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Background: Salinity is one of the most important environmental stresses which reduces the nutrient uptake, growth and yield 
of crops including sunflower.
Objectives: The aim of this study was evaluating the expression pattern of telomerase gene, TERT, in sunflower plants under 
salinity stress. 
Materials and Methods: Sunflower plants of both sensitive and resistant lines were grown in greenhouse and treated with 
different levels of NaCl (2, 5 and 8 dSm-1). The expression pattern of TERT gene was evaluated at 8th leaf stage 6, 12 and 24 
hours post salt treatment using real time-PCR, since the effects of salt stress are eventually manifested in the leaves.  
Results:  In both lines, salt-subjected plants showed reduced size and dried leaves, due to breakthrough of the growth. 
Compared to the control group, treated groups tended to indicate downregulated pattern of TERT gene expression.  
Conclusions: This study offers TERT as a new gene affected by salt stress when growth is arrested.  
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1. Background
Sunflower (Helianthus annuus L.), a plant with a 
Northwestern origin, is one of the most important crops 
in the world, which has high amounts of unsaturated 
fatty acids (1, 2). Therefore, it is a nutritious oily seeds 
with high quality for population. Economically, the 
unique features of this plant are its short growth period 
and adaptation to various weather conditions making it 
suitable for cultivation in dry and low rainfall areas (3). 
It is also an ideal species to study of the crop tolerance 
against environmental stresses, including salinity. 
Salinity is one of the adverse abiotic stress factors 
that negatively affects plant growth and productivity 
(4-6). It is known as limiting environmental factor 
which diminishes the yield of crop in arid and semi-
arid regions (7-9). Plants present complex responses to 
salt stress for adaptation which depends on the duration 
of salinity stress (10, 11). Crops have developed 
several mechanisms to resist against salt stress. The 
first category of mechanisms is mechanical, indicated 
with changes in the dimension or deformation of the 

physical body of the plant in response to stress. The 
second category is biological, manifested with effects 
on the growth rate and productivity (12-14). Over the 
past years, several studies have clarified the resistant 
mechanisms against salinity based on physiological, 
morphological and biochemical aspects (15, 16).
Telomerase is a ribonucleoprotein with reverse 
transcriptase activity, whose role is to insert the 
tandem telomeric sequence motif at the end of 
DNA (17, 18). Telomeres usually contain short and 
repetitive G-rich nucleoprotein structures at the 
ends of linear eukaryotic chromosomes, including 
5’(TTAGGG)3’ in mammals, and 5’(TTTAGGG)3’ 
in plants which was first characterized in Arabidopsis 
thaliana in plants (19). Its appropriate elongation is 
necessary to maintain the integrity and vital stability 
of the genome. The telomerase compensate telomere 
shortening using its catalytic protein subunit TERT, 
and an RNA subunit TER (20). Thus telomerase 
leads the primary mechanism of replenishing the lost 
terminal sequences in eukaryotic telomeres, which is 
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essential for self-renewing of the cells. Inappropriate 
telomerase expression provokes domino-like effects, 
finally causing abnormal proliferation (21). In plants, 
this enzyme is present at the embryonic and primary 
developmental stages, associated with reproduction. It 
is also detectable in dividing meristem cells (22, 23). 
It has been shown that TERT gene acts directly as the 
main factor determining the telomerase activity in plant 
tissues (22, 24). 

2. Objectives
The aim of this study was to explore the changes of 
TERT gene expression in sunflower when exposed to 
the different salt concentrations. Changes in TERT gene 
expression through plant stresses have not apparently 
been detected in the previous studies.

3. Materials and Methods

3.1. Plant material and Salt Stress Treatment
Two genotypes of sunflower including resistant 
(AS5305) and sensitive (9CSA3) (21) with different 
sensitivity to salt stress were selected and obtained 
from INRA, France.  The seeds were planted in 3-cm 
depth of 30 × 25 cM pots containing farm soil and 

sand mixture with the 2:1 ratio (Fig. 1A). The plants 
were grown under controlled conditions at 25 ± 3 °C, 
65% relative humidity and 12 h dark-light photoperiod 
for six weeks (17). The crops were irrigated every 3 
days in a week. Salinity responses of the two different 
sunflower genotypes were investigated at 8th leaf stage 
applying 0 (control group), 20, 40 and 90 mM NaCl 
(treated groups), where electrical conductivities of 
the solutions were 0.65 dSm-1, 2 dSm-1, 5 dSm-1 and 
8 d.Sm-1respectively (1, 25). The factorial experiment 
was conducted in completely randomized design with 
three replicates. Leaf sampling was done 6, 12 and 24 
hours post-exposure to salinity.  The leaves close to the 
apical meristem were selected for sampling at the 8th 
leaf stage. The harvested leaves were covered gently 
with aluminum foil, numbered, and finally transferred 
to liquid nitrogen for storage and RNA extraction later 
(26). 

3.2. Total RNA Extraction and cDNA Synthesis
RNA extraction kit RNX-plusTM (Sinoclon Co., Iran) 
was used according to the manufacturer’s protocol.  
Briefly, leaf samples in amounts of 50-100 mg were 
homogenized and purified. Then, 600 μL of RNX-plus 
buffer was added to the tube containing sample powder 

Figure 1. Seeds of both sensitive and resistant varieties were planted and grown in 20 × 60 cm plastic flowerpots (A), The leaves of control 
groups were healthy and showed normal size (B), in comparison with salinity treated groups which showed reduced size (C) and dried 
leaves due to salt stress before reaching the flowering stage (D).
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and vortex for 10-15 s. The tube was placed at room 
temperature for 5 min. Then 200 μL of chloroform was 
added to the solution and placed on ice for 15 min. 
The solution was centrifuged at 13000 rpm for 15 min. 
After removing the supernatant phase, isopropanol was 
added and the mixed sample was placed at -20 °C for 
30 min. The final pellet was dissolved in nuclease-free 
water. One-percent agarose gel electrophoresis and 
spectrophotometer were used to verify the quality and 
quantity of the extracted RNA respectively.
Complementary DNA (cDNA) synthesis Kit (Fermentas 
LIFE SCIENCE # K1621) was used according to 
the manufacturer’s instructions to perform reverse 

transcription reaction, using 6 μg of total RNA with the 
oligo-dT primers. 

3.3. Real-Time Polymerase Chain Reaction (PCR) 
Quantitative reverse transcription-PCR (qRT-PCR) was 
performed in duplicate using  6.25 μL of Maxima SYBR 
Green/ Fluorescein qPCR Master Mix (2X) (Thermo 
Fisher Scientific, Germany), 5 pM of forward and 
reverse primers and 50 ng of cDNA for each reaction in 
a final volume of 12.5μL. The sequences of the primers 
given in Table 1, including TERT and ACTIN as an 
internal control were designed by Oligo 7 software.  
Relative gene expression was analyzed by comparative 

Table 1. List of primers and real-time PCR conditions 
 

Genes Primer sequence Annealing temperature (℃) Cycle number 
TERT F:TTGCCTCGCATGTATATGGTTG 59 40 
 R:TCTGCTTCTTCCCTGATCGAG 59 40 
ACTIN F:GCAGGGATGAGCACAAGTG 57 40 
 R:CCCACCACTGAGCACACAATGT 57 40 

 

 

Figure 2. Relative expression pattern of TERT gene in the sensitive genotype of sunflower. Comparison of the main 
effects of different doses of salinity include 2 dSm-1,5 dSm-1 and 8 dSm-1 (A), Comparison of the main effects of the 
times include 6, 12 and 24 hours after salinity(B).). *** Differences are highly significant (p ≤ 0.001) compared to 
corresponding control. 
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Ct method, 2−ΔΔC. The target gene was normalized by 
the reference gene, ACTIN and calibrated for each 
sample against the control (27). 

3.4. Statistical Analysis 
Data from real-time PCR were expressed as mean±SD, 
and the differences of the mean values were statistically 
analyzed by SPSS software (Version 20) using one-way 
ANOVA followed by Tukey’s HSD test. P values less 
than 0.05 were considered statistically significant.

4. Results

4.1. Morphology of the Leaves
Apparently, in both sunflower genotypes, control 
groups without any salinity treatment were healthier 
and vigorous (Fig. 1B). When plants were subjected to 
the salinity, their leaves showed lower expansion or a 
smaller size (Fig. 1C) and dried due to salt stress (Fig. 

1D).

4.2. TERT Gene Expression Assay by qRT-PCR
To evaluate the efficiency of our experimental groups 
versus control group in declaring how TERT gene 
expression is affected by salt stress, we used qRT-PCR. 
The effects of salt stress on TERT gene expression in 
the leaves of both sunflower genotypes have presented 
in the Figures 2 and 3. Generally speaking, the levels of 
TERT gene expression decreased in all salt treatments, 
but the rate of this reduction was different between 
experimental groups which were exposed to the 
different doses of salinity.
At the first doses of salinity includes 2 dSm-1, the 
expression of TERT gene showed severe and statistically 
significant reduction (P≤0.001) in both genotypes of 
sunflower, in comparison with control. This reduction 
was efficient enough to prove the direct effects of salt 
stress on the TERT gene expression. Interestingly, 
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applying the 5 dSm-1 and 8 dSm-1 doses showed slight 
depletion in the TERT gene expression when compared 
with the 2 dSm-1 dose of salinity treatment (Fig. 2A and 
3A). Such slight depletion in the sensitive genotype 
was remarkable in comparison with the resistant one 
(Fig. 4). 
In both genotypes, the rate of TERT gene expression 
was evaluated at different salt concentrations and time 
lapses of applied concentrations likewise. According to 
the results, no relationship between the time lapses of 
salt concentrations used was significant (Fig. 2B and 
3B).

5. Discussion
Abiotic environmental stresses such as drought 
and salinity are important factors in reducing crop 
production in the world. Salinity is one of the most 
important stresses generally disrupts the growth and 
stimulates the necrosis of the leaf (28, 29). Similar 
to other crops, the growth and yield parameters of 
sunflower are extremely affected by salinity (30). 
Previous studies have demonstrated that various facets 
of plants such as morphology and physiology, including 
tissue proliferation (31), growth traits (25, 32), induction 
of reactive oxygen species (ROS) (33), deregulation 
of photosynthesis (34), antioxidant enzyme activity 
in sunflower include catalase (CAT) and peroxidase 
(POX) (35, 36), lipid metabolism and protein synthesis 
(37), ionic related channels perturbations (38) and 
ionic toxicity (39) are affected during salt stress. It 

also reduces the size of leaves and fruits and generally, 
plant growth shows a decline under salinity (40,41). It 
is necessary to understand the molecular mechanisms 
and gene expression patterns affecting the growth and 
development of the crops to improve resistance to salt 
stress. It has been demonstrated that transcription of 
an endogenous gene, ABA is upregulated through high 
salinity stress (42), which can induces the expression 
of Lea (43), rd29A and rd29B genes (44). Elsewhere, 
the genes involved in enzymatic mechanisms showed 
different expression patterns through different salinity 
treatments (45). Ionic transporter genes, SOS1, NHX 
and HKT are also induced by salt stress (46). In addition, 
several genes and their relation with salinity tolerance 
have been detected today (47,48). Despite the results of 
many studies indicating the genes are affected by salt 
stress (49), there is no study considering TERT as a new 
gene affected by salt stress when growth arrest. This is 
the first study evaluating the TERT expression pattern 
in both susceptible and resistant genotypes of sunflower 
which have different salt tolerance capacities.
Overall, it has been shown that salinity causes cell 
death, with affected tissues fail to reproduce as a result. 
According to the results obtained from animal cells, the 
expression of telomerase enzyme decreases during cell 
death, but increases upon cell reproduction (50).  
In striking contrast to animals, one interesting finding 
in plants is that plant tissues also show lower levels 
of telomerase gene expression when subjected to 
salinity, due to loss of reproductive capacity in dividing 

 

Figure 4. Comparing the TERT gene expression pattern between sensitive (Genotype A) and resistant 
(Genotype B) genotypes of sunflower at the same doses of salinity, 2 dSm-1, 5 dSm-1 and 8 dSm-1. 
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meristematic cells (51).  The results presented here 
demonstrate for the first time that TERT expression 
is disturbed in plants when facing environmental 
stress. According to our results, it is clear that both of 
genotypes show diminished rate of TERT expression 
through salinity. On the other hand, laboratory trials 
conducted to assess the variation of TERT expression 
at different doses of salt indicated no significant 
relationship between the time lapses of all subjected 
salt concentrations.  
In the sensitive genotype, immediate and significant 
reduction of TERT expression was seen through the first 
dose of salt treatment as 2 dSm-1.  Thereafter, gradual and 
mild depletion in the rate of gene expression appeared 
at 5 dSm-1 and 8 dSm-1 doses of treatment. It means that 
the rate of TERT gene expression at the upper doses of 
treatment was still higher than the lowest one. It suggests 
struggle of the plant to be survived when exposed to 
the salinity, especially at higher doses. Indeed, parallel 
increase in TERT gene expression with the rise of salt 
doses, may be a result of adaptation of the plant to salt 
stress, which may resume the growth and proliferation 
processes. Regarding the resistant genotype, a 
relationship seems to exist between the depletion of 
TERT gene expression and resistance genes, since the 
intensity of TERT expression in resistant genotype was 
more than that in the sensitive type, which suggests a 
likely relationship between TERT and resistant genes.
 Being the resistant genes silent in the sensitive 
genotypes, it seems that changes in the pattern of TERT 
gene expression constitute one of the main mechanisms 
for adaptation of the plant to salt stress. However, in 
resistant genotypes, this adaptation needs cooperatively 
expression of TERT and resistant gens. It is a subject 
that needs further investigations to indicate the exact 
association between the expression of TERT and 
resistant genes.   
Totally, these results confirm that salinity directly 
affects the TERT gene expression.  

6. Conclusion
The main role of TERT gene is argued to be beyond 
maintaining the integrity and vital stability of the 
genome through cell cycle. It is suggested to have a role 
through salt stress.
In this study, the rate of TERT gene expression 
significantly diminished in sunflower when exposed 
to the salt stress. Interestingly, the responses of two 
different sunflower genotypes were found as similar, 
since both genotypes showed diminished rates of TERT 
expression during salinity. It can be suggested that 
resistant genes have a correlation with TERT expression, 

a subject which evokes further investigations in the 
future. Furthermore, understanding the relationship 
between TERT and necrotic genes warrants further 
consideration. 
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