
 

AIMS Microbiology, 4(3): 397–412. 

DOI: 10.3934/microbiol.2018.3.397 

Received: 14 April 2018 

Accepted: 29 May 2018 

Published: 07 June 2018 

http://www.aimspress.com/journal/microbiology 

 

Research article 

Bacterial biofilm development during experimental degradation of 

Melicertus kerathurus exoskeleton in seawater 

Nikolina-Alexandra Xaxiri, Eleni Nikouli, Panagiotis Berillis and Konstantinos Ar. Kormas* 

Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of 

Thessaly, 38446 Volos, Greece 

* Correspondence: Email: kkormas@uth.gr, kkormas@gmail.com; Tel: +302421093082;  

Fax: +302421093157. 

Abstract: Chitinolytic bacteria are widespread in marine and terrestrial environment, and this is 

rather a reflection of their principle growth substrate’s ubiquity, chitin, in our planet. In this paper, 

we investigated the development of naturally occurring bacterial biofilms on the exoskeleton of the 

shrimp Melicertus kerathurus during its degradation in sea water. During a 12-day experiment with 

exoskeleton fragments in batch cultures containing only sea water as the growth medium at 18 °C 

in darkness, we analysed the formation and succession of biofilms by scanning electron 

microscopy and 16S rRNA gene diversity by next generation sequencing. Bacteria belonging to 

the γ- and α-Proteobacteria and Bacteroidetes showed marked (less or more than 10%) changes in 

their relative abundance from the beginning of the experiment. These bacterial taxa related to known 

chitinolytic bacteria were the Pseudolateromonas porphyrae, Halomonas aquamarina, Reinekea 

aestuarii, Colwellia asteriadis and Vibrio crassostreae. These bacteria could be considered as 

appropriate candidates for the degradation of chitinous crustacean waste from the seafood industry as 

they dominated in the biofilms developed on the shrimp’s exoskeleton in natural sea water with no 

added substrates and the degradation of the shrimp exoskeleton was also evidenced. 
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1. Introduction 

Marine chitinolytic, or chitinoclastic, bacteria have attracted the scientific interest several 

decades ago [1], primarily because this single compound is the second most abundant natural 

polymer after cellulose [2] and one of the major carbon and nitrogen sources for marine bacteria [3,4]. 

Chitinolytic microorganisms, through the hydrolysis of glycosidic bonds, compensate the vast 

production of chitin in the marine environment on an annual basis, with the complete mineralization 

of chitin taking place in 50–140 days in surface oceanic waters [5]. The majority of chitinolytic 

activity takes place by free-living and animal gut associated bacteria [4,6]. This natural cycling 

receives excess amounts of chitin, mostly by the accumulation of crustacean exoskeleton waste 

produced by commercial crustacean farming and seafood industry [7]. 

In 2015, 7.3 × 10
6
 tones of crustaceans were produced in marine, coastal and inland aquaculture 

facilities, with this production showing an increasing tendency over the years [8]. Crustacean 

farming byproduct, consisting mostly by heads, thorax, claws, and shells, can reach ca. 45% by 

shellfish weight [9]. Chitin content in this type of waste can be 15–40%. These chitinous waste, 

reaching up to 40% of chitin [10,11], can cause changes in the trophic state of the aquatic environments 

where it is discarded, as it is prone to biological degradation by autochthonous bacteria [12] or can 

even impose health risks due to pathogens colonization [13,14]. It has been proposed that the 

treatment-for-biodegradation of this anthropogenically produced chitinous material via the activity of 

efficient chitinolytic bacteria, is maybe one of the best and more ecofriendly ways to tackle this 

environmental issue [15]. Moreover, this biotechnological process can bring additional commercial 

benefits such as the production of other useful compounds, e.g. chitosan and chitooligosaccharides, 

that could be supplied to other industrial sectors such as food and pharmaceutics industries [16]. 

The biodegradation of chitinous materials requires demineralization and deproteinization, with 

some bacteria being able to do both [17]. Some of the known bacterial taxa involved in these steps 

during the biological treatment of crustacean shell wastes are Lactobacillus spp. Serratia marcescens, 

Pseudomonas aeruginosa, P. maltophilia, Pediococcus acidolactici, Bacillus spp. [17] are included 

in the rare biosphere [18] of the marine environment, where the chitinous exoskeleton wastes are 

produced and, thus, isolation of similar strains for subsequent inoculation is required. However, 

natural marine waters are most likely to contain bacterial taxa with various metabolic features that could 

be selected via certain experimental conditions in order to promote chitinolytic activity. 

The aim of this study was to investigate (a) whether the chitin-containing exoskeleton of a 

commercial fisheries’ shrimp species can be degraded in untreated sea water by naturally occurring 

bacterial communities; and (b) the diversity, succession and inferred chitinolytic potential of these 

bacteria. We used experimental unamended sea water batch cultures of the shrimp Melicertus kerathurus 

exoskeleton and monitored the biofilm formation on the exoskeleton by scanning electron 

microscopy (SEM) along with the bacterial 16S rRNA gene diversity of the biofilms. Our results 

depict the most likely bacterial species that could be furthered assessed for the biodegradation of 

chitin containing animal residuals such as shrimp shell waste. 
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2. Materials and methods 

2.1. Experimental setup 

Melicertus kerathurus inhabits marine and estuarine muddy sands between 0 and 90 m. Its 

average length is 110 to 140 mm and 130 to 170 mm for male and female individuals, respectively. 

This species is fished for all along the Mediterranean coasts and is an inshore fishery, because of its 

large size and excellent taste [19]. Freshly fished individuals of the shrimp M. kerathurus were 

acquired from the local fish market in Volos, central Greece, in February 2017 and they were 

transported to the laboratory in cooled foam boxes in less than one hour. In the laboratory, under 

aseptic conditions, the carapace was removed, cut into pieces of ca. 1 cm
2
 each and rinsed three 

times by gentle shaking in particle free autoclaved sea water before being added in the sea water 

batch cultures. 

Twenty five exoskeleton carapace fragments were added to each of the three triplicated batch 

cultures differing only in the contained sea water: (a) seawater sterilized (coded as S) by double 

filtration through 0.1 μm in order to promote the growth of indigenous exoskeleton bacteria on the 

nutrients supplied by the sweater and the exoskeleton itself; (b) seawater filtered through 2 μm 

(coded as B) in order to promote the growth of natural marine bacteria—in the absence of their 

grazers—and indigenous exoskeleton bacteria on the nutrients supplied by the sweater and the 

exoskeleton itself; and (c) artificial seawater (deionized water with 3.5% NaCl, coded as A) in order 

to promote the growth of indigenous exoskeleton bacteria growth on nutrients originating only by the 

exoskeleton itself. No inorganic nutrients or organic substrates amendments took place. All batch 

cultures were incubated in the dark at 18 °C and under constant shaking until macroscopic signs of 

disintegration of the exoskeleton fragments were obvious (max. 12 days). Sampling of exoskeleton 

fragments was conducted at 0, 6, 9 and 12 days for scanning electron microscopy (SEM) and 

bacterial diversity analyses. 

2.2. Scanning electron microscopy 

For SEM, the exoskeleton samples were fixed in 2.5% glutaraldehyde in 0.1 M sodium 

cacodylate solution for 12 h. After fixation, samples were rinsed at both sides with 0.1 M sodium 

cacodylate solution and dehydration by immersion in a graded alcohol series (30%, 50%, 60%, 70%, 

90%, 95% and 100%). The samples were covered with a thin layer of gold using a sputter coater 

(Bal-tec SCD 004), before their examination under a scanning electron microscope (Cambridge 

Stereoscan 240). Pictures were taken at various magnification for each sample. 

2.3. Bacterial cell volume 

For each treatment, the dimensions of 100 bacterial cells were measured every two days by the 

SEM photos. The long axis (D) and the small axis (d) of each bacterial cell were measured from 

S.E.M. pictures (Figure S1). The bacterial biovolume was calculated by the following formula: 

                    (
 

 
)
 

          (1) 
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2.4. Bacterial diversity 

Each sample consisted of three individual exoskeleton fragments, one from each replicate per 

treatment, being pooled together immediately before the DNA extraction procedure. Bulk DNA from 

each of the pooled sample was acquired by using the PowerMax Soil DNA Isolation kit (MoBio, 

Carlsbad, CA, USA) according to manufacturer’s protocol with minor modifications. The Illumina 

MiSeq 2 × 300 bp platform was used, targeting the V3–V4 region of the 16S rRNA gene by using 

the primer pair S-DBact-0341-b-S-17 (5’-CCTACGGGNGGCWGCAG-3’) and S-D-Bact-0785-a-A-21 

(5’-GACTACHVGGGTATCTAATCC-3’) [20]. DNA library preparation and sequencing were 

performed at the facilities of MRDNA Ltd. (Shallowater, TX, USA) according to standard 

procedures provided by the manufacturer. All resulting data were processed with the MOTHUR 

software (v.1.38.0) [21]. Quality control of data analysis included flowgrams denoising by 

PyroNoise software [22], keeping only the sequences with ≥350 bp with no homopolymers of ≥8 bp. 

The remaining sequences were aligned in the SILVA 126 database [23]. The sequences were binned 

into operational taxonomic units (OTUs) and were clustered based on average neighbor algorithm at 97% 

the sequence similarity cut-off [24,25]. The unique OTUs were taxonomically classified by using the 

SILVA 126 database [23]. The batch of sequences from this study can be accessed at the Short Reads 

Archive (http://www.ncbi.nlm.nih.gov/sra) with accession number SRP134267. 

3. Results 

3.1. Biofilm development 

SEM observations showed that biofilm development progressed gradually already from the 

sixth day (Figure 1) and reached maturation, i.e. cracks in the exoskeleton fragments and detachment 

of the biofilm, after 12 days. The bacterial cell biovolume showed different patterns in the three 

treatments (Figure 2). Its highest values occurred on d4, d2 and d6 for the S, B, and A treatments, 

respectively, indicating different growth rates of the biofilm populations. After maximal growth, the 

lowest biovolume was monitored on d9 in all treatments. 

3.2. Bacterial biofilm diversity 

A total of 429 OTUs were found across all samples which belonged to 20 major taxa (phyla or 

subphyla; Figures S2 and S3). The most abundant taxon was the γ-Proteobacteria, with 36.8% of the 

total OTU number belonging to this group, followed by the Bacteroidetes (24.0%) and the  

α-Proteobacteria (17.0%). The rest of the phyla included ≤5.1% of the total OTU number. The 

number of families (Figure S3) of each major taxon was proportional to the number of OTUs in each 

group (R
2
 = 0.86, p < 0.05). 
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Figure 1. Bacterial biofilm formation on the exoskeleton of Melicertus kerathurus in 

sterile (S) (A–C), bacteria-only (B) (D–E) and artificial (A) seawater (G–I) containing 

treatments at days 6, 9 and 12. 

 

Figure 2. Bacterial cell biovolume of the biofilm on the exoskeleton of Melicertus 

kerathurus in the sterile (S), bacteria-only (B) and artificial (A) seawater containing 

treatments. Bars indicate standard error of mean N = 100 cells per sampling. 
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Based on the OTUs abundance, non-metric multidimensional scaling separated the exoskeleton 

samples at d0 and the artificial water samples (Figure 3). Despite that in every sample a total of 151–285 

OTUs occurred (Table 1), the number of most dominant ones (≥75% cumulative relative abundance), 

was lower in the exoskeleton biofilms after day 6 (3–15 OTUs) compared to the initial exoskeleton 

sample (23 OTUs). In each sample, the most dominant OTU had ≥16.6% relative abundance. 

Table 1. Biofilm bacterial 16S rRNA gene diversity during experimental degradation of 

Melicertus kerathurus (Mk) exoskeleton in seawater. OTU: Operational taxonomic 

unit(s). 

Time 

(days) 

Treatment Most abundant OTU Reads Total OTU No. of the most dominant OTUs 

(cumulative relative dominance ≥ 75%) Dominance (%) 

Closest relative 

 Sea water MCB012 77,521 279 13 

20.9% 

Balneola alkaliphila 

0 Mk exoskeleton MCB003 7,783 159 23 

17.3% 

Pseudoalteromonas porphyrae 

6 S MCB005 126,317 247 3 

38.7% 

Colwellia asteriadis 

 B MCB001 68,571 198 7 

37.5% 

Reinekea aestuarii 

 A MCB004 74,820 151 4 

37.2% 

Halomonas aquamarina 

9 S MCB0001 78,847 245 9 

26.7% 

Reinekea aestuarii 

 B MCB001 83,662 239 9 

31.6% 

Reinekea aestuarii 

 A MCB003 77,454 162 4 

55.8% 

Pseudoalteromonas porphyrae 

12 S MCB0005 74,228 285 15 

16.6% 

Colwellia asteriadis 

 B MCB001 87,921 264 8 

28.4% 

Reinekea aestuarii 

 A MCB004 76,925 176 6 

24.0% 

Halomonas aquamarina 
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Figure 3. Non-metric multi-dimensional scaling (nMDS) based on Bray-Curtis similarity 

of the relative abundance of the biofilm bacterial operational taxonomic units (OTUs) 

found on the exoskeleton of Melicertus kerathurus in the sterile (S, blue dots), bacteria-

only (B, purple dots) and artificial (A, brown dots) seawater containing treatments. Black 

dot (d0) represents the initial bacterial OTUs before inoculating at the different 

treatments; Pink dot represents natural seawater bacterial community. 

In total, 10 OTUs had >10% at least in one time point and treatment. From this group, the OTUs 

related to Pseudolateromonas porphyrae and Halomonas aquamarina were found in all three 

treatments, while Reinekea aestuarii was found only in the S and B treatments. The rest of the OTUs, 

which were found only in one of the treatments were related to Compostimonas spp., 

Pseudoalteromonas ruthenica (in S), Flavobacterium spp. and Tenacibaculum discolor (in B) and 

Vibrio crassostreae, Ruegeria sp. Alteromonas macleodii (in A). The rest of the OTUs showed minor 

changes (<10%) in their relative abundances (Figure S3). 

A comparable proportion of total OTUs per treatment (17.7–20.6%) was shared from d0 to d12 

but the number of unique OTUs decreased from d0 to d12 (Figure S4). A similar pattern of 

comparable shared OTUs (42.6–45.9%) and decreasing unique OTUs was also observed between the 

different treatments in each sampling point (Figure S4). Regarding only the shared OTUs found in 

each treatment (Figure S5), 59 of them (76.6%) were also shared in all three treatments, indicating 

that these OTUs represent Bacteria that can be present on the M. kerathurus exoskeleton regardless 

of their origin and supplied nutrients (seawater vs. exoskeleton). 

4. Conclusions 

In this paper we describe the growth and succession of the bacterial biofilms developed during 

the degradation of exoskeleton fragments of the marine shrimp Melicertus kerathurus in unamended 

sea water batch cultures. We aimed at depicting which bacteria are most likely to be favoured for 

growth on the exoskeleton as biofilms. Only Proteobacteria (mostly γ- and α-Proteobacteria) and 

Bacteroidetes were favoured for abundant growth, i.e. changes in their relative abundance for ≥10% 

in the biofilms (sensu [26]) and these taxa are discussed further in this paper. Moreover, the bacterial 
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cell biovolume, which is a proxy for cell growth, indicated that maximum growth occurred soon after 

the initiation of the experiment and reached its initial values at the end of the experiment (Figure 2), 

after the biofilm maturation. 

The dominance of rod shaped bacteria in the biofilms (Figure 1) is in accordance with the 

morphology of all the dominant bacterial taxa with >10% changes found in this experiment [27–29]. 

Moreover, their ability to growth fast is also depicted by their high copy number of their 16S rRNA 

gene (Table S1), a parameter which is in direct positive correlation with the maximum growth rate [30]. 

Of all the found OTUs, the ones that could be of special interest for the degradation of the M. kerathurus 

exoskeleton, are the ones that occurred in multiple treatments and exhibited considerable growth, i.e. 

changes of more or less than 10% of their relative abundance compared to day 0 or the previous 

sampling. Most of these bacteria are known chitinolytic taxa [4,15]. 

The two bacterial species which were present in all treatments and increased during the 

experiments for more than 10% were Pseudolateromonas porphyrae and Halomonas aquamarina. 

P. porphyrae growth changed more than 10% from the initial sample, only in the artificial sea water 

treatments, indicating its ability to outcompete other bacteria in the incubation conditions used in this 

experiment. The genus Pseudoalteromonas is widespread in the marine environment with several of 

its known species having chitinolytic and alginolytic properties [27]. P. porphyrae was first isolated 

from the decayed seaweed Porphyrae yezoensis [31] and it is associated with aquatic biofilms [32,33]. 

The two available genomes of this species [34] contain chitinase genes which in combination with 

their occurrence in all of our treatments along with its high 16S gene copy number, i.e. indicative of 

rapid growth, suggest that it is a very potent candidate for chitin degradation of the shrimp’s 

exoskeleton. P. ruthenica is among the major biofilm formers in the marine environment [35]. It has 

been first described from two marine molluscs, the mussel Crenomytilus grayanus, and the scallop 

Patinopecten yessoensis, but it has been found also in the bluefin tuna Thunnus maccoyii [36] and the 

shrimp Litopenaeus vannamei [37]. It is known to be able to degrade chitin [38] and has anti-bacterial 

properties against pathogenic bacteria [39,40]. 

The growth of Halomonas aquamarina was also highest in the artificial sea water treatment, 

indicative of its marine to moderately halophilic properties (e.g. [41–43]) and also its ability to 

sustain its growth with only the exoskeleton itself as growth substrate. Its halophilic nature is also in 

accordance with the fact that the biofilm of H. aquamarina has been shown to be facilitated by 

higher salt concentrations in soil [44]. H. aquamarina is a species related to marine crustacean 

exoskeleton in several ways. It has been reported to contribute to the formation of bioflocs in the 

shrimp Litopenaeus vannamei growth ponds [45] and it is also considered to have beneficial 

properties as a probiotic for the same shrimp [46]. Moreover, its widespread occurrence in marine 

biofilms [47] and its ability to grow by using complex hydrocarbons has also been shown [48,49] 

suggesting that it can be used for the degradation of chitinous exoskeleton. 

Reinekea aestuarii is known to hydrolyse chitin [50] and it is also related to algal 

polysaccharides during phytoplankton blooms [51]. As it exhibited important growth only in the 

natural sea water containing treatments, it is more likely to require nutrients and substrates from the 

water and/or the exoskeleton itself. 

Colwellia asteriadis grew only in the sterile sea water and this is probably due to its ability to 

hydrolyse chitin [52] but its biofilm formation capacity is also known for other biotic and abiotic 

surfaces of the marine environment [53–56]. 
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One member of the biofilms developed solely in the sterile sea water treatment was related to 

the genus Compostimonas. The only described species of the genus is Compostimonas suwonensis 

which does not assimilate N-acetylglucosamine, the major constituent of chitin [57]. For this reason, 

it is likely that it does not contribute to the exoskeleton contribution. Chitin degradation by 

Actinobacteria has been reported only for rare members of the phylum [58]. 

A Flavobacterium-related bacterium was among the biofilm constituents in the treatments 

containing natural marine bacterial assemblages only. Members of the genus Flavobacterium are 

widely distributed in, mostly, aquatic habitats, both freshwater and marine [59] and are known to 

participate in biofilms [56,60]. As the taxonomic assignment to a specific species of the genus is not 

feasible in our study, possibly due to the short length sequence, its ability to be actively involved in 

the exoskeleton degradation remains dubious. 

Another bacterium which grew only in the sea water bacteria containing treatment was 

Tenacibaculum discolor. Members of the Tenacibaculum genus is related to fish disease [61,62].  

T. discolor has been isolated from a diseased sole (Solea senegalensis) and has also been found in the 

bluefin tuna Thunnus maccoyii [36]. Banning et al. [63] have reported its bacteriolytic behavior and 

the fact that we found it more abundant in the bacterial-containing treatment, along with the fact that 

in the literature it is not reported to be able to grow on chitin, most likely its growth is associated 

with the attachment on other bacteria of the biofilm. 

Vibrio crassostreae grew significantly in the artificial sea water containing treatment. It has 

been isolated from the haemolymph of the oyster Crassostrea gigas [64], is a known member of 

marine biofilms as it has been associated with several marine surfaces such as the red coral 

Corallium rubrum [65], the invasive green alga Caulerpa cylindracea [66], molluscs [67] the polychaete 

Myxicola infundibulum [68] oysters [69], the mussel Mytilus coruscus [70] several fish [71,72] or even 

microplastics [73]. However, its most interesting properties related to crustaceans exoskeletons have 

only recently been reported. V. crassostreae seems to be associated with the tail fan necrosis of spiny 

lobsters where is chitinolytic ability was also shown [74]. This biofilm former, as many Vibrio spp. 

have chitin binding and utilization genes [75] could be actively involved in the exoskeleton 

degradation of the M. kerathurus, acquiring its nutrients solely from the shrimp’s exoskeleton and 

benefiting from the exclusion of other bacteria not able to grow in the artificial seawater. 

The last two bacteria with significant growth in the artificial sea water containing treatments 

were associated with Ruegeria spp. and Alteromonas macleodii. Although the genus Ruegeria is 

associated with marine surfaces [76,77] there is no evidence that members of this genus are 

hydrolyzing chitin [28]. Here, it grew at the late stage of the biofilm, possible feeding by other 

bacteria and their metabolites. Alteromonas macleodii, with a specific ecotype existing in the 

Mediterranean Sea [78,79] is a ubiquitous copiotroph [80–84] that is favoured by increased 

salinity [41,85] and is functionally selected as a keystone species with the cyanobacterium 

Trichodesmium [85,86]. Its copiotrophic nature in combination with its high growth rate, as inferred 

by its multiple 16S rDNA copy number (sensu [30]) and its ability to process complex algal 

polysaccharides [48,87–89], coral mucus [90], barnacles [91] and other refractory organic matter in 

the sea [92], could make it a protagonist in the chitin degradation of M. kerathurus exoskeleton as 

well. For example, a strain of A. macleodii has been found to have a spectacular enzyme activity for 

the degradation of complex organic substrates [93]. Its surface-associated lifestyle is also supported 

by its probiotic use in aquaculture [94] and even deep-sea hydrothermal vent shrimps [95] and 
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polychaetes [96]. However, it might be outcompeted by others as it did not perform that well in the 

other two treatments where other bacteria and or substrates from the surrounding environment existed. 

In conclusion, our study extends the list of bacterial with the potential to degrade crustacean 

exoskeletons as biofilms in natural sea water. We found that exoskeleton biofilm development takes 

place in just a few days with some of the bacteria being selected for rapid growth in these biofilms 

originating either from the marine environment or from the natural microbiota of the exoskeleton 

itself. An indirect indication of chitin degradation by the biofilm came from the fact that pH during 

the experiment was reduced from 8.1 at the beginning to 6.7 at the end of the experiment. Activity of 

chitinase genes is favoured in lower pH values than those prevailing in natural sea water [6,17,97]. 

Future research is required to assess whether these bacterial species could be appropriate degraders 

for the management of crustacean cell waste in an ecofriendly way as they can grow in natural sea 

water. 
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