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ABSTRACT 
Aromatase is a rate-limiting enzyme for estrogen biosynthesis that is overproduced in breast cancer tissue. To 
block the growth of breast tumors, aromatase inhibitors (AIs) are employed to bind and inhibit aromatase in order 
to lower the amount of estrogen produced in the body. Although a number of synthetic aromatase inhibitors have 
been released for clinical use in the treatment of hormone-receptor positive breast cancer, these inhibitors may 
lead to undesirable side effects (e.g. increased rash, diarrhea and vomiting; effects on the bone, brain and heart) 
and therefore, the search for novel AIs continues. Over the past decades, there has been an intense effort in em-
ploying medicinal chemistry and quantitative structure-activity relationship (QSAR) to shed light on the mecha-
nistic basis of aromatase inhibition. To the best of our knowledge, this article constitutes the first comprehensive 
review of all QSAR studies of both steroidal and non-steroidal AIs that have been published in the field. Herein, 
we summarize the experimental setup of these studies as well as summarizing the key features that are pertinent 
for robust aromatase inhibition. 
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INTRODUCTION 

Breast cancer is one of the leading causes 
of death worldwide, with a greater prevalence 
in developed countries and a rapidly growing 
health concern in developing countries. It is 
also the most frequently occurring cancer 
found in women with an estimated 1.5 million 
new cases resulting in 570,000 deaths in 2015 
(WHO, 2015). In addition, the prevalence of 
breast cancer in Asia is the highest among the 
world population (59 % of world population), 
out of which new cases account for 39 % with 
44 % of cases resulting in deaths. In compar-
ison, the prevalence of breast cancer in the 

continents of North America and Africa rep-
resent 5 % and 15 % of the world statistics, 
respectively (American Cancer Society, 
2015).  

Estrogen is the primary female sex hor-
mone that acts as a double-edged sword 
where on one side it regulates important phys-
iological functions for sustaining life (i.e. reg-
ulating the menstrual cycle, modulating bone 
density, maintenance of vessels and skin etc.) 
while on the other side, it is implicated in the 
development of breast cancer. Estrogen bio-
synthesis is catalyzed by aromatase, which 
converts androstenedione, a 19-carbon (C19) 
steroid hormone, to estrone (E1) via a three-
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step A-ring aromatization. Aromatase also 
catalyzes the oxidation of testosterone, which 
is also then converted to estradiol (E2) (Ah-
mad and Shagufta, 2015) (Figure 1).  

A common treatment for early-stage, hor-
mone-sensitive breast cancer is surgery fol-
lowed by radiotherapy. Furthermore, adju-
vant endocrine therapy is given with or with-
out chemotherapy depending on the tumor 
stage. In pre-menopausal women, most of the 
estrogen are made in the ovaries with the up-
take of androstenedione from the circulation 
(Nelson and Bulun, 2001). Ovaries can con-
vert androstenedione to estrone via the cata-
lytic activity of aromatase, which is then 
transported to breast cells. However, in post-
menopausal women, the main site of estrogen 
production are the breasts. As for the latter, 
the level of estrogens produced in the breast 
are comparable to that produced in the ovaries 
by pre-menopausal women, which is four to 
six times higher than those found in serum.  

Approximately 60 % of pre-menopausal 
and 75 % of post-menopausal cancers are hor-
mone-dependent (Russo et al., 2003), imply-
ing that endogenous estrogens are essentially 
required for proliferation. Many drugs that are 
used for the treatment of estrogen receptor-
positive breast cancer are mechanistically 
based on the interference of either the estro-
gen production or the estrogen action. 

Aromatase, also known as estrogen syn-
thase or CYP19A1, is part of the cytochrome 
P450 family. It is consisting of 503 amino-
acid residues spanning twelve α-helices and 
ten β-strands, inside which a heme cofactor is 
coordinated by a cysteine residue at position 
437 (Ghosh et al., 2009). Aromatase is the 
major producer of estrogen in post-menopau-
sal women and it catalyzes the rate-limiting 
step for converting androgens to estrogens 
(Simpson, 1994). As aromatase catalyzes the 
biosynthesis of estrogen from androgens, thus 
the inhibition of aromatase activity has be- 
 

 

Figure 1: Summary of estrogen biosynthesis pathway as mediated by aromatase. 
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come the standard treatment for hormone-de-
pendent breast cancers in women (Eisen et al., 
2008). Aromatase is located in the plasma 
membrane of the endoplasmic reticulum of 
estrogen producing cells and plays a role in 
development, reproduction, sexual different-
iation and behavior as well as in bone and li-
pid metabolism, brain functions and diseases 
such as breast and testicular tumors. Hence, in 
order to block the estrogen production, it is 
necessary to inhibit the aromatase enzyme 
that is responsible for its synthesis by using 
aromatase inhibitors (AIs). AIs constitute the 
front-line therapy for estrogen-dependent 
breast cancers. For this reason, inhibiting this 
terminal step in the estradiol biosynthesis 
pathway is considered to be a specific and 
therefore, a preferable strategy. 

 

AROMATASE INHIBITORS 
To date, there are three generations of 

FDA-approved AIs available for inhibiting 
the activity of aromatase. The first-generation 
of AIs includes aminoglutethimide, which is 
marketed in the late 1970s (Santen et al., 
1978, 1982; Santen and Misbin, 1981; Graves 
and Salhanick, 1979) (Figure 2), a derivative 
of the sedative agent glutethimide that was in-
itially introduced as an anticonvulsant. How-
ever, due to its adverse effects, such as high 
toxicity and lack of selectivity (Demers et al., 
1987; Hughes and Burley, 1970), this AI was 
found to interfere with other CYP450 en-
zymes involved in cortisol and aldosterone bi-
osynthesis (Santen et al., 1980). Thus, amino-
glutethimide was withdrawn from the market. 
In addition, testolactone was the first-genera-
tion steroidal AI that was used to treat ad-
vanced-stage breast cancers, albeit with weak 
potency (Avendaño and Menéndez, 2008). 
Nevertheless, these first-generation AIs 
served as the prototype for future generations 
with an emphasis on developing more potent 
drugs with higher selectivity and reduced tox-
icity. Continuing on to the second-generation, 
fadrozole, which contains an imidazole group 
(Bonnefoi et al., 1996), is more selective and 
potent than aminoglutethimide. Nevertheless, 

it still displayed effects on aldosterone, pro-
gesterone and corticosterone biosynthesis. 
Formestane (Brueggemeier et al., 2005), a 
steroidal analogue, was the first selective AI 
to reach clinical trials in the 1990s. It was 
demonstrated to be effective and was well tol-
erated (Dowsett and Lloyd, 1990). However, 
formestane exhibited poor oral bioactivity 
and had to be administered bi-weekly and 
thus, lost popularity with the discovery of the 
newer, more effective third-generation AIs 
(DrugBank, 2013). 

Finally, the third-generation of AIs, are 
comprised of triazole derivatives, anastrozole 
and letrozole and one steroidal analogue, ex-
emestane (Dutta and Pant, 2008). These AIs 
displayed improved efficacy and lower tox-
icity as compared with the estrogen antago-
nist, tamoxifen, in both early and advanced 
breast cancer (Thürlimann et al., 2004). For 
this reason, the last generation of AIs has been 
recommended by the FDA as first-line drugs 
for the therapy of breast carcinoma. Anastro-
zole and letrozole, are non-steroidal deriva-
tives and competitive inhibitors of andros-
tenedione. Both contain a triazole group that 
can interact with the prosthetic heme group of 
aromatase. Exemestane is a steroidal analog 
of androstenedione thus, permanently binding 
to the enzyme and deactivating its catalytic 
activity (Coombes et al., 2007). 

Initial attempts to clarify the interaction 
mechanism of aromatase and its inhibitors 
have relied on the use of homology-derived 
models (Loge et al., 2005). Such studies have 
focused on clinically used AIs such as fadro-
zole, letrozole and exemestane as well as 
other natural products such as ligands, flavo-
noids and coumestrol (Karkola and Wähälä, 
2009; Paoletta et al., 2008; Awasthi et al., 
2015; Worachartcheewan et al., 2014b; 
Nantasenamat et al., 2014).  

Since the crystal structure of human pla-
cental aromatase has been solved by Ghosh et 
al. (2009), the availability of structural details 
on the active site of aromatase helps in under-
standing of the binding characteristics of AIs 
as well as the evaluation of key reactions 
needed in the mechanism of aromatase. 
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Figure 2: Chemical structures of the three generations of FDA-approved aromatase inhibitors. 
 
 

This has opened up a plethora of opportu-
nities by enabling the understanding of the 
molecular basis for the specificity of the aro-
matase enzyme and its unique catalytic mech-
anisms, which is imperative for the develop-
ment of the next-generation of AIs. 

 
CONCEPTS OF QSAR MODELING 
Quantitative structure-activity relation-

ship (QSAR) (Nantasenamat et al. 2009, 
2010) is a ligand-based approach that seeks to 
discern the mathematical relationship be-
tween chemical structures (i.e. as described 
by various types of molecular descriptors) and 
the investigated biological activity through 
the use of statistical and machine learning 
techniques. 

Historically, the work of Cros (1863), 
Crum Brown and Fraser (1868) and especially 
that of Muir et al. (1949) laid the foundations 
for the subsequent birth of QSAR as formally 
introduced by Hansch and Fujita (1964) in 
their landmark work investigating substituent 
effects of various compounds against various 
biological activities (i.e. benzoic acids against 
mosquito larvae, phenols against gram-posi-
tive and gram-negative bacteria, phenyl ethyl 
phosphate insecticides against houseflies, 
thyroxine derivatives against rodents, diethyl-
aminoethyl benzoates against guinea pigs and 
carcinogenic compounds against mice) by uti-
lizing substituent constants as descriptors. 
Ever since, QSAR had been an integral part of 
computational drug discovery efforts as it had 
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been utilized to probe the underlying mecha-
nistic basis of various biological activities 
(Nantasenamat and Prachayasittikul, 2015). 
Recently, Fujita and Winkler (2016) had 
shared their perspectives on the two QSAR 
worlds consisting of (i) classical QSAR and 
(ii) modern QSAR. 

The early years of classical QSAR entails 
investigation on the structure-activity rela-
tionship of a congeneric set of compounds 
(i.e. compounds sharing a common chemical 
scaffold or chemotype) through the use of a 
few molecular descriptors. Classical QSAR 
methodology (Hansch et al., 1963) assumes 
that the biological activity of investigated 
chemicals can be explained by simple and in-
terpretable physicochemical properties. 
These physicochemical properties encode 
structural features that are considered to be 
statistically important and that can provide 
useful insights and understanding pertaining 
to the interaction being studied. Typically, 
classical QSAR models are built using partial 
least-squares (PLS) and multiple linear re-
gression (MLR). It should be noted that this 
approach does not take into consideration the 
3D structure of the receptor-ligand interac-
tion. Thus, this had inspired the development 
of a 3D-QSAR technique by Cramer et al. 
(1988) that essentially involves the alignment 
of a congeneric set of compounds (i.e. com-
pounds sharing a common scaffold or chemo-
type) and followed by the computation of mo-
lecular fields (steric and electrostatic). Fur-
thermore, modifications to the CoMFA con-
cept known as comparative molecular simi-
larity indices analysis (CoMSIA) was pro-
posed by Klebe et al. (1994) to extend 
CoMFA via the utilization of Gaussian poten-
tials as the basis for calculating similarity and 
thus, expand its applicability (Kubinyi, 1997).  

Over the years, advancements in compu-
tation has given rise to modern QSAR in 
which an extensive list of molecular de-
scriptors as well as a wide range of machine 
learning algorithms can be applied in studying 
the structure-activity relationship of large sets 
of heterogeneous and chemically diverse set 
of compounds. On one end, modern QSAR 

makes it possible to harness the big data of bi-
oactivity information accumulated over the 
years for model development while on the 
other end, the resulting models are often com-
plex and not readily comprehensible to bench 
scientists. The need for simple and interpreta-
ble QSAR models along with best practices 
has been discussed in a recent book chapter 
(Shoombuatong et al., 2017). Briefly, desira-
ble characteristics of robust QSAR models 
have been set forth by the Organisation for 
Economic Co-operation and Development 
(OECD) as to encourage the utilization of 
QSAR models for regulatory purposes. These 
main OECD principles for the development of 
robust QSAR models are summarized in Ta-
ble 1. 

The typical workflow for the development 
of QSAR models is depicted in Figure 3. First, 
the QSAR modeling process starts by the 
compilation of a data set that entails collect-
ing information pertaining to the compound 
name along with their SMILES notation, bio-
activity values (e.g. IC50, EC50, Ki,  % activ-
ity, etc.) as well as reference to the original 
paper. Second, the data set is subjected to data 
pre-processing as to ensure the completeness 
of the data and that there are no missing infor-
mation or misspellings. Third, chemical struc-
tures are drawn and subjected to structure 
standardization as to remove salts, ensure ap-
propriate charge of functional moieties, select 
appropriate tautomeric structures, etc. Fourth, 
molecular descriptors are computed as to pro-
vide quantitative description of chemical 
structures and this is followed by feature se-
lection as to remove useless and/or collinear 
variables. Fifth, the curated data set is em-
ployed for model construction via the use of 
machine learning algorithms and this entails 
data splitting, data balancing, data validation, 
model validation and performance assess-
ment. Finally, the resulting model is subjected 
to scrutiny on the feature importance as to 
identify key features contributing to the origin 
of the biological activity. Summary and 
guidelines pertaining to the best practices for 
QSAR model development has been de-
scribed previously (Tropsha, 2010).
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Table 1: The OECD principle guidelines for developing and validating QSAR model. 

# OECD principle Description 

1 Defined endpoint To ensure that all endpoint values, within a given da-
taset, are consistent 

2 Unambiguous algorithm To ensure the ability of transparency and reproduci-
bility in the proposed QSAR model 

3 Defined domain of applicability To define how robust, significant and validated QSAR 
model could be 

4 Appropriate measures of goodness- 
of-fit, robustness and predictivity 

To simplify the overall criteria of model validation: the 
internal performance of a model and the predictivity 
or predictive power of model 

5 Mechanistic interpretation To ensure that there are assessments of the possibil-
ity of a mechanistic interpretation 

 
 

 

Figure 3: General workflow of QSAR model development. 
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Table 2: Summary of common classes of molecular descriptors. 

Descriptor class Description References 

Molecular field Steric and electrostatic properties of a mole-
cule as derived from the superimposition of 
molecules in CoMFA analysis 

Cramer et al., 1988 

Molecular similarity indices Descriptors as used in CoMSIA that are     
computed from Steric and Electrostatic 
ALignment (SEAL) similarity fields as to   
generate steric, electrostatic, hydrophobic, 
and hydrogen bonding descriptors 

Kubinyi et al., 1998 

Molecular surface As implemented in CoMSA, descriptors are 
derived from Coulomb electrostatic potential 
on the molecular surface  

Polanski and     
Gieleciak, 2003 

Multivariate image analysis Pixels derived from 2D image of chemical 
structures 

Barigye et al., 2018 

Physicochemical Pertains to various 1D-3D chemical and    
physical properties of a molecule 

Todeschini and 
Consonni, 2000 

Pharmacophore mapping A 4D-QSAR approach coupled to self-organ-
izing map that entails the incorporation of 
conformational freedom into 3D-QSAR model 

Bak and Polanski, 
2007 

Quantum chemical Electronic properties of a molecule as derived 
from low-energy conformer as computed by 
quantum mechanical calculation 

Karelson et al., 
1996 

SMILES Atomic and bond constituents of a molecule Worachartcheewan 
et al., 2014a 

Spectral Based on 13C NMR spectroscopic data of a 
compound that essentially pertains to electro-
static and electronic properties as derived 
from frequencies of quantum mechanical  
properties of a nuclear magnetic moment 

Beger et al., 2004 

 
 
Machine learning 

Machine learning is an implementation of 
artificial intelligence in which computers can 
automatically learn from data sets by extract-
ing important patterns and making decisions 
or predictions. A summary of common ma-
chine learning algorithms that are used for 
QSAR modeling along with their strengths 
and weaknesses are provided in Table 3.  

The concepts and in-depth treatment of 
machine learning is beyond the scope of this 
review and readers are directed to a previous 

comprehensive treatment of the topic 
(Shoombuatong et al., 2017; van Westen et 
al., 2011). Herein, we cover common machine 
learning algorithm that have been used in the 
study of AI activity. 

The simplest learning algorithm is multi-
ple linear regression (MLR) (Aiken et al., 
2003), which is an extension of the simple lin-
ear regression and is used to explain the rela-
tionship between a series of features, X=(𝑥", 
𝑥#, 𝑥#,..., 𝑥$), and output values, Y=(𝑦", 𝑦#, 
𝑦#,..., 𝑦$), as follows:  
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                  (1) 

where 𝑦&  is the output value, 𝑥&'  is repre-
sented a data for ith compound and jth de-
scriptor of ith compound and is the coeffi-
cient parameter. 

Partial least squares regression (PLS). 
This method is a well-known method for con-
structing predictive models when features or 
descriptors have inter-correlated latent varia-
bles (Helland, 1988; Helland, 2001). PLS is 
closely related to principal component analy-
sis (PCA) that consists of matrix decomposi-
tion into a matrix of eigenvectors and a matrix 
of its loadings factors. Given a dataset 𝑋$×*  
with N rows and M columns, the general ap-
proach can be written as follows: 

   (2) 
This is equivalent to a reduction of an M-

dimensional variable space to an A-dimen-
sional space. The variables in dimension A are 
also called latent variables.  

The matrix T contains orthogonal column 
vectors, also called score vectors, that repre-
sents the latent variables. 

Artificial neural network (ANN). This 
method is a computation-based method in-
spired by networks of biological neurons in 
the human brain (Puri et al., 2016). Basically, 
there are 3 different layers in the architecture 
of ANN: input layer (the input (X) is fed into 
the model through this layer), hidden layers 
(in general, there can be more than one hidden 
layers which utilizes some method to operate 
X and deliver to an output layer) and output 
layer (the data after processing is made avail-
able at the output layer).  

Support vector machine (SVM). This sta-
tistical learning approach is based on the prin-
ciples of structure-risk minimization and ker-
nel method as proposed by Cortes and Vapnik  
(1995), which are used to construct a maxi-
mum-margin-separating hyperplane. The 
main advantage of SVM model is to seek the 
best compromise between the computational 
cost and the prediction error as to obtain the 
optimum generalization ability. SVM can be 
categorized as support vector classification 
(SVC) and support vector regression (SVR) 
(Cortes and Vapnik, 1995; Smola and Schölk-
opf, 2004). The principle idea of this method 
is to transform an input space with m-dimen- 
 

 
 
Table 3: Summary of the strength and weakness of the machine-learning algorithms for performing 
QSAR modeling discussed in this review. 

Factor MLR PLS ANN SVM DT RF 

Non-linear   ü ü ü ü 

Classification and regression  ü ü ü ü ü ü 

Prediction error High Medium Low Low Medium Low 

Computational cost Low Medium Medium Medium Medium High 

Memory requirements Low Medium Low Low Medium Medium 

Overfitting ü  ü  ü  

Dimension reduction ü ü   ü ü 

Easy to interpret ü ü   ü ü 

MLR: multiple linear regression, PLS: partial least squares regression, ANN: artificial neural network, SVM: support 
vector machine, DT: decision tree, RF: random forest
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sional vector into a feature space with n-di-
mensional vector where m < n, and select a 
separating hyperplane giving the largest dis-
tance between the two classes. 

Decision tree (DT). This machine learning 
technique is used for finding and describing a 
dataset (X,Y) with tree representation or struc-
ture (Safavian and Landgrebe, 1991). The tree 
is composed of a root node, a set of internal 
nodes, and a set of terminal nodes (leaves). 
This method is one of well-known built-in 
feature selector. The main purpose of using 
DT is to achieve a more concise and transpar-
ency of the model to identify the relationship 
between X and Y variables.  

Random forest (RF). This ensemble learn-
ing method essentially integrates many clas-
sification and regression trees (CART). 
Breiman (2001) developed the RF method by 
growing many weak decision trees for en-
hancing the prediction performance of CART. 
The last decade has witnessed the significant 
achievement of RF model in applications of 
drug developments and related works (Win et 
al., 2017; Worachartcheewan et al., 2015; 
Pratiwi et al., 2017; Simeon et al., 2016a; 
Phanus-umporn et al., 2018; Suvannang et al., 
2018). RF model takes advantage of two effi-
cient machine learning techniques: bagging 
and random feature selection. 

 

QSAR MODELS OF AROMATASE  
INHIBITORY ACTIVITY 

The utilization of QSAR in aromatase re-
search has only scratched the surface of the 
possible benefits that can be attained. Several 
classes of aromatase inhibitors have been cre-
ated with only a few notable classes that have 
made it to the pre-clinical and clinical testing.  

Thus, it is worthwhile to elucidate the 
physicochemical profiles of effective aroma-
tase inhibitors in comparison with ineffective 
ones as such knowledge can aid in the optimi-
zation of existing compound classes or devel-
opment of novel classes from available scaf-
folds and functional group fragments. Partic-
ularly, questions such as “What molecular de-
scriptors are crucial for highly potent com- 

pound? How big should a potent aromatase 
inhibitor be? Which functional groups are 
most commonly found in potent com-
pounds?” could be answered through QSAR 
efforts.  

In 1997, Lipinski published a landmark 
paper on the Rule of 5 (Lipinski et al., 2001), 
which has been widely used in the pharma-
ceutical industries as general guidelines for 
drug development efforts. The Rule of 5 con-
siders ADMET issues that are critical towards 
the success of the identified compounds of in-
terest as it may help reduce pre-clinical and 
clinical failures. A similar approach may be 
applied to the aromatase system where several 
Rules may be developed for the identification 
of potent aromatase inhibitors.  

The earliest QSAR study performed for 
AIs was published in 1994 by Nagy et al. 
(1994) whereby MLR analysis was conducted 
on models built with 5 quantum chemical de-
scriptors for 24 compounds assessed by LOO-
CV procedure. From the results obtained, the 
authors were able to discover 2 candidate AIs 
for further pharmacophore studies.  

Furthermore, as can be seen from Figure 
4 (top-left), in the years from 1994-2000 only 
five additional articles (Oprea and García, 
1996; Recanatini, 1996; Sulea et al., 1997; 
Recanatini and Cavalli, 1998; Cavalli et al., 
2000) on QSAR of AIs were published, which 
utilized mainly molecular field descriptors 
and LOO-CV. For example, Cavalli et al.  
(2000) quantitatively compared 3D-QSAR 
models of the cytochrome P450 active site via 
CoMFA modeling and homology modeling 
techniques. Once models were built, two non-
steroidal AIs were docked into each model 
and the resulting interaction energies were 
recorded. The authors noted that although 
each technique had its drawbacks, both could 
be used together as a mutual validation tech-
nique for ligand-based and target-based 3D 
models of ligand-target interactions.  

In addition, Sulea et al. (1997) described 
van der Waals envelopes as a steric potential 
field in a 3D-QSAR CoMFA based modeling 
of ligand-receptor interactions that was per-
formed on 78 steroidal AIs and evaluated 
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Figure 4: Overview on the number of publications  
(top), number of compounds (middle) and the 
number of descriptors (bottom) extracted from ar-
ticles describing QSAR models of AIs. 
 
LOO-CV procedure. The authors were able to 
prove that the van der Waals envelopes inter-
section volumes (INVOL) could be used as an 
alternative replacement for the more com-
monly used Lennard-Jones 6-12 potential for 
the identification of relevant features govern-
ing biological activities within CoMFA and 
3D-QSAR based models. 

Similarly, Oprea and Garcia (1996) ana-
lyzed the data of 50 steroidal AIs using 
CoMFA models coupled with chemometric 
based Generating Optimal Linear PLS Esti-
mation (GOLPE) models validated using both 
the LOO-CV and the external test procedures. 
The authors concluded that using CoMFA, 
differences in aromatase inhibition among the 
C6-substituted steroids were shown to be con-
sistent with known,  potent inhibitors  of  aro-

matase, included in the model. In addition, 
when direct alignment comparisons were 
made, these compounds exhibited distinct 
features that overlapped with the steric and 
electrostatic fields obtained in the CoMFA 
model.  

Over the course of the next five years 
(2001-2005) (Gironés and Carbó-Dorca, 
2002; Beger and Wilkes, 2002; Beger et al., 
2001; Polanski and Gieleciak, 2003; Beger et 
al., 2004; Leonetti et al., 2004; Cavalli et al., 
2005), it can be seen that studies employed 
higher number of descriptors as well as made 
use of more descriptor types (e.g. molecular 
fields, spectral, molecular surface and quan-
tum chemical) were observed in seven publi-
cations where the only CV method applied on 
the datasets was the LOO-CV (Figure 4). Be-
ger et al. (2004) developed a technique which 
was similar to QSAR modeling, which they 
called the minimum deviation of structurally 
assigned spectra analysis (MiDSASA). This 
method was based on minimum chemical 
shift differences on substructure fragments in-
stead of relying on substructure fragments as 
a whole for model production as is typical in 
SAR modeling. The authors used this MiD-
SASA template on 50 steroids binding the 
aromatase enzyme based on the average ac-
tivity of the four nearest compounds, resulting 
in a correlation of 0.71. The authors further 
suggested that models made using the mini-
mum deviation concept can be applied to 
other chemoinformatic data analyses such as 
metabolite concentrations in metabolic path-
ways for metabolomics research.  

In addition, Beger et al. (2001) built quan-
titative spectroscopic data-activity relation-
ship (QSDAR) models for 50 steroidal AIs 
developed based on data collected via simu-
lated 13C nuclear magnetic resonance (NMR). 
The models were based on comparative spec-
tral analysis (CoSA) and comparative struc-
turally assigned spectral analysis (CoSASA). 
From the PLS analysis, the CoSA models ex-
hibited R2 of 0.78 and Q2 of 0.71 while the 
CoSASA based models provided R2 of 0.75 
and Q2 of 0.66.  

N
um

be
r o

f p
ub

lic
at

io
ns

0
2

4
6

8
10

12
14

N
um

be
r o

f c
om

po
un

ds
 u

se
d

0
10

0
20

0
30

0
40

0

>2000 2001−2005 2006−2010 2011−2015 2016−now

N
um

be
r o

f d
es

cr
ip

to
rs

 u
se

d

0
5

10
15

20



EXCLI Journal 2018;17:688-708 – ISSN 1611-2156 
Received: June 08, 2018, accepted: July 10, 2018, published: July 20, 2018 

 

 

698 

Similarly, Polanski and Gieleciak (2003) 
used CoMSA to analyse the 3D-QSAR mod-
els built for 50 steroidal AIs. The authors 
aimed to predict regions that are important for 
the binding activity of the ligand with the en-
zyme. Using uniformative variable elimina-
tion as coupled to partial least squares (UVE-
PLS) or modified iterative UVE procedure 
(IVE-PLS), the authors were able to deter-
mine that the 3D-QSAR models generated 
(Q2 = 0.96) outperformed those reported at the 
time using CoMFA, CoSA or CoSASA. 

Furthermore, the number of articles on 
QSAR of AIs were seen to increase rapidly 
for the years 2006-2010 (Figure 4) with the 
publication of ten articles in the time period 
(Bak and Polanski, 2007; Nagar et al., 2008; 
Castellano et al., 2008; Mittal et al., 2009; 
Gueto et al., 2009; Nagar and Saha, 2010a, b; 
Roy and Roy, 2010a, b; Dai et al., 2010). 
Most of the QSAR models in this time frame 
were built utilizing physicochemical de-
scriptors as compared to other techniques in 
the previous years.  

Additionally, the validation methods for 
AIs QSAR publications in the abovemen-
tioned years were tied between LOO-CV only 
and LOO-CV in conjunction with external 
validations (Figure 5). For example, Bak and 
Polanski (2007) conducted a 4D-QSAR study 
based on the self-organizing map (SOM), 
which is an unsupervised method based on the 
Kohonen neural network coupled with the 
IVE-PLS analysis. The use of this combined 
4D-QSAR and IVE-PLS method provided a 
very stable and predictive modeling tech-
nique. The method enabled the authors to 
identify molecular motifs contributing to the 
aromatase enzyme binding activity. Gueto et 
al. (2009) employed structure-based drug de-
sign approach using receptor-independent 
CoMFA maps that were generated from Leap-
Frog calculations.  

A robust model as verified by the boots-
trapping method produced statistically signif-
icant results via cross-validated analysis, 
which consisted of 45 and 10 molecules in the 
training and test sets, respectively. Using this 

model, the authors were able to predict the ac-
tivity of novel AI molecules which had more 
potency than previously reported compounds. 
Roy and Roy (2010a) performed a 3D-QSAR 
study on a diverse set of compounds using the 
crystal structure of aromatase whereby the da-
taset was divided into training (n=87) and 
testing (n=29) set by clustering techniques. 
All the QSAR models were subjected to mul-
tiple validation methods such as internal vali-
dation, external validation and Y-randomiza-
tion. The authors concluded that in order to 
exhibit ideal aromatase inhibitory activity, the 
compound should contain at least one or two 
hydrogen bond acceptor groups (such as NO2 
and CN) with optimal hydrophobicity.  

Additionally, the increase in popularity of 
QSAR models for predicting AIs was greatly 
observed in 2011-2015 (Narayana et al., 
2012; Kishore et al., 2013; Nantasenamat et 
al., 2013a, b, 2014; Dai et al., 2014; Xie et al., 
2014; Worachartcheewan et al., 2014a, b; 
Shoombuatong et al., 2015; Awasthi et al., 
2015; Xie et al., 2015; Kumar et al., 2016) 
whereby the number of publications increased 
to thirteen, with an even more dramatic rise in 
the number of compounds used for calculat-
ing descriptors using LOO-CV and external 
validation (Figure 5). Worachartcheewan et 
al. (2014b) investigated the QSAR of couma-
rins as potential AIs using 7 quantum chemi-
cal descriptors. MLR was used for the analy-
sis of models, which were shown to achieve 
good predictive performance as verified by 
LOO-CV affording Q2 of 0.9239 and 
RMSECV of 0.1304 while an external valida-
tion confirmed its robustness with Q2Ext of 
0.7268 and RMSEExt of 0.2927.  

Moreover, Nantasenamat et al. (2013b) 
explored a set of 54 letrozole analogs as AIs 
in a QSAR study using MLR, ANN and SVM 
methods. The QSAR model was developed 
using a set of descriptors giving rise to im-
portant physicochemical properties (i.e. num-
ber of rings, ALogP and HOMO-LUMO) 
which were further used for predicting AI ac-
tivity. The authors observed a strong correla-
tion among the predicted pIC50 values with
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Figure 5: Overview of the types of descriptors 
(top), machine learning algorithms (middle) and 
validation methods (bottom) extracted from arti-
cles describing QSAR models of AIs. 
(Abbreviations: SP, S, QC, PM, PC, MSI, MS, MIA and 
MF represents spectral, SMILES, quantum chemical, 
pharmacophore mapping, physicochemical, molecular 
similarity indice, molecular surface, multivariate image 
analysis and molecular field, respectively. SVM, PLS, 
MLR, ELM, DT and ANN represents support vector ma-
chine, partial least square, multiple linear regression, 
efficient linear model, decision tree and artificial neural 
network, respectively. LOO-CV, external and 10-fold 
CV represents leave-one-out cross-validation, external 
test and 10-fold cross-validation, respectively) 

their experimental values, displaying correla-
tion coefficient Q2 values in the range of 
0.72–0.83 while the external test set (Q2Ext) 
afforded values in the range of 0.65–0.66. 
Furthermore, Worachartcheewan et al. 
(2014a) employed the bioactivity data on 
pIC50 of 973 AIs for constructing QSAR mod-
els using CORelation And Logic (CORAL) 
software (http://www.insilico.eu/coral) where 
the molecular structures are represented by 

their simplified molecular input line entry 
system (SMILES) notation and thus eliminat-
ing the need to geometrically optimize molec-
ular structures. The Monte Carlo optimization 
of correlation was used for predicting the aro-
matase inhibitory activity. Results obtained 
from rigorous dataset splits and CV tech-
niques indicated that models were reliable 
with R2 and Q2 in ranges of 0.6271–0.7083 
and 0.6218–0.7024, respectively. Similarly, 
Nantasenamat et al. (2014) conducted the first 
large-scale QSAR study on a non-redundant 
set of 63 flavonoids using MLR, ANN, SVM 
and DT methods. The models obtained 
showed good predictive performance with Q 
values in the range of 0.8014–0.9870 and  
0.8966–0.9943 evaluated by LOO-CV and 
external test, respectively. Furthermore, in an-
other study conducted by our group 
Shoombuatong et al. (2015), proposed the 
simple and interpretable efficient linear 
method (ELM) for constructing a highly pre-
dictive QSAR model. The results indicated 
that a robust performance was achieved using 
the ELM method with 10-fold CV MCC val-
ues of 0.64 and 0.56 for steroidal and non-ste-
roidal AIs, respectively. In addition, Xie et al. 
(2014) constructed 3D QSAR models in order 
to elucidate the steroidal AIs with lower side 
effects using CoMFA and CoMSIA methods. 
The models produced were reliable and pre-
dictive good statistical results for CoMFA: Q2 
= 0.636, R2 = 0.988, Q2Ext = 0.658 and 
CoMSIA:  Q2 = 0.843, R2 = 0.989, Q2Ext = 
0.601.  

The current trend (2016–2018; Figure 4) 
shows that eight articles (Song et al., 2016; 
Ghodsi and Hemmateenejad, 2016; Adhikari 
et al., 2017a; Prachayasittikul et al., 2017; 
Pingaew et al., 2018; Lee and Barron, 2018; 
Barigye et al., 2018) have already been pub-
lished in comparison to a total of 13 publica-
tions for the previous 5 years. Thus, it is 
promising that the number of publication re-
garding AIs utilizing QSAR models for pre-
diction will continue to grow.  
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To further aid in that growth process, the 
number of compounds used as the data set has 
seen a steady rise with the number of de-
scriptors for generating QSAR models saw a 
dramatic increase as compared to previous 
years. As for the types of descriptors, the 
trend has moved towards modern QSAR with 
the utilization of physicochemical properties 
and quantum chemical structures to build the 
models. In addition, the main validation tech-
niques remain the same as previous years 
whereby LOO-CV and external validation 
were mainly used. Ghodsi and Hemma-
teenejad (2016) conducted QSAR studies on 
a series of diarylalkylimidazole and dia-
rylalkyltriazole derivatives previously evalu-
ated as being potent AIs using 870 quantum 
chemical descriptors (such as dipole moment 
and energies of HOMO and LUMO orbitals, 
hydration energies, and lipophilicity) that 
were analyzed using MLR. The models were 
validated with the LOO-CV and the authors 
concluded that lipophilicity was an important 
factor for the strong binding to aromatase. In 
addition, the HOMO orbital shape and its im-
idazole ring distribution was also considered 
as important. More recently, Adhikari et al. 
(2017a) performed QSAR studies using vari-
ous techniques (2D-QSAR, 3D-QSAR and 
HQSAR) on 67 non-steroidal letrozole-based 
analogs with promising AI activity. Stepwise 
multiple linear regression (SMLR) was used 
to build the models after which, the models 
were validated with the LOO for internal val-
idation. The results from the 2D-QSAR study 
suggested the importance of the nitrogen at-
oms in their electrotopological state thereby 
inferring that their orientation may modulate 
the inhibition. The authors noted that these re-
sults were further validated with the 3D-
QSAR analysis while the HQSAR model in-
ferred the importance of the p-cyanophenyl 
moiety in regulating AI. Additionally, Lee 
and Barron (2018) conducted 3D-QSAR stud-
ies on the bioactivity (IC50) of 124 com-
pounds exhibiting AI activity (steroidal and 
heterocyclic). Multiple linear regress- 
 

ion combined with genetic algorithm (GA-
MLR) was used to build the models which 
was then validated via the LOO and external 
validation methods. Furthermore, Prachaya-
sittikul et al. (2017) investigated the aroma-
tase inhibitory potency of a series of 2-amino 
(chloro)-3-chloro-1,4-naphthoquinone deriv-
atives by constructing QSAR models using 
the IC50 values. The models were evaluated 
based on MLR and LOO-CV which indicated 
good predictive performance (Q2 = 0.9783 
and RMSECV = 0.0748) of the constructed 
model. Therefore, 1,4-naphthoquinone deriv-
atives can be seen as promising compounds 
needed further evaluations as AIs. The most 
recent article published by Barigye et al.  
(2018) reported the first practical application 
of Discrete Fourier Transformation (DFT) 
based Multiple Image Analysis (MAI) de-
rived 2D-QSAR model for the classification 
of an aforementioned set of 973 novel AIs as 
compiled from the literature (Nantasenamat et 
al., 2013a). 

 

INSIGHTS FROM QSAR MODELS 

Model interpretation is the process by 
which the underlying features contributing 
the most to the investigated biological activity 
are deduced as to help guide the design of 
novel and robust drugs. The interpretability of 
a QSAR model is contingent upon the types 
of descriptors and machine learning algo-
rithms used. As summarized in Table 4, it can 
be observed that prior to 2010, MLR and PLS 
models, also known as white-box approaches, 
were the most popular and yet simple learning 
algorithms used for QSAR modeling of AIs.  

Although these two models are interpret-
able but they did not perform well on highly 
complexed data. On the other hand, a black-
box approach like ANN and SVM can pro-
vide higher accuracy in the same case but they 
cannot provide details pertaining to how the 
factors exert its influence on the biological ac-
tivity of investigated compounds. Analysis of 
key  features  for  aromatase  inhibition  from
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Table 4: Summary of machine learning algorithm used in QSAR modeling for predicting and analyzing 
aromatase inhibitor. 

Year Number 
of com-
pounds 

Type of  
descriptorsa 

Number 
of de-
scriptors 

ML  
algorithmb 

Valida-
tionc 

References 

1994 24 QC 5 MLR LOO-CV Nagy et al., 1994 
1996 29 MF 3 PLS LOO-CV Recanatini, 1996 
1996 50 MF 2 PLS LOO-CV, 

External 
Oprea and García, 
1996 

1997 78 MF 4 PLS LOO-CV Sulea et al., 1997 
1998 60 MF 6 PLS LOO-CV, 

External 
Recanatini and 
Cavalli, 1998 

2000 49 MF 2 PLS LOO-CV Cavalli et al., 2000 
2001 50 SP 5 PLS LOO-CV Beger et al., 2001 
2002 50 QC 6 PLS LOO-CV Gironés and Carbó-

Dorca, 2002 
2002 50 SP 9 PLS LOO-CV Beger and Wilkes, 

2002 
2003 50 MS 5 PLS LOO-CV Polanski and Gielec-

iak, 2003 
2004 35 MF 3 PLS LOO-CV Leonetti et al., 2004 
2004 50 SP 5 MLR,PLS LOO-CV Beger et al., 2004 
2005 70 MF 5 PLS LOO-CV Cavalli et al., 2005 
2007 152 PM 2 PLS LOO-CV Bak and Polanski, 

2007 
2008 128 MF 5 PLS LOO-CV, 

External 
Castellano et al., 
2008 

2008 33 MF, MSI 4 MLR, PLS LOO-CV Nagar et al., 2008 
2009 30 MF, MSI 3 PLS LOO-CV Mittal et al., 2009 
2009 66 MF 7 PLS LOO-CV, 

External 
Gueto et al., 2009 

2010 32 PC 7 PLS LOO-CV Dai et al., 2010 
2010 59 PC 5 PLS LOO-CV Roy and Roy, 2010b 
2010 116 PC 4 PLS LOO-CV, 

External 
Roy and Roy, 2010a 

2010 52 MF, MSI 5 MLR, PLS LOO-CV, 
External 

Nagar and Saha, 
2010a 

2010 89 PC 6 MLR, PLS LOO-CV, 
External 

Nagar and Saha, 
2010b 

2012 39 PC 3 MLR LOO-CV, 
External 

Narayana et al., 
2012 

2013 54 PC, QC 3 MLR, ANN, 
SVM 

LOO-CV, 
External 

Nantasenamat et al., 
2013b 

2013 973 PC, QC 13 DT 10-fold 
CV 

Nantasenamat  et al., 
2013a 

2013 73 QC 5 PLS External Kishore et al., 2013 
2014 34 PC, QC 7 MLR LOO-CV, 

External 
Worachartcheewan 
et al., 2014b 

2014 973 S 7 MLR LOO-CV, 
External 

Worachartcheewan 
et al., 2014a 

2014 63 PC, QC 6 MLR, ANN, 
SVM 

LOO-CV Nantasenamat et al., 
2014 

2014 14 PC 5 PLS LOO-CV Dai et al., 2014 
2015 45 MF 6 PLS LOO-CV, 

External 
Awasthi et al., 2015 

2015 84 MF, MSI 7 PLS LOO-CV, 
External 

Xie et al., 2015 
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Year Number 
of com-
pounds 

Type of  
descriptorsa 

Number 
of de-
scriptors 

ML  
algorithmb 

Valida-
tionc 

References 

2015 973 PC, QC 15 ELM 10-fold 
CV 

Shoombuatong et al., 
2015 

2015 66 MF, S 4 PLS LOO-CV, 
External 

Xie et al., 2014 

2016 46 MF 5 PLS LOO-CV Kumar et al., 2016 
2016 76 PC, QC 9 MLR LOO-CV Ghodsi and Hemma-

teenejad, 2016 
2016 13 PC 4 MLR LOO-CV Song et al., 2016 
2017 11 PC, QC 4 MLR LOO-CV Prachayasittikul et 

al., 2017 
2017 67 MF 5 MLR LOO-CV, 

External 
Adhikari et al., 2017a 

2018 124 PC, QC 9 MLR LOO-CV, 
External 

Lee and Barron, 
2018 

2018 34 PC 4 MLR LOO-CV Pingaew et al., 2018 
2018 973 MIA 60 SVM External Barigye et al., 2018 

aMF: molecular field, MIA: Multivariate image analysis, MS: Molecular surface, MSI: molecular similarity indices, 
PC: physicochemical, PM: Pharmacophore mapping, QC: quantum chemical, S: SMILES, SP: Spectral 
bANN: artificial neural network, MLR: multiple linear regression, PLS: partial least squares regression, SVM: support 
vector machine 
cLOO-CV: leave-one-out cross-validation, 10-fold CV: 10-fold cross-validation 
 
 
selected QSAR works employing descriptors 
pertaining to quantum chemical and physico-
chemical properties are performed hereafter 
(Table 5). Nantasenamat et al. (2013a) per-
formed a large-scale QSAR modeling of a set 
of steroidal and non-steroidal AIs and re-
vealed that the most important features from 
PCA analysis were found to be nHAcc, TPSA 
and LUMO for non-steroidal and Qm, TPSA 
and nHAcc and ALogP for steroidal AIs. In 
addition, fragment analysis provided comple-
mentary insights by suggesting that the pres-
ence of the azole ring in non-steroidal inhibi-
tors (i.e. known to coordinate with the heme 
iron) and the presence of carbonyl group in 
the C3 position of steroidal inhibitors were 
important for aromatase inhibition. 

In addition, using the same set of data, 
Shoombuatong et al. (2015) used the ELM 
model to deduce the most important features 
associated with AI. It was observed that the 
top four most informative descriptors for the 
steroidal dataset were C-025 (atom centered 
fragments; R--CR--R), ESpm14u and 
ESpm13r (connectivity or bonding between 
atoms) and MATS6p (involved in polarizabil- 

ity of molecules). 
As for the non-steroidal dataset, the most 

important feature was determined to be mo-
lecular graph, polarizability and electronega-
tivity of the compound. Therefore, the authors 
concluded that the polarizability of the com-
pounds along with a suitable shape may be the 
determining factors needed for both types of 
AIs for reaching its intended target. Addition-
ally, Worachartcheewan et al. (2014a) con-
ducted a large-scale study on AIs using 
SMILES-based descriptors and discovered 
that the most notable features were the pres-
ence of cyclic rings (i.e. found in steroidal in-
hibitors) and the presence in the molecular 
structure of oxygen atoms together with dou-
ble bonds that are disconnected in the struc-
ture (++++O---B2==) (i.e. analogous to the 
ketone groups present in the natural substrate, 
androstenedione) are important in increasing 
aromatase inhibitory activity. Furthermore, 
Ghodsi and Hemmateenejad (2016) con-
ducted QSAR on AIs based on long-chained 
diarylalkylimidazole and diarylalkyltriazole 
(non-steroidal) molecule skeletons in which 
they determined important features to include  
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Table 5: Summary of key features for aromatase inhibition as deduced from QSAR modeling. Example 
descriptors are shown in the parenthesis. 

Steroidal Non-steroidal 

● Number of cyclic rings 
● Lipophilic 
● Polar (TPSA, MATS6p) 

● Nitrogen-containing descriptors (G(N∙∙∙N)) 
● Polarizability (HOMO, HOMO-LUMO) 
● Hydrogen bond acceptors (nHAcc) 

TPSA: an empirical measure of the polar surface area of a molecule, MATS6p: Moran autocorrelation of lag 6 as 
weighted by polarizability, G(N∙∙∙N): Sum of geometric distances between N∙∙∙N, HOMO: the highest energy molec-
ular orbitals, HOMO-LUMO: the energetic difference between the HOMO and LUMO states, nHAcc: the number of 
hydrogen bond acceptors present in a molecule  

 

 
geometrical distances of N and N atoms as 
well as that of O and O atoms (i.e. nitrogen 
atoms of azole rings as well as oxygen atoms 
from steroidal ketones), length of the bridge 
carbon chain (i.e. methylene spacer separat-
ing the azole ring and the phenol ring), num-
ber of triple bonds (i.e. triple bond in the ni-
trile or CN that is an integral part of FDA-ap-
proved AIs), HOMO energy (i.e. localization 
of HOMO orbital predominantly in the imid-
azolyl ring), etc. Furthermore, Nantasenamat 
et al. (2014) studied flavonoids with aroma-
tase inhibitory activity, and found that active 
compounds were found to exhibit smaller 
size, higher degree of rigidity, lower polarity 
and charge distribution, and afforded lower 
electron-withdrawing tendency and higher 
chemical reactivity than those of the inactive 
class. 

As for the analysis of 3D-QSAR models 
utilizing descriptors based on molecular 
fields, Castellano et al. (2008) revealed that 
the aligned molecules showed the presence of 
three major regions in which two were perti-
nent for aromatase inhibition (i.e. one im-
portant region afforded both electrostatic and 
hydrogen bonds while the second important 
region was occupied by the characteristic az-
ole moiety) whereas the other region was not 
important for the activity. Adhikari et al. 
(2017a) performed an extensive study em-
ploying a wide range of QSAR models in-
cluding 2D and 3D QSAR as well as molecu-
lar docking to also confirm the importance of 
the electrostatic property of the nitrogen-con-
taining azole moiety, p-cyanophenyl moiety, 

p-nitrophenyl, hydro-phobicity as well as the 
appropriate size and shape of AIs were crucial 
for aromatase inhibitory activity. Xie et al. 
(2015) performed both CoMFA and CoMSIA 
studies and both studies further supported the 
importance of bulky steric groups as well as 
the importance of electrostatic properties per-
taining to the presence of azole nitrogen at-
oms. 

CONCLUSION 
In spite of extensive research (i.e. medici-

nal chemistry and QSAR work) in the quest 
of novel and potent aromatase inhibitors, 
there has been only a few review articles on 
the topic (Adhikari et al. 2017b; Yadav et al. 
2015). Briefly, Yadav et al. (2015) carried out 
a review focusing on molecular modeling as 
well as QSAR of steroidal AIs whereas Adhi-
kari et al. (2017b) based their review on 
QSAR studies of non-steroidal AIs. Herein, 
we have performed an extensive review on 
the mechanistic insights of pertinent features 
as derived from all previous QSAR models of 
both steroidal and non-steroidal AIs. Moreo-
ver, this review also summarized the experi-
mental setup of all QSAR studies such that a 
comparative and holistic analysis could be de-
duced and used for providing a glimpse on the 
current state-of-the-art in the field as well as 
serving as the basis for planning future studies 
to further gain insights on aromatase inhibi-
tion. For example, it is anticipated that in-
sights gained from QSAR models alone pro-
vides one aspect where it may be beneficial to 
also call upon complementary methodologies  
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such as structure-based and systems-based 
approaches to facilitate and augment the lig-
and-based QSAR approach. In fact, there 
have been a few studies employing a multi-
tude of ligand, structure and systems-based 
approaches in studying aromatase inhibition 
(Simeon et al. 2016b); Suvannang et al. 2011) 
and future works along this line is expected to 
be of great benefit to the scientific commu-
nity. 
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