and predicts a 1024× 1024 image in just 50 ms.

4.4. Semi-Supervised Mode
4.4.1. Inner-Domain Semi-Supervised Learning

In the inner-domain semi-supervised mode, the training data in each dataset were
further split into two parts: the images with or without labels to simulate circumstance
where many images exist of one city but few of them are labeled due to the cost of
annotation. We performed the experiments on two datasets (Vaihingen and Potsdam)
separately; the ratio of the labeled images were set as 20%, 50%, and 80%. In this mode,
three sub-networks (Nt, Nh, and Nd) were all trained as described in Section 3.2.3, and
three loss functions (losst, lossh, and lossd) were all involved, with the fusing weight
λ in Equation (5) set to 0.1. We compared the results to those of the supervised mode
introduced in the last section, as shown in Table 2, which only used labeled images for
learning. The results of the semi-supervised mode are superior to those of the supervised
mode because extra data (unlabeled data) were used to constrain the style distribution
maps, thus avoiding overfitting. The visualization results are shown in Figure 5.

Table 2. Inner-domain semi-supervised learning results compared with the supervised learning
mode on datasets of Vaihingen and Potsdam. Best results in each category are in bold.

Dataset Method
20% 50% 80%

RSME ZNCC RSME ZNCC RSME ZNCC

Vaihingen super 3.830 0.673 3.033 0.776 2.887 0.805
semi 3.533 0.713 2.894 0.796 2.794 0.813

Potdam super 4.753 0.667 4.256 0.831 4.035 0.846
semi 4.364 0.732 4.083 0.834 3.977 0.847

Figure 5. Three examples from the Vaihingen dataset in inner-domain semi-supervised learning
mode. The columns from left to right correspond to the test images, ground truth, supervised learning
results, semi-supervised learning results, and corresponding style distribution maps.
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4.4.2. Inter-Domain Semi-Supervised Learning

The inter-domain semi-supervised learning mode was also designed for the circum-
stance of lack of labeled images. In contrast to the inner-domain mode, this mode focuses
on the problem of domain bias, in which the model trained in one city has difficulty be-
ing applied in another city, which is very common in practice. We used all the training
data from one city with a small percentage of labeled data (20%) from another city as the
supervised signals of height regression, and the remaining unlabeled data were used for
unsupervised learning of style distribution. We used the same parameters as in the previ-
ous section to train and test the model and compared the results to the supervised learning
method, fine-tuning [12], and with or without synthetic data, as shown in Table 3. The
inter-domain configuration achieves the best result, as the unlabeled data contributed to
constrain and unify the style distribution. Furthermore, the use of synthetic data enhanced
the performance significantly. The visualized results are shown in Figure 6.

Figure 6. Inter-domain semi-supervised visualization. From left to right are input images, ground
truths, supervised learning predictions, and semi-supervised learning predictions.
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Table 3. Comparison of inter-domain semi-supervised learning to supervised learning, fine-
tuning [12], and with or without synthetic data, on Vaihingen and Potsdam datasets. Best results in
each category are in bold.

Method
Vaihingen Potsdam

RMSE ZNCC RMSE ZNCC

super 4.369 0.506 4.453 0.683

fine-tune [12] 4.536 0.406 5.332 0.323

semi 4.011 0.500 4.557 0.669

semi-syn 3.491 0.681 4.245 0.712

4.5. Ablation Study

We examined two super parameters: the number of channels of style map nt and
the loss function of height regression loosh. For nt, we chose 1, 3, and 5, as shown in
Table 4. We observed that overall performance improves with the increase of nt since a
thicker style map carries more features for height regression. However, the effect is not
obvious when nt increases from 3 to 5 as a three-channel style map can already describe
the latent information for this task. For lossh, we compared it with the root-mean-square-
error (RMSE) loss. We found that the binary-cross-entropy (BCE) loss used in this work
outperforms the version with RMSE, as BCE loss tends to form a sharper effect which is
more suitable for building-like objects.

Table 4. Ablation study. Comparison of the number of channels of style distribution maps and the
choice of the height regression function. Best results in each category are in bold.

lossh nt
Vaihingen Potsdam

RMSE ZNCC RMSE ZNCC

RSME
1 4.212 0.435 4.767 0.425
3 3.520 0.657 4.256 0.688
5 3.493 0.662 4.253 0.685

BCE
1 4.021 0.455 4.762 0.433
3 3.491 0.681 4.245 0.712
5 3.482 0.677 4.242 0.708

5. Conclusions

In this paper, we propose a novel framework, named StyHighNet, for semi-supervised
learning height estimation from a single aerial image. StyHighNet consists of three sub-
networks with the same structure for style transferring, height regression, and style dis-
crimination, respectively. These sub-networks are optimized orderly within two workflows:
supervised height regression and unsupervised style transferring. We created a synthetic
dataset and performed qualitative and quantitative analysis on two public datasets of
Vaihingen and Potsdam. The experiments indicated that StyHighNet is superior in both
supervised learning mode and semi-supervised learning mode. Especially in inter-domain
semi-supervised learning mode, StyHighNet effectively solves the problem of domain
bias in the case of lack of labels. The super parameter of number channels in the style
distribution map and the choice of loss function for height regression were analyzed in the
ablation study.
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