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Genome-wide association studies (GWASs) have successfully discovered numerous
variants underlying various diseases. Generally, one-phenotype one-variant association
study in GWASs is not efficient in identifying variants with weak effects, indicating that more
signals have not been identified yet. Nowadays, jointly analyzing multiple phenotypes has
been recognized as an important approach to elevate the statistical power for identifying
weak genetic variants on complex diseases, shedding new light on potential biological
mechanisms. Therefore, hierarchical clustering based on different methods for calculating
correlation coefficients (HCDC) is developed to synchronously analyze multiple
phenotypes in association studies. There are two steps involved in HCDC. First, a
clustering approach based on the similarity matrix between two groups of phenotypes
is applied to choose a representative phenotype in each cluster. Then, we use existing
methods to estimate the genetic associations with the representative phenotypes rather
than the individual phenotypes in every cluster. A variety of simulations are conducted to
demonstrate the capacity of HCDC for boosting power. As a consequence, existing
methods embedding HCDC are either more powerful or comparable with those of without
embedding HCDC in most scenarios. Additionally, the application of obesity-related
phenotypes from Atherosclerosis Risk in Communities via existing methods with
HCDC uncovered several associated variants. Among these, UQCC1-rs1570004 is
reported as a significant obesity signal for the first time, whose differential expression
in subcutaneous fat, visceral fat, and muscle tissue is worthy of further functional studies.
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INTRODUCTION

The applications of genome-wide association studies (GWASs) have successfully established a large
number of genetic variants associated with numerous complex diseases (Lutz et al., 2017),
contributing to the understanding of the mechanisms of complex diseases such as obesity
(Locke et al., 2015; Shungin et al., 2015). Notably, GWASs usually apply the univariate analysis
to examine the association between genetic variants and a single phenotype, and in general, multiple
phenotypes related to diseases are typically collected together for better understanding the
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physiological process of diseases (Yang et al., 2010). For example,
information about individual status of obesity, insulin resistance,
hypertension, and atherosclerotic dyslipidemia is required jointly
to explore metabolic syndrome (Sattar et al., 2008). A research of
hypertension inevitably takes account of the magnitude of systolic
blood pressure (SBP) and diastolic blood pressure (DBP) (Yang
and Wang, 2012), From the aspect of pleiotropy, namely, some
genes could simultaneously affect multiple related phenotypes,
the significance of biological process emphasizes the importance
of multiple phenotypes analyses. Univariate analysis means
conducting single phenotype separately and showing the
outcomes for each phenotype (O’Reilly et al., 2012). However,
analyzing one phenotype at each time will absolutely suffer
multiple testing corrections, which results in a power loss in
GWASs (Yang et al., 2010). Recently, jointly analyzing multiple
phenotypes together has become popular due to its increased
statistical power of identifying genetic variants compared to
analyzing each phenotype separately, enhancing the magnitude
of explanation for the biological progress of relevant diseases, and
elevating the credibility of the results (Yang et al., 2010; Aschard
et al., 2014; Fu et al., 2021).

In the past decade, joint analysis of multiple phenotypes has
developed rapidly, which may roughly be classified into three
categories: regression approaches, integrating testing statistics
from univariate analyses, and variable reduction approaches
(Yang and Wang, 2012). Tests that fall into the first category,
regression approaches, mainly encompass three different
methods to analyze the association of multiple phenotypes
with a genetic variant: mixed effect models (Bates and
DebRoy, 2004), frailty models (Therneau et al., 2003), and
generalized estimating equations (Zeger and Liang, 1986). In
the second category, integrating testing statistics from univariate
analyses, as the name suggests, integrates different test statistics or
p-values from univariate association analyses via various
strategies (Schaid et al., 2016; Yang et al., 2016). Nowadays,
various approaches of integrating test statistics or p-values
from univariate analyses have been established to investigate
the association between genetic variants and multiple
phenotypes concerning the correlation structure among
phenotypes (van der Sluis et al., 2013; Kwak and Pan, 2016;
Liang et al., 2016; Yang et al., 2016). In the last category, tests on
the basis of variable reduction approaches roughly adopt three
dimension reduction techniques. The first one is the principal
component analysis (PCA) (Aschard et al., 2014). In PCA, the
first few principal components (PCs) with regard to majority of
the total phenotype variance are selected for evaluating their
association with a genetic variant. The second one is the canonical
correlation analysis (CCA) (Tang and Ferreira, 2012). CCA
supplies an efficient and powerful method for both univariate
and multivariate analyses ignoring the need for permutation
test in association studies by searching for linear combinations
that maximize the association between two classes of
multidimensional variables. The last one is the principal
component of heritability (PCH) (Ott and Rabinowitz, 1999;
Klei et al., 2008; Wang et al., 2016). PCH adopts a linear
combination of phenotypes that represents the highest

heritability among all linear combinations of phenotypes for
reducing multiple phenotypes.

In this study, we develop a novel variable reduction approach
called hierarchical clustering based on different methods for
calculating correlation coefficients (HCDC) aiming at jointly
analyzing multiple phenotypes. By means of a dimension
reduction technique, HCDC constructs a typical phenotype
from each cluster of phenotypes, then applies the existing
approaches for jointly analyzing multiple phenotypes to
estimate the genetic associations with the typical phenotypes
instead of the individual phenotypes. The vital significance in
dimension reduction technique of HCDC is that when one cluster
is composed of positively highly correlated phenotypes, every
linear combination of phenotypes is a representative of the cluster
reasonably (Bien and Wegkamp, 2013; Bühlmann et al., 2013).
One specific advantage of HCDC is that it does not need to know
individual phenotypes, and it actually requires a similarity matrix
about the phenotypes. In real data analysis, the similarity matrix
of phenotypes can be evaluated from the summary statistical
values with regard to the usage of independent single nucleotide
polymorphisms (SNPs) in a GWAS (Zhu et al., 2015). Previously,
hierarchical clustering method (HCM) is also a clustering
approach (Liang et al., 2018). However, when calculating the
correlation coefficients between distinct clusters, HCM adopts the
uniform expression of correlation coefficients, not concerning the
number of phenotypes in each cluster. As a result, HCM obtains
lower statistical power in some scenarios. On the contrary, we
propose HCDC by virtual extensive simulations to reveal the
validity of the improved two-step approach and to explore its
power. Notably, the performance of three existing approaches
employing HCDC or HCM, namely, multivariate analysis of
variance (MANOVA) (Cole and MaxwellScott, 1994), joint
model of multiple phenotypes (MultiPhen) (O’Reilly et al.,
2012), trait-based association test that uses extended Simes
procedure (TATES) (van der Sluis et al., 2013), is compared
with that of without employing HCDC or HCM. In this way,
scientific issues about whether there exists an advantage of
clustering (MANOVA, MultiPhen, and TATES using HCDC
or HCM are compared with these approaches without
using HCDC or HCM) and which clustering approach has
more obviously outstanding performance (MANOVA,
MultiPhen, and TATES using HCDC are compared with
these approaches using HCM) can be solved. Our
simulations reveal that MANOVA, MultiPhen, and TATES
employing HCDC have correct type Ⅰ error rates and possess
more power than MANOVA, MultiPhen, and TATES without
employing HCDC in most simulation scenarios. Finally, we
emphatically explore the performance of HCDC approach by
utilizing the obesity-related phenotypes from a real dataset,
Atherosclerosis Risk in Communities (ARIC) Study (Author
Anonymous, 1989) from dbGaP. Consequently, a total of
eight significant SNPs are detected, and subsequent
bioinformatics analysis is carried out for better understanding
the results. From another point of view, the interesting
results indicate the effective performance of HCDC in real
data application.
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METHODS

Proposed HCDC
Assume a sample with N individuals, and M phenotypes
Y1, Y2, . . . , YM. Meanwhile, let X � (x1, . . . , xN)T denote the
genotypic score of N individuals at a genetic variant of
interest, where xi ∈ {0, 1, 2} represents the number of minor
alleles that i th subject carries at that variant.

Note that the key issue in the hierarchical clustering is to
specify a measure of similarity between disjoint groups of
phenotypes. Now let us take two disjoint clusters G1 and G2

of phenotypes as an example to demonstrate the calculation of
similarity between these two groups. Denote M1 and M2 as the
numbers of phenotypes in G1 and G2, respectively.

1. If M1 � M2 � 1, Pearson correlation coefficient (Jin and Lin,
2019) between two phenotypes is calculated to represent the
similarity between G1 and G2.

2. If M1 � 1 and M2 > 1, or M1 > 1 and M2 � 1 multiple
correlation coefficient (Cohen and Cohen, 1983; Jin and
Lin, 2019) is employed based on the phenotypes involved
in G1 and G2, respectively, to reveal the similarity between a
pair of clusters.

3. If M1 > 1 and M2 > 1, canonical correlation coefficient
(Ferreira and Purcell, 2009) is applied according to the
phenotypes involved in G1 and G2 respectively to show the
similarity between two clusters.

Once we have the similarity measure between two clusters of
phenotypes, we apply a hierarchical clustering approach to cluster
the phenotypes. Specifically, following the agglomerative
(bottom–up) procedure, we start at the bottom (i.e., the lowest
level) where each phenotype is a cluster and then recursively
merge a selected pair of clusters with the biggest intergroup
similarity at the next lower level into a single cluster. This
produces a grouping at the next higher level with one less
cluster until all phenotypes are grouped as one cluster at the
highest level. Finally, there are M − 1 levels in the hierarchy.

For any b, 1≤ b≤M − 1, let hb denote the height at the level b
in the dendrogram, which is the biggest intergroup similarity at
the level b − 1. Similar to a proposed principle (Bühlmann et al.,
2013), a stopping criterion is adopted to determine the optimal
number K of clusters,

K � arg min
1≤b≤M−2

(hb+1 − hb).

Without loss of generality, the corresponding K clusters are
denoted as G1, G2, . . . , GK.

The established HCDC encompasses the following two steps.
First, M phenotypes are grouped into K clusters as
aforementioned, and each of the K clusters singles out a
representative phenotype. Second, existing approaches to the K
representative phenotypes instead of the original M phenotypes
are employed to evaluate the genetic association of multiple
phenotypes with a genetic variant.

Notice that each phenotype should be scaled first before
constructing the representative phenotype for each other. We

define the representative phenotype for the kth cluster as the
mean phenotype values in the cluster, namely

�Y(k) � 1
Mk

∑
m∈Gk

Ym, k � 1, . . . , K,

where Mk is the number of phenotypes in the cluster
Gk, k � 1, 2, . . . , K. Denote �Y as the N × K design matrix
whose kth column is given by �Y(k). Then, existing approaches
are employed to evaluate the association between �Y and X.

The source code for HCDC approach can be found in https://
github.com/YQHuFD/HCDC.

Comparison of Methods
For convenience, let 1n denote the ones vector of length n and 0n
represent the all zeroes vector of length n, where n is a positive
integer. First, we need to introduce one of the potential
competitors, HCM (Liang et al., 2018). Same as the process of
HCDC, HCM also adopts the bottom–up hierarchical clustering
method on the basis of the similarity. But unlike HCDC, HCM
defines the similarity matrix with Sij, where Sij is the i jth entry of
the sample correlation matrix of M phenotypes Y1, Y2, . . . , YM.
The average linkage is employed as the similarity between two
clusters in HCM. To be precise, the similarity between clusters Gk

andGl (which are two disjoint subsets of {1, 2, . . . ,M}) is given by

1
Mk ·Ml

∑
i∈Gk,j∈Gl

Sij,

where Mk and Ml are the numbers of phenotypes in the
respective clusters Gk and Gl, 1≤ k, l≤K.

Except the different definition of similarity between pairs of
clusters, the remaining processes of HCM are exactly the same as
the HCDC. Second, the performance of MANOVA (Cole and
MaxwellScott, 1994), MultiPhen (O’Reilly et al., 2012), and
TATES (van der Sluis et al., 2013) with using HCDC is
compared with that of with using HCM and that of without
using HCDC/HCM approaches. The ones with employingHCDC
and HCM are referred as HCDCMANOVA, HCMANOVA,
HCDCMultiPhen, HCMultiPhen, HCDCTATES, and
HCTATES, respectively. In the following, we briefly review the
existing approaches for easy reference.

MANOVA (multivariate analysis of variance) (Cole and
MaxwellScott, 1994): A total of M phenotypes are involved in
the standard MANOVA and the background
variance–covariance matrix Σ including M × M symmetrical
elements is unconstrained. There are ((M + 1) × M)/2 freely
evaluated elements in the covariances and variances. Standard
MANOVA tests the null hypothesis that the M regression
coefficients are all zeroes, which asymptotically follows F
distribution.

MutiPhen (joint model of multiple phenotypes) (O’Reilly
et al., 2012): In the MultiPhen model, the genotypes and
phenotypes are treated as ordinal response and predictors,
respectively. Likelihood ratio test is performed to test the null
hypothesis in the proportional odds logistic regression.

TATES (trait-based association test that uses extended Simes
procedure) (van der Sluis et al., 2013): The p-values from
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univariate analysis is integrated to get a comprehensive p-value,
and simultaneously, correlation between phenotypes is
considered for adjustment. Denote min(Mep(j)/Me(j)) as the
p-value of TATES, where p(j) represents the jth(j � 1, . . . ,M)
ascending sorted p-value; Me and Me(j) are the effective number
of independent p-values among all involved M phenotypes and j
specific phenotypes, respectively. The correlation matrix of
p-values is derived to obtain the effective numbers.

RESULTS

Simulation Studies
Suppose that a population is in Hardy–Weinberg equilibrium
(HWE), and we generate the genotypes of the genetic variants
following the binomial distribution with parameter two and
the minor allele frequency (MAF). This simulation study sets
MAF = 0.3 in most scenarios. We generate multiple phenotypes
by means of the following factor model (van der Sluis et al.,
2013):

y � λx + dcγf + d
�����
1 − c2

√
× ε,

where y � (y1, . . . , yM)T denotes the M phenotypes; x is the
genotype; λ � (λ1, . . . , λM)T represents the vector of values
suggesting the effects of genetic variant on the M phenotypes;
f shows the vector of factors; f � (f1, . . . , fR)T ~ MVN(0, Σ),
Σ � (1 − ρ)I + ρ1R1TR; I is the identity matrix; R represents the
number of factors, and ρ is the correlation between factors; γ is an
M × R matrix; d is a diagonal matrix for correcting the variance
of phenotypes; c denotes a constant; ε � (ε1, . . . , εM)T represents
a vector of random errors, and ε1, . . . , εM are mutually
independent and follow the standard normal distributions.
Consider the following four models with different numbers of
factors affected by genotypes.

Model 1: There is only one factor, and the genotype has an
effect on all phenotypes with the same effect size. That is,
R � 1, λ � β1M, d � diag(1M), and γ � 1M.
Model 2: There are two factors and the genotype impacts on one
factor with the same effect. Namely, R � 2, λ � (0TM/2, β1

T
M/2)T,

d � diag(1M), and γ � bdiag(1M/2, 1M/2), which is the block
diagonal matrix of 1M/2 and 1M/2.
Model 3: There are four factors, and the genotype has an
effect on the last two factors with varied effect directions.
That is, R � 4, λ � (0TM/2,−β1T3M/16, β1

T
M/4,−β1TM/16)T,

γ � bdiag((1T3M/16,−1TM/16)T, (1T3M/16,−1TM/16)T, (1T3M/16,−1TM/16)T,
(1T3M/16,−1TM/16)T),

and

d � diag(( 8
M
[1: M/4]T, 8

M
[1: M/4]T, 8

M
[1: M/4]T, 8

M
[1: M/4]T)T)

where [1: M/4] denotes the vectors of components 1, 2, . . . ,M/4.
Model 4: There are four factors, and the genotype has an

influence on the last three factors with different sizes. Namely,R � 4,

λ � (0TM/4,
2β

M/4 + 1
[1: M/4]T,−β1T3M/16, β1

T
M/4,−β1TM/16)

T

γ � bdiag((1T3M/16,−1TM/16)T, 1TM/4, (1T3M/16,−1TM/16)T, (1T3M/16,−1TM/16)T),
and

d � diag(( 8
M
[1: M/4]T, 8

M
[1: M/4]T , 8

M
[1: M/4]T , 8

M
[1: M/4]T)T)

For the all models, the within-factor correlation is c2, and the
between-factor correlation is ρc2. For evaluating type Ⅰ error rates
and powers, this study sets N = 2,000 unrelated individuals, and
the number of phenotypes M = 16, 32. According to β � 0, all
phenotypes independent of genotypes are generated to estimate
the type Ⅰ error rates of all investigated approaches, encompassing
MANOVA, MultiPhen, TATES, HCMANOVA, HCMultiPhen,
HCTATES, HCDCMANOVA, HCDCMultiPhen, and
HCDCTATES. The corresponding Q–Q plots of type Ⅰ error
rates in varied approaches are shown in Supplementary Figures
S1–8. Notably, for assessing powers, we do not only alter the
values of β (meanwhile, the within-factor correlation c2 � 0.5 and
between-factor correlation ρc2 � 0.1) but also vary the values of
within-factor correlation c2 � 0.3, 0.5, 0.7, and 0.9 (meanwhile,
the between-factor correlation ρc2 � 0.1).

Simulation Results
We establish varied nominal significance levels, distinct number
of phenotypes, and different number of factors to assess the type Ⅰ
error rates of all the nine methods. In each simulation model, the
p-values of all these evaluated methods are estimated by their
asymptotic distributions. The type Ⅰ error rates of MANOVA,
MultiPhen, TATES, HCMANOVA, HCMultiPhen, HCTATES,
HCDCMANOVA, HCDCMultiPhen, and HCDCTATES are
evaluated by 10,000 replicated samples. For 10,000 replicated
samples, we calculate that the 95% confidence intervals (CIs) for
type Ⅰ error rates in the nominal levels of 0.01 and 0.05 are about
(0.008, 0.012) and (0.0457, 0.0543), respectively. The estimated
type Ⅰ error rates of all these tested methods are shown in Table 1
(M = 16) and Table 2 (M = 32). We observe that the majority of
the type Ⅰ error rates of HCDCMANOVA, HCDCMultiPhen, and
HCDCTATES are within 95%CIs, which reflects the validity of
the established HCDC applied to existing methods. Additionally,
the type Ⅰ error rates of MANOVA, MultiPhen, TATES,
HCMANOVA, HCMultiPhen, and HCTATES are not
obviously deviated from the nominal levels. For more
information, please see the Q–Q plots in Supplementary
Figures S1–8.

For power comparison for these nine methods, we alter
distinct numbers of phenotypes and different models. The
powers of all tests are estimated on the basis of 1,000
replications and 2,000 subjects at a significance level of 0.05.
From the plots of power against genetic effect β (Figure 1), the
following are observed and can be shown:

1. When the genetic variant has the same effect on all the
phenotypes (Model 1), HCDCMANOVA, HCDCMultiPhen, and
HCDCTATES are powerful than HCMANOVA, HCMultiPhen,
and HCTATES, respectively. Meanwhile, HCMANOVA,
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HCMultiPhen, and HCTATES are powerful than MANOVA,
MultiPhen, and TATES, respectively. In most replications,
HCDC and HCM cluster various phenotypes into one or
several categories to reduce the number of phenotypes to be
analyzed for enhancing the power of test. Obviously, HCDC is
slightly powerful than HCM in this scenario.

2. When the genetic effects on phenotypes reveal some groups
and possess the same direction (Model 2), the power of
HCDCMANOVA, HCDCMultiPhen, and HCDCTATES is
equal to that of HCMANOVA, HCMultiPhen, and HCTATES,
respectively. However, MANOVA, MultiPhen, and TATES with
HCDC or HCM are much more powerful than MANOVA,
MultiPhen, and TATES, respectively. These results indicate
that clustering can definitely increase the power of test.

3. When the genetic effects on phenotypes appear in some
groups and show different directions (Models 3 and 4),
MANOVA, MultiPhen, and TATES are powerful than
MANOVA, MultiPhen, and TATES with HCDC or HCM,
respectively.

4. No matter altering of genetic effects β or changes in
correlation coefficients between varied phenotypes,
HCDCMANOVA and HCDCMultiPhen, HCMANOVA and

HCMultiPhen, MANOVA and MutiPhen have similar
performance in all four models, respectively.

5. When the genetic effects on phenotypes show obvious same
direction within a group (Models 1 and 2), HCDCTATES,
HCTATES, and TATES have better performance than other
approaches.

From the within-factor correlation c2 (Supplementary
Figures 9, 10), we can observe the following:

6. When the genetic variant has the same effect on the
phenotypes within a group, and there exists the same variance
among phenotypes within this group, the powers of all estimated
methods decrease as the within-factor c2 increases (Models 1 and
2). However, our proposed MANOVA, MultiPhen, and TATES
with using HCDC have obvious advantage over MANOVA,
MultiPhen, and TATES without using HCDC, respectively.

7. When the genetic variant has the distinct effects on the
phenotypes within a group, and there are different variances
among phenotypes within this group (Models 3 and 4),
MANOVA, MultiPhen, and TATES with using HCDC have
more power than MANOVA, MultiPhen, and TATES without
using HCDC as the within-factor c2 is <0.5, but MANOVA and
MultiPhen get more advantage as c2 is >0.5, which reveal that

TABLE 1 | Evaluations of type Ⅰ error rates of the nine methods in four simulation models.

Type Ⅰ error rates

Methods Model 1 Model 2 Model 3 Model 4

α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05

HCDCMANOVA 0.0102 0.0523 0.0113 0.0522 0.0086 0.0532 0.0095 0.05
HCMANOVA 0.01 0.0517 0.0113 0.0524 0.0094 0.0478 0.0101 0.0509
MANOVA 0.0108 0.0505 0.0112 0.0547 0.0089 0.0514 0.0103 0.0519
HCDCMultiPhen 0.0101 0.0538 0.012 0.0527 0.0089 0.0532 0.0102 0.0483
HCMultiPhen 0.0091 0.0528 0.0121 0.0526 0.0102 0.0519 0.0101 0.0494
MultiPhen 0.0107 0.0523 0.0116 0.052 0.0094 0.0517 0.011 0.0537
HCDCTATES 0.0108 0.0502 0.0112 0.0511 0.0099 0.0466 0.0112 0.0506
HCTATES 0.0122 0.051 0.0114 0.0512 0.0109 0.0488 0.0103 0.05
TATES 0.0111 0.0473 0.0119 0.0512 0.0112 0.0514 0.0121 0.0535

Sample size N = 2,000, the number of phenotypesM = 16, c2 = 0.5, ρc2 = 0.1, and minor allele frequency (MAF) = 0.3. The type Ⅰ error rates of all nine methods are evaluated by 10,000
replicated samples at the significance of α. The values in bold indicate that the type Ⅰ error rates are out of 95% CI of the nominal significance level.

TABLE 2 | Evaluations of type Ⅰ error rates of the nine methods in four simulation models.

Type Ⅰ error rates

Methods Model 1 Model 2 Model 3 Model 4

α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05

HCDCMANOVA 0.01 0.0515 0.0118 0.0543 0.01 0.0498 0.0099 0.048
HCMANOVA 0.0111 0.0502 0.0118 0.0544 0.0111 0.0503 0.0102 0.0506
MANOVA 0.0101 0.051 0.0106 0.0582 0.0115 0.0545 0.0102 0.0515
HCDCMultiPhen 0.0099 0.0502 0.0117 0.0545 0.0098 0.05 0.0091 0.0497
HCMultiPhen 0.011 0.0516 0.0119 0.0543 0.0102 0.0503 0.0099 0.0512
MultiPhen 0.0102 0.0495 0.011 0.0589 0.0115 0.0573 0.0106 0.0511
HCDCTATES 0.0112 0.0514 0.0119 0.0539 0.0097 0.0483 0.0086 0.0463
HCTATES 0.0093 0.045 0.012 0.0538 0.0111 0.0546 0.0106 0.0516
TATES 0.0078 0.041 0.0105 0.0465 0.0128 0.0524 0.0101 0.0496

Sample size N = 2,000, the number of phenotypesM = 32, c2 = 0.5, ρc2 = 0.1, and minor allele frequency (MAF) = 0.3. The type Ⅰ error rates of all nine methods are evaluated by 10,000
replicated samples at the significance of α. The values in bold indicate that the type Ⅰ error rates are out of 95% CI of the nominal significance level.
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MANOVA and MultiPhen take heteroscedasticity between
different phenotypes into account when calculating genetic
associations.

In summary, the existing approaches employing HCDC has
controlled type Ⅰ error rates and have more advantage over or are
comparable with those without employing HCDC. Therefore, we
could draw that our established HCDC could give more power
than HCM or original approaches without using HCDC, and in
some scenarios, the advantage is more obvious. In other
scenarios, the existing methods using HCDC is comparable
with the most powerful test.

Real Data Analysis
We use our established approach, HCDC, together with other
existing methods to the real data analysis in ARIC study (Author
Anonymous, 1989). Briefly, ARIC is a prospective cohort study
supported by the National Heart, Lung, and Blood Institute
(NHLBI), aiming at assessing atherosclerosis risk in
community. It keeps track of the altering of the occurrence of
atherosclerosis-relevant diseases and cardiovascular risk factors
in different regions, races, genders, and periods of time, in order
to explore the natural process of atherosclerosis (Morrison et al.,
2013). We acquire the clinical phenotypic and genotyped data of
ARIC from dbGaP server of the United States National Center for
Biotechnology Information (accession number:
phs000090.v4.p1).

To evaluate the performance of HCDC together with other
existing methods in analyzing real data, we evaluate the nine

approaches to explore obesity-related phenotypes in ARIC. We
choose nine continuous phenotypes concerning obesity
comprising body weight, body mass index (BMI), mean
skinfold thickness of the triceps brachii, average subscapular
skinfold thickness, hip girth, waist, waist-to-hip ratio (WHR),
calf girth, and wrist breadth and three covariates of age, gender,
and race. The description of these variables is shown in Table 3 in
detail, and the correlation matrix of obesity-related phenotypes is
displayed in Supplementary Figure S11. A total of 12,701
individuals across 272,027 SNPs are left to be analyzed
subsequently after removing subjects with missing data under
any of these 12 variables together with the genetic variants
concerning missing rate more than 0.2 or HWE <10–4. Each
phenotype is adjusted for those three covariates by conducting the
linear regression model.

According to the scaled phenotypes with respect to obesity, we
use these nine methods to identify associated genetic variants.
Due to multiple testing correction, we apply the genome-wide
significance threshold of 5 × 10–8. HCDC clusters nine
phenotypes into two groups in this real data analysis, one only
containing wrist breadth, while the other includes the rest. As
comparisons, three groups are obtained after clustering by HCM,
one only containing wrist breadth, and another encompasses
WHR phenotype, while the other contains the remaining
phenotypes. The dendrogram of clustering process for HCM
and HCDC in ARIC data are presented in Figure 2. From
these graphs, we can observe that there are significant
differences between the HCM method and the HCDC method

FIGURE 1 | Power comparisons of the ninemethods as a function of β in the four models. Sample sizeN = 2,000, the number of phenotypesM = 16 (A–D) andM =
32 (E–H), c2 = 0.5, ρc2 = 0.1, and MAF = 0.3. The power of all the methods is evaluated by 1,000 replicated samples at a significance level of 0.05.
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we proposed in the clustering process. Specifically, when the
correlation coefficients between different clusters are calculated,
the correlation coefficients increase with the increase in clustering
times in HCM (h is gradually increasing), while in HCDC, the
correlation coefficients may increase, or they may decrease
compared to the last clustering result. These differences can be
explained by the distinct ways to calculate the correlation
coefficients. HCM uses a uniform formula to evaluate the
similarity between pairs of clusters. However, pairs of clusters
generally include varied situations, comprising single phenotype
versus single phenotype, single phenotype versus multiple
phenotypes, or multiple phenotypes versus multiple
phenotypes. Nevertheless, HCDC takes those into account
fully to deal with complex and changeable situations; as a
result, such clustering result may be more convincing for most
of circumstances.

A total of eight SNPs are identified as significant signals for at
least one method (Table 4). Previously, a large amount of studies
(Frayling et al., 2007; Heard-Costa et al., 2009; Lindgren et al.,
2009; Meyre et al., 2009; Thorleifsson et al., 2009; Willer et al.,
2009; Heid et al., 2010; Speliotes et al., 2010; Bradfield et al., 2012;
Wen et al., 2012; Berndt et al., 2013; Monda et al., 2013; Locke
et al., 2015; Shungin et al., 2015) have covered that FTO
contributes to the risk of obesity due to the population-based
studies and the relevant experiments elaborating specific
mechanisms. Among the eight associated SNPs, rs9939609 and
rs8050136 are located in FTO gene. In addition, UQCC region is
covered to be associated with height (Sanna et al., 2008). Few

other SNPs have been explored to assess the association with
obesity or obesity-related phenotypes. From Table 4, we can
observe that HCDCMANOVA identified three SNPs;
HCMANOVA identified two SNPs; MANOVA identified four
SNPs; HCDCMultiPhen identified three SNPs, more than the
number of SNPs identified by HCMultiPhen (twoSNPs) and
MultiPhen (one SNP); HCDCTATES identified three SNPs;
TATES identified four SNPs; while no SNP was identified by
HCTATES. Overall, the results in real data analysis are highly
consistent with the simulation performance. The number of SNPs
identified by existing methods with HCDC is comparable with
the largest number of SNPs identified by existing methods
without HCDC. In order to make the overall performance
clearer in real data results, we draw Q–Q plots and Manhattan
plots after the application of these nine different methods in
ARIC data (Supplementary Figures S12–18). From these plots,
we can intuitively observe the SNPs identified by distinct
methods, and their p-values in the same plot to compare
their sizes.

Characteristics of the Significant Variants
We searched the annotations of the associated SNPs on the basis
of the Ensemble website (https://asia.ensembl.org) and SCAN
website (http://scandb.org), which are shown in Table 5. From
Table 5, it can be observed that these significant SNPs are located
in intergenic or intron region, and some of them have been
covered to be associated with BMI, type 2 diabetes, or height. In
general, the first or large-scale GWASs have reported some of

TABLE 3 | The descriptions of involved obesity-related phenotypes and covariates in ARIC.

Index All Gender Race

Male Female p Value White Black p value

N 12771 5,704 7067 — 9,633 3,138 —

Male, % 44.66 — — — 47.02 37.44 9.11 × 10–21

Age, years 54.09 ± 5.73 54.450 ± 5.75 53.76 ± 5.69 6.76 × 10–13 54.34 ± 5.68 53.34 ± 5.80 5.51 × 10–17

Weight, lb 173.13 ± 36.85 188.27 ± 31.46 160.92 ± 36.36 <2.2 × 10–16 169.61 ± 35.69 183.99 ± 38.25 1.90 × 10–74

Weight missing, % 0.149 0.158 0.142 0.995 0.083 0.351 0.002
BMI, kg/m2 27.66 ± 5.30 27.54 ± 4.18 27.75 ± 6.05 0.020 27.01 ± 4.86 29.65 ± 6.05 9.98 × 10–104

BMI missing, % 0.149 0.158 0.142 0.995 0.083 0.351 0.002
Triceps, mm 25.26 ± 10.02 19.34 ± 7.87 30.04 ± 8.97 <2.2 × 10–16 24.54 ± 9.08 27.48 ± 12.23 1.73 × 10–34

Triceps missing, % 0.157 0.175 0.142 0.798 0.093 0.351 0.004
Scapular, mm 24.48 ± 11.59 22.22 ± 9.19 26.31 ± 12.92 1.13 × 10–94 21.85 ± 9.33 32.59 ± 13.89 1.60 × 10–299

Scapular missing, % 0.446 0.561 0.354 0.107 0.353 0.733 0.009
WC, cm 96.94 ± 13.83 99.23 ± 10.93 95.09 ± 15.54 1.25 × 10–68 96.19 ± 13.33 99.25 ± 15.02 5.34 × 10–24

WC missing, % 0.141 0.123 0.156 0.798 0.104 0.255 0.092
HC, cm 104.55 ± 10.31 102.85 ± 8.09 105.93 ± 11.63 2.81 × 10–68 103.50 ± 9.478 107.79 ± 11.98 7.52 × 10–72

HC missing, % 0.141 0.140 0.142 0.999 0.104 0.255 0.092
WHtR 0.926 ± 0.078 0.963 ± 0.054 0.895 ± 0.081 <2.2 × 10–16 0.928 ± 0.079 0.920 ± 0.076 4.66 × 10–8

WHtR missing, % 0.149 0.140 0.156 0.999 0.114 0.255 0.131
Calf, cm 37.44 ± 3.67 38.06 ± 3.17 36.95 ± 3.95 1.48 × 10–68 37.39 ± 3.58 37.60 ± 3.93 0.006
Calf missing, % 0.157 0.210 0.113 0.248 0.114 0.287 0.062
Wrist, mm 53.62 ± 5.18 57.78 ± 3.66 50.27 ± 3.53 <2.2 × 10–16 53.59 ± 5.26 53.74 ± 4.91 0.137
Wrist missing, % 0.117 0.123 0.113 0.999 0.073 0.255 0.022

N is the number of subjects; BMI, is bodymass index; Triceps is average skinfold thickness of triceps brachii; Scapular is mean subscapular skinfold thickness;WC, is waist; HC, is hip girth;
WHtR is waist-to-hip ratio; Calf is calf girth; and Wrist is wrist breadth. The distributions of normal index are described by mean ± standard deviation; the distributions of non-normal
indicators are described by means (25% quantile, 75% quantile). For normal distribution indicators, the differences between groups are estimated using the t-test (the variances of two
groups are homogeneous) or the approximate t-test (the variances of two groups are heterogeneous). For non-normally indicators,Wilcoxon signed-rank test is used to test the differences
between indicators to get the p-values of differences. For discrete indicators, the chi-square test is used for hypothesis testing and then deriving p-values. Bold number indicates p < 0.05.
ARIC, atherosclerosis risk in communities.
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FIGURE 2 | The dendrogram of the nine phenotypes in the ARIC study via HCM (A) and HCDC (B). h represents the maximum value of correlation coefficient in
each clustering process, which is taken as the “branch length” of the clustering tree. K reveals the final clustering times according to the stopping criteria. BMI is body
mass index; Triceps is average skinfold thickness of triceps brachii; Scapular is mean subscapular skinfold thickness; WC is waist; HC is hip girth; WHR is waist-to-hip
ratio; Calf is calf girth; and Wrist is wrist breadth.

TABLE 4 | Display of significant SNPs and the corresponding p-values in the analysis of ARIC.

Chr SNP HCDCMANOVA HCMANOVA MANOVA HCDCMultiphe HCMultiphen Multiphen HCDCTATES HCTATES TATES

3 rs17017947 0.873 0.184 1.02 ×
10–11

NA NA NA 0.803 0.690 0.314

10 rs41470552 0.102 0.004 6.25 × 10–9 NA NA NA 0.285 0.748 0.0358
11 rs7927943 1.72 × 10–7 1.88 × 10–7 5.57 × 10–6 1.88 × 10–7 1.21 × 10–7 3.33 × 10–6 9.18 × 10–8 0.513 1.16 × 10–8

11 rs1945647 5.83 × 10–7 2.49 × 10–7 1.19 × 10–5 4.26 × 10–7 1.12 × 10–7 6.27 × 10–6 2.31 × 10–7 0.554 1.77 × 10–8

16 rs9939609 1.67 × 10–11 9.53 × 10–11 1.85 × 10–8 2.98 × 10–11 1.67 × 10–10 3.39 × 10–8 1.68 × 10–11 0.331 2.97 × 10–10

16 rs8050136 3.83 × 10–11 2.10 × 10–10 4.29 × 10–8 8.07 × 10–11 4.33 × 10–10 8.66 × 10–8 1.11 × 10–10 0.277 2.86 × 10–9

20 rs201561 1.06 × 10–8 5.18 × 10–8 2.48 × 10–6 1.11 × 10–8 5.45 × 10–8 2.91 × 10–6 2.57 × 10–7 0.861 7.99 × 10–7

20 rs1570004 1.07 × 10–7 4.86 × 10–7 5.28 × 10–5 1.54 × 10–7 7.06 × 10–7 7.77 × 10–5 1.97 × 10–8 0.864 6.12 × 10–8

The p-values of nine methods are calculated based on asymptotic distribution. p-Value <5 × 10–8 are in bold. “NA” reveals MultiPhen is not available because the genotype at the specified
SNP does not take all three values of 0, 1, and 2 in these data. SNP, single-nucleotide polymorphism; ARIC, atherosclerosis risk in communities.
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these associated signals. The ID of PubMed could be inquired to
retrieve the relevant progress of these SNPs. Additionally, there is
no influence for us to explore the expressions of the genes that the
significant SNPs are associated with, although most of them are

located in the intron or intergenic region. Moreover, most of
these significant SNPs reveal that their possible effects on the
expressions of corresponding genes based on the cell lines of
HapMap CEU and YRI (Table 5).

TABLE 5 | The annotations of the significant identified SNPs.

SNPs Chr Position
(GRCh38)

Alleles
(alt/Ref)

Gene
(nearest)

Feature Expression
genes

Reported
(yes/No)

Reported
phenotypes

GWAS
references

rs17017947 3 276171 A/C CHL1 Intron — No — —

rs41470552 10 102222133 T/G PITX3 Intergenic — No — —

rs1945647 11 81602715 C/T MTND6P25 Intergenic GNAI2,STK40,LIMK1,LIG4,
HLTF,ZNF511,CBLL1,NUDT17,
POLR3C,DAGLB,KDELR2,NUP93,
PRCC,C16orf80,RAB33B,LRP8

No — —

rs7927943 11 81637194 C/T MTND6P25 Intergenic WSCD2,GNAI2,ZFHX3,NUP93,
FAM60A,LIMK1,MAP4, FLJ31958,LIG4,HLTF

No — —

rs8050136 16 53782363 C/A FTO Intron HES7,LATS2 Yes BMI, T2D,
Adiposity

PMID:
18372903
PMID:

31217584
PMID:

19079260
rs9939609 16 53786615 T/A FTO Intron CR1,CR1L,ZNRF1,ANKRD50,

LATS2,TSPYL4,HES7
Yes BMI, T2D PMID:

17434869
PMID:

31217584
PMID:

17554300
rs1570004 20 35370450 A/T UQCC Intron — Yes Height PMID:

18193045
rs201561 20 22018575 G/C RPL41P1 Intergenic P2RX3,EHD4 Yes Balding

type 1
PMID:

30595370

Annotations are from Ensemble website (https://asia.ensembl.org) and SCAN website (http://scandb.org); intron denotes the SNP is located between exons; intergenic denotes the SNP is located
between genes. Expression genes denote annotations added after analysis of transcriptional levels of eQTL in cell lines fromHapMapCEUand YRI samples usingAffymetrix human exon 1.0 ST array;
GWAS references indicate the identifications of PubMed. SNP, single-nucleotide polymorphism; GWAS, genome-wide association study; eQTL, expression quantitative trait locus.

FIGURE 3 | The regional association plots of the significant SNPs identified in ARIC. The p-values of rs17017947 and rs41470552 are evaluated byMANOVAmethod. The
p-values of 7927943 and rs1945647 are estimated by TATES method. The p-values of rs9939609, rs8050136, and rs201561 are assessed by HCDCMANOVA method. The
p-values of rs1570004 is evaluated by HCDCTATES. LD is constructed using the hg19 version of the 1000 Genome (American). The plots where rs7927943 and rs1945647 are
located show the 1,000-kb range around these most significant SNPs. The plots where the rest SNPs (rs7927943, rs1945647, rs9939609, rs8050136, rs201561, and
rs1570004) are located present the 400-kb range around these identified significantly SNPs. SNP, single-nucleotide polymorphism.
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For more extensive investigation of whether the significant
SNPs identified in ARIC have LD with the other nearby loci, that
is, to detect the correlations between these eight associated
significantly SNPs in this study with the undetectable
surrounding loci, we produced regional plots presented in
Figure 3. From Figure 3, it is clear that rs7927943 is
physically close to rs1945647, and their LD is quite robust,
which reflects that their r2 is >0.8. What is more, both of
them are located near the LOC101928989 gene, regulating the

expressions of certain genes (LIMK1, GNAI2, etc.). Since
both rs7927943 and rs1945647 manipulate corresponding
expressions of genes, subsequently, the relationship between
these SNPs and obesity can be studied from the perspective
of gene expression. Notice that both SNPs rs9939609 and
rs8050136 are located in FTO gene attaching to chromosome
16, and their physical regions are close to each other with a high
correlation r2 >0.8 (Figure 3). It is well known that rs9939609
acts as an obese variant (Frayling et al., 2007). Because of the
strong LD between rs9939609 and rs8050136, it is reasonable to
speculate that rs8050136 is also associated with obesity-related
phenotypes. Three SNPs, namely, rs17017947, rs1570004, and
rs41470552, are located in the intron region of genes CHL1,
UQCC, and NOLC1, respectively. None of them possesses
relatively strong LD with the surrounding loci, so these SNPs
probably have an effect on corresponding phenotypic
characteristics independently. The rs201561 around
LOC100270679 has a profound LD with the surrounding loci
(Figure 3), combined with the fact that the association result of
p-value for rs201561 is the smallest among all the nearby
variants, revealing that the surrounding loci have an impact
on the phenotypes because of the high LD with rs201561.

With the purpose of exploring the SNPs associated with
obesity-related phenotypes, and the expressions of those
identified by all the methods employed in this study in
different adipose tissues, we retrieved the relevant content of
GTEx website (https://www.gtexportal.org/home/).
Consequently, the significant SNPs (rs17017947, rs41470552,
rs7927943, and rs1945647) not identified by existing methods
with HCDC have not been detected to be expressed in relevant
tissues via GTEx query, while these distinct genotypes of
significant SNPs (rs9939609, rs8050136, rs201561, and
rs1570004) identified by existing methods with HCDC present
differential expressions in adipose tissue or muscle tissue
(Figure 4). In other words, the proposed HCDC has certain
significance for biological research from the perspective of gene
expression. Furthermore, it is noteworthy that the different
genotypes of UQCC1-rs1570004 are differentially expressed in
subcutaneous adipose, visceral adipose, or muscle tissue (p < 1.59
× 10–19). Moreover, the phenotypes adopted in real data analysis
denote various measurement phenotypes about obesity, so the
differentially expressed tissues are highly consistent with the
phenotypes adopted in this study. Thus, UQCC1-rs1570004, as
a SNP that has not been reported to be associated with obesity-
related phenotypes in other studies so far, is worthy of further
functional experimental studies in the future to confirm its
impressive value.

DISCUSSION

In this article, HCDC is proposed to jointly analyze multiple
phenotypes in association analyses. The established approach
employs the similarity measure to cluster multiple phenotypes.
Using HCDC, we apply the existing methods to detect the genetic
associations with the combined phenotypes rather than the
individual phenotypes. HCDC owns several obvious advantages

FIGURE 4 | The relationship between the genotypes of the significant
SNPs discovered by HCDC method and eQTL in subcutaneous adipose
tissue, visceral adipose tissue, and muscle tissue (data are from GTEx
website).
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compared to other dimension reduction approaches. First, a
dendrogram involved in the multiple phenotypes can be
produced by HCDC (see Figure 2), which could supply more
information about the structure of phenotypes. Second, not
limited to the correlation coefficients, any proper measurements
of distance can be used for the hierarchical clustering procedure,
although the specific effects are worth further consideration. Third,
HCDC is computationally fast, so it is easy to implement. Notably,
HCDC does not need to acquire the individual phenotypes, and on
the contrary, it only acquires the similarity matrix of phenotypes.
This similarity of matrix can be evaluated from the test statistics of
summary data employing the independent SNPs in a GWAS (Zhu
et al., 2015). This is a major advantage of HCDC clustering using
correlation coefficients between phenotypes.

We performed extensive simulations together with the real data
analysis to assess the performance of MANOVA, MultiPhen, and
TATES combined with applying HCDC and compared these with
their original versions. The simulation results reveal that these three
methods applying HCDC not only possess correct type Ⅰ error rates
but also own more advantage over these without applying HCDC
under a series of simulation scenarios. For more realistic simulation
settings, GCTA software is the first choice. Thus, further tests should
be evaluated in the future (Yang et al., 2011). More importantly, the
real data analysis results elucidate that HCDC shows great potential
in multiple phenotypes analysis of ARIC via GWAS about obesity,
and the bioinformatics analysis for these results also supports them.
In addition, we also use another clusteringmethod, HCM, as amajor
competitor to compare its performance with that of HCDC. We
suggest that the most important thing for HCM to be improved is
that when calculating the correlation coefficient between two
clusters, it should take the imbalanced numbers of phenotypes in
two clusters into account, and it may not be appropriate to use a
unified calculation formula of correlation coefficient. In real data
analysis, the fact that the performance of HCDC is better than HCM
confirms our point of view. Presently, HCDC is more suitable for
continuous phenotypes. After the transformation of phenotypes, it
can also be applied to dichotomous or mixed traits. However, its
performance in dichotomous or mixed traits situation still needs to
be further investigated.

Then, we use HCDC to analyze ARIC data and discovered that
UQCC1-rs1570004 has a significant correlation with multiple
phenotypes about obesity traits. Bioinformatics exploration shows
that varied genotypes of UQCC1-rs1570004 are differentially
expressed in subcutaneous fat, visceral fat, and muscle tissue (p <
1.59 × 10–19). The differentially expressed tissues are consistent with
the phenotypes studied in this work. Therefore, UQCC1-rs1570004,
as an SNP that has not been reported to be associated to obesity-
related phenotypes in the literature, is worthy of further functional
experiments in the future to confirm its potential value. From the
perspective of application in real data, HCDCowns certain value and
significance for further association studies.

In summary, HCDC is an effective approach for the association
study between multiple phenotypes and genetic variants in varied
research fields. In medical research, many research disciplines have
strong intersection. Generally, different disciplines carry out the
association study between phenotypes and genetic variants
separately. Interdisciplinary research on multiple phenotypes,

such as phenotypes across multiple tissues, including various
indicators with behavior, morphology, and physiology, will be
likely extended to phenome research (Houle et al., 2010), which
would be very meaningful. Because there is no assumption for
HCDC in the aspect of genetic effect model, clustering multiple
phenotypes into different categories according to similarity measure
between phenotypes in HCDC is very useful for phenome research.
Moreover, in a large number of phenotypes, HCDC does not need to
understand the specific model for generating data, while only
understanding the correlation matrix between phenotypes is
undoubtedly another decent feature. In reality, it is common that
the genetic structure among different phenotypes is complex and
usually unknown. HCDC provides an effective and novel research
strategy for exploring high-dimensional phenotypic data in the
coming era of phenome as shown in simulations.
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