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1 Introduction

Drugs are playing an increasingly important role in the long struggle between man

and disease. Drug discovery is the process of identifying potential new therapeutic

entities and drug design is the process of finding new medications based on knowledge

of biological targets involving the design of molecules (Zhou and Zhong, 2017). Drug

discovery and design has been facing obstacles due to the large human, material and

financial resources required. With the success of artificial intelligence in the fields of

image processing, pattern recognition and natural language processing (Xie et al.,

2022), deep generative model has attracted wide attention in the field of drug

discovery, and it also shows a promising application prospect in the field of

molecular design optimization. When a generative model is used to generate

molecules, its essence is to learn the distribution of molecules in the training set,

and then generate molecules similar to but different from those in the training set.

Combined with evolutionary algorithm or reinforcement learning, the properties of

the generated molecules can be further optimized (Tong et al., 2021; Tan et al., 2022a).

The molecular representation in the generative model can be in many forms,

including Simplified Molecular Input Line Entry System (SMILES), molecular

graph, etc. Generative models can be roughly divided into five categories,

including recurrent neural network, RNN, autoencoder, AE, generative aggressive

network, GAN, Transformer and generative model combined with reinforcement

learning, RL (Bhisetti and Fang, 2022) as shown in Figure 1A. Among them, the

molecular generative model based on the text sequence (SMILES) is the most widely

used. This paper simply introduces the basic principle and application of deep

generative model based on the latest molecular design of the text sequence

(SMILES), so that readers can understand deep generative model and use it better

in drug molecular design.
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2 Model

2.1 RNN-based model

Recurrent neural network (RNN) can accept sequence

data as input features. It was used in natural language

processing, but now it is used to generate new compound

structures (Wang et al., 2021). When RNN model is used to

generate molecules, the molecules can be expressed as the

sequence SMILES. Because SMILES is a string sequence, it is

very suitable to be processed by a neural network like RNN, as

shown in Figure 1B. It is found that the RNN-based method

can learn the low-dimensional distribution of molecular

sequence grammar and chemical space with the SMILES

representation of compound molecules as input. RNN has

unique advantages for sequences with large differences in

length distribution (Cheng et al., 2021). Segler et al. (Segler

et al., 2018) and Olivecrona et al. (Olivecrona et al., 2017) use

RNN network with long short-term memory (LSTM) and

gated recurrent unit (GRU) to generate molecular

structures. By using a large number of SMILES molecular

structures as training sets, the RNN model they trained can

automatically generate molecular structures with high drug-

like properties and the efficacy is as high as over 90%, and the

diversity of molecular structures obtained is basically the same

as that of the training set. RNN first learns how a large number

of SMILES texts represent molecules in a language-like way,

and the fitted model can generate new SMILES strings,

i.e., new molecules without bias, which are suitable for

virtual screening and other applications.

2.2 VAE-based model

VAE consists of encoder and decoder. The research group

uses convolutional neural network (CNN) as an encoder to

map the input molecular structure into latent variables, while

the decoder uses RNN to recover the hidden variables to the

SMILES sequence corresponding to the original molecular

structure, as shown in Figure 1C . Due to the randomness of

VAE algorithm, different hidden variables in the hidden

variable space can be sampled after training, which can

then be decoded to obtain different molecular structures

(Altae-Tran et al., 2017; Wu et al., 2018). In addition, VAE

can encode high-dimensional data in low-dimensional space,

and form a “feature space” in parallel, which we can also call

“drug space”. To some extent, it represents the complete set of

targeted drugs. Therefore, if we take another point in this area

and decode it back to the high-dimensional chemical

molecule, then this molecule is a potential targeted new

drug. However, VAE has limitations: if all the medicine-

ready molecules are used to construct the “drug space”,

then the medicine re-sampled is only a new medicine-ready

molecule with no targeting selectivity; If the “drug space” is

constructed with drugs targeting a certain pocket, a large

number of known drugs targeting this site are needed,

FIGURE 1
Different mode indication. (A) Generative Models for Molecular Design. (B) Structure of RNN. (C) Structure of VAE. (D) Structure of GAN.
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which cannot be used in the development of first-class drugs

(Lim et al., 2018; Ragoza et al., 2022).

2.3 GAN-based model

The concept of GAN was proposed by Goodfellow in 2014,

which was inspired by the zero-sum game. It is a type of neural

network used in unsupervised learning, which helps to solve tasks

such as generating images by text, improving the resolution of

images, matching drugs, and retrieving images with specific

patterns (Tong et al., 2021; Wang et al., 2021; Tan et al.,

2022a; Bhisetti and Fang, 2022). The model consists of two

neural networks: the generator G used to fit the data

distribution and the discriminator D used to judge whether

the input is “true”. In the training process, G outputs the

hidden vector Z sampled from the prior distribution p(z) as a

data space, while D distinguishes the real data from the output of

the generated network as much as possible, thus forming a game

process between the two networks to learn the production model

of data distribution. Ideally, it will lead to a generative model that

can be convincingly real (Kadurin et al., 2017), as shown in

Figure 1D. In the molecular structure generation of GAN model,

the generator generates random SMILES while the discriminator

tries to distinguish these random SMILES from those of real

molecules in the training set. In each round of training, the

generator keeps learning, making the SMILES sequence

generated by it closer and closer to the real molecule, until

the discriminator cannot distinguish whether a SMILES

sequence comes from the generator or the training set.

Therefore, the generator network can be used to generate

molecules (Polykovskiy et al., 2020).

3 Discussion

Some generative models have been successfully applied to

generate new lead compounds with expected physical and

chemical properties, but the application of generative models

can be further explored in drug design.

Compared with the virtual compound library based on rules,

the advantage of the generative model is that it can learn the joint

probability distribution of molecular characterization and

properties, which enables us to sample new molecules

satisfying specific properties more effectively (Tong et al.,

2021). Compared to the international chemical identifier

(InCHI), which is also a one-dimensional linear

representation, SMILES has a more rigorous syntax and uses a

mapping algorithm from molecular graph to text (Elton et al.,

2019). This makes SMILES easier to processing andmore suitable

for training machine learning models. The choice of SMILES as

molecular input also does not suffer from the same limitations as

fingerprints, i.e. the output is not directly converted into the true

molecular structure and has difficulties in being used for de novo

design. For generative models using 2D representations, i.e.

molecular graph-based models, performance is often lacking

in comparability due to different datasets and metrics; for

generative models with 3D representations, they are limited to

known molecular formulae only; whereas SMILES-based models

are computationally lower cost, more easily scalable to larger

molecules and/or larger datasets (Bilodeau et al., 2022), and can

also benefit from improvements in algorithms related to natural

language processing. Future research could translate specific

target languages such as protein sequences into the SMILES

language, i.e. the generation of molecules with specific

characteristics could be considered as a translation. These

methods may also be useful in bio drug design, such as stem

cells (Tan et al., 2022b), growth factors (Tan et al., 2022c; Tan

et al., 2022d), et al.

It is worth noting that despite the proliferation of SMILES-

based models in recent years, it still has some limitations, such as

the lack of explicit specification of molecular similarity, the

possible inability to apply existing natural language processing

models directly, and the need to additionally remove invalid

SMILES. It is believed to be an important pillar in the field of new

drug design in the near future, through continuous refinement to

help pharmaceutical chemists expedite the process of drug

discovery and design.
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