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Abstract

The neural substrate of cognitive reappraisal has been well-mapped. Individuals who suc-

cessfully downregulate negative affect (NA) by reshaping their thoughts about a potentially

emotional situation show augmented activity in the prefrontal cortex (PFC), with attenuated

activity in the amygdala. We performed functional neuroimaging with experience sampling

to determine whether individual differences in brain activation correspond to differences in

real-life NA. While being scanned, 69 female students (aged 18–25 years) were asked to

perform a cognitive reappraisal task. In addition, repeated assessments (5/day, 14 days) of

affect and minor events in real-life were conducted. Individual t-maps were created for an

instructed downregulation contrast (downregulate negative–attend negative) and an unin-

structed regulation contrast (attend negative–attend neutral). Mean beta values were

extracted from a priori defined regions of interest in the bilateral amygdala and PFC and

were correlated with three daily life NA measures: baseline (mean) NA, NA variability, and

NA reactivity to negative events. Only one out of twelve correlations for the amygdalae was

nominally significant, which did not survive correction for multiple comparisons. PFC activa-

tion in the instructed and uninstructed regulation contrasts explained approximately 10% of

the variance in NA reactivity; stronger recruitment during the attend-negative condition was

correlated with lower reactivity levels. The degree to which individuals spontaneously

engage frontal clusters may be a critical aspect of real-life emotional reactivity. The findings

of this study provide a partial external validation of the cognitive reappraisal task, suggesting

that frontal brain activation during implicit task conditions may have the strongest connection

with real-life behaviors.
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Introduction

“I suspect that when you have people do some artificial task and look at their brains, the

strongest activity you’ll see is in the parts of the brain that are responsible for doing artificial

tasks” Steven Pinker (extract from an interview transcript in the Journal of Cognitive Neuro-
science, 1994)

The capacity to regulate emotions is a necessary ability, enabling individuals to respond appro-

priately to stressful experiences and to navigate their social worlds. The process model of emo-

tion regulation suggests that regulative strategies can affect different stages of the emotion-

generative process with varying consequences [1–2]. Cognitive reappraisal is a commonly

used (and widely investigated) strategy for downregulating negative emotions and is deployed

relatively early in the emotion-generative process before emotional responses are fully devel-

oped. By changing an individual’s thinking about a situation, cognitive reappraisal can

decrease its emotional impact at a relatively early stage. This strategy is considered to be more

effective in decreasing an emotional experience than those applied following the activation of

emotional response tendencies (e.g., through the suppression of emotion-expressive behavior)

[2–3].

In the past decade, the neural underpinnings of emotion downregulation have been well-

mapped. Meta-analyses have shown that instructed downregulation of negative affect (NA)

consistently increases activation in regions of the prefrontal cortex (PFC) supporting domain-

general cognitive control processes and decreases activation in emotion-generative brain

regions such as the amygdala [4–7]. An early functional neuroimaging (fMRI) study found

that compared with suppression, cognitive reappraisal results in relatively early PFC responses

[8]. However, more recent studies using event-related potentials have refuted this finding [9–

10]. Studies do suggest that cognitive reappraisal has a stronger effect than suppression in

reducing negative emotions (and amygdala activation), at a lower cost [3, 8–10]. Although

there is consensus among researchers that cognitive reappraisal recruits cognitive control

regions to modulate emotional responses in the amygdala, the question of whether this is

accomplished through the ventromedial prefrontal cortex (vmPFC) or through modulation of

semantic representations in the lateral temporal cortex continues to be debated [6].

Although cognitive reappraisal is most often studied as an explicit regulation strategy, it can

be unintentional and automatically triggered (i.e., implicit emotion regulation [11]). Uncon-

scious reappraisal is relatively effortless and has been found to effectively reduce emotional

reactivity [12–13]. The prefrontal regions that support intentional downregulation of emotion

may also be engaged during uninstructed modulation of emotions (e.g., [14]). For instance,

Silvers and colleagues [15] found that the degree to which individuals recruited prefrontal

regions when responding “naturally” to negative stimuli was related inversely to their trial-by-

trial self-reporting of NA. This could reflect unconscious or spontaneous use of regulative

strategies. Moreover, greater habitual use of reappraisal strategies has been linked to decreased

amygdala activity and to increased prefrontal activity during uninstructed as well as instructed

regulation conditions [16–17].

Neuroimaging studies are performed in a very unusual setting (i.e., with the participant’s

head enclosed in an MRI scanner coil) with mostly artificial stimuli and tasks to carefully con-

trol the environment. To isolate processes that are related to the cognitive control of emotion,

many neuroimaging studies include emotion regulation tasks in which participants are

instructed to respond naturally to pictures, without explicitly attempting to alter their feelings

(uninstructed regulation) or to downregulate their NA through reinterpretation of negative
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pictures (instructed downregulation) ([18], for a list of reappraisal studies see [6]). However,

cognitive reappraisal is rarely triggered explicitly in daily life (perhaps with the exception of

psychotherapy). Moreover, daily emotional triggers are usually much more complex than

static experimental images. To better understand what a cognitive reappraisal task actually

measures requires a consideration of its external validity. Thus, the question to be addressed is:

Do individual differences in brain activation, triggered by an experimental task, represent indi-

vidual differences in real-life emotional experiences?

The external validity of neuroimaging tasks can be investigated using brain markers to pre-

dict real-world outcomes [19]. Urry and colleagues [20] obtained preliminary evidence

(n = 16) for an association between changes in PFC and amygdala activation during NA down-

regulation and diurnal patterns of salivary cortisol secretion determined within participants’

home environments. Larger changes in PFC and amygdala activation predicted more norma-

tive patterns, which could reflect better adaptive functioning of the hypothalamic-pituitary-

adrenal (HPA) axis and, hence, more functional stress responses. To the best of our knowl-

edge, no studies have addressed the external validity of cognitive reappraisal tasks using mea-

sures of emotional processes in daily life.

Application of the experience sampling method (ESM) enables repeated sampling of behav-

iors and experiences in real time within participants’ natural environments [21–22]. ESM can

thus illuminate important characteristics of NA dynamics in daily life, such as baseline NA,

NA variability, and NA reactivity. Baseline NA refers to the typical affective state of an individ-

ual, or the setpoint to which affect returns after an increase or decrease in reactivity to internal

and external events [23]. NA variability refers to the moment-to-moment fluctuations of affect,

and NA reactivity represents NA fluctuations reflecting reactions to minor negative events

(i.e., daily stressors).

In this study, we combined fMRI and ESM to examine whether activation in the PFC and

the amygdala during a cognitive reappraisal task is associated with NA dynamics in daily life.

We hypothesized that individuals demonstrating stronger amygdala activation in response to

negative emotional stimuli and reduced amygdala deactivation during instructed downregula-

tion show higher baseline NA, more NA variability, and higher NA reactivity in daily life. In

addition, we hypothesized that stronger activation of frontal regulation clusters is related to

generally lower NA levels, more stable NA, and smaller effects of negative events on NA. We

did not posit differential hypotheses for the different areas within the distributed cognitive

control network [4].

To decrease the number of potentially confounding factors, we restricted our study to

female participants, thereby increasing the power of the study. Sex differences have been

found not only in relation to the deployment of emotion regulation strategies (for a review see

[24]) but also in the neural correlates of emotion processing and emotion regulation ([25]).

These differences might put women at a higher risk for developing affective disorders [26].

Materials and methods

Study design

Data used in this study were derived from the Uncovering the Positive Potential of Emotional

Reactivity (UPPER) study. This study comprised two parts: (1) an ESM study in which partici-

pants responded to questions on mood and context five times a day during fourteen consecu-

tive days, and (2) an fMRI study in which two emotional tasks were administered and

anatomical and resting state scans were conducted. This article reports on the cognitive reap-

praisal task, which was the first task performed during the fMRI session. The UPPER study

was approved by the Medical Ethical Committee of the University Medical Center Groningen.
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Participants

Participants in the study were female students aged 18–25 years in Groningen (the Nether-

lands), recruited from the University of Groningen and Hanze University of Applied Sciences.

Seventy-five right-handed female students participated in the ESM component of the study.

Of these students, 71 (95%) completed more than 60 measurements, fixed as the a priori

defined cut-off point and were enrolled in the fMRI study. The results for two participants

were excluded from the analysis because of a technical error that occurred during MRI data

acquisition (n = 1) and excessive motion (volume censoring exceeded 5%) during the task

(n = 1). Thus, the final sample comprised 69 participants with a mean age of 20.79 years

(SD = 1.84). Given that our study focused exclusively on women, it is important to note that

most participants used oral contraceptives (n = 57). A minority used another hormone-releas-

ing contraceptive (n = 4) or no contraceptive (n = 8). Of the non-contraceptive users, six were

scanned during the follicular phase of their menstrual cycles.

To ensure a representative spread in daily life NA measures, participants were selected

from a large sample of 268 students based on their scores for the 12-item neuroticism scale of

the NEO Five-Factor Inventory [27]. Our selection procedure [28] resulted in a normal distri-

bution of neuroticism scores (mean = 133.84, SD = 21.33) after reassessment using the 48-item

neuroticism scale of the Revised NEO Personality Inventory [27]. None of the participants

reported any past or current psychiatric disorders, or MRI contraindications (e.g., metal

implants or claustrophobia), or used medication that could influence task effects. All partici-

pants were native Dutch speakers, had normal hearing, normal or corrected-to-normal vision,

and provided written informed consent to participate in the study. Participants received finan-

cial compensation for their participation in the ESM and fMRI studies.

Measures of negative affect in daily life

Details of the methods applied in the ESM study have been published previously [28]. ESM

measurements were obtained through personal digital assistants using the PsyMate technology

developed at Maastricht University [22] or through smartphones via a web-based software

application for routine outcome monitoring (ROQUA, www.roqua.nl). ESM measurements,

conducted during a 14-day period, were scheduled at 3-hour intervals at fixed time points dur-

ing participants’ waking hours. At each time point, participants were asked to indicate which

of the ten specified stressors they had experienced in the preceding 3-hour period. Accord-

ingly, a dichotomous negative event (NE) variable was created, which indicated whether a

stressor had occurred (0 = none, 1 = at least one). Each participant’s momentary negative affect

(NA) was measured at each time point by averaging six NA items (“upset,” “irritated,” “ner-

vous,” “listless,” “down,” and “bored”) that were rated using a 7-point scale ranging from 1

(“not at all”) to 7 (“very”). Missing values were assigned through multiple imputations entail-

ing 15 iterations. Internal consistency for the NA scale (calculated across all time points and

participants) was high (Cronbach’s alpha = 0.79). Three summary measures for each partici-

pant were derived from their NA scores. First, baseline NA was calculated by averaging NA

across all time points. Second, NA variability was determined by calculating the root mean

square of the successive differences (RMSSD) of NA. Third, NA reactivity was operationalized

as the unstandardized regression coefficient derived from individual regression analyses, with

NA as the dependent variable and the presence of a NE as an independent variable. To mea-

sure changes in NA resulting from the presence of a NE, the previous NA measurement (t-1)

was included as an additional independent variable. The NA reactivity measure for one indi-

vidual could not be determined because of the absence of reported negative events (NE

Brain activation and real-life emotion
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occurred in only 3.2% of measurements). Thus, analyses of the NA reactivity measure were

conducted for 68 (not 69) participants.

Cognitive reappraisal task

The cognitive reappraisal task (adapted from [18, 29] entailed five different task conditions:

attending to (1) neutral, (2) negative, or (3) positive images, (4) reappraising a negative image

to downregulate NA, or (5) reappraising a positive image to upregulate PA. Here, we focus on

the neutral and negative task conditions. Prior to being scanned, participants were trained on

how to regulate their emotional responses and operate the panel buttons to self-report affect

measures. For the downregulated negative condition, participants were instructed to decrease

their emotional responses by viewing the situation as unreal or imagining an outcome for the

scenario that differed from the suggested one.

Participants completed 110 trials, in series of 10, separated by 20-second fixation blocks.

Equal numbers of trials for each condition were shown. Trials were presented in an event-

related manner and lasted 15.5 seconds. The image stimulus was presented for 8 seconds in

total. Two seconds after the stimulus appeared, a symbol appeared in the middle of the screen

(1 s), instructing participants to stay attentive or to regulate their emotions actively over the

next 5 seconds. After viewing each picture, participants had 3 seconds to rate the intensity of

their emotions on a 7-point scale ranging from -3 (very negative) to +3 (very positive), fol-

lowed by 4 seconds of rest (a “relax” message) and a black screen signaling the start of the next

trial (0.5 s). The task was programmed using E-Prime (Psychology Software Tools, Pittsburgh,

PA). The stimulus set comprised 22 neutral images (valence: M = 5.04, SD = 1.07; arousal:

M = 2.70, SD = 1.81), 44 positive images (valence: M = 7.98, SD = 1.35; arousal: M = 5.42,

SD = 2.45), and 44 negative images (valence: M = 2.05, SD = 1.33; arousal: M = 5.63,

SD = 2.21) obtained from the International Affective Picture System [30]). Each stimulus was

presented only once.

fMRI data acquisition

Brain imaging data were obtained using a 3.0 Tesla MRI scanner (Philips Medical Systems,

Best, the Netherlands), equipped with a 32-channel SENSE head coil. Functional images were

obtained using a T2�-weighted echo-planar sequence with 37 axial slices recorded in descend-

ing order (voxel size = 3.5 × 3.5 × 3.5 mm, repetition time = 2000 ms, echo time = 20 ms, field

of view = 224 × 129.5 × 224 mm, 64 × 62 in-plane matrix, flip angle = 70 degrees). Images were

tilted 30˚ from the transverse plane of the anterior and posterior commissures to reduce arti-

facts from the nasal cavity. In addition, a shimbox was placed on the orbitofrontal regions.

High-resolution T1-weighted structural images were obtained containing 170 slices (voxel

size = 1 × 1 × 1 mm, repetition time (TR) = 9 ms, echo time (TE) = 8 ms, field of view = 232 ×
170 × 256 mm, 256 × 256 in-plane matrix).

Preprocessing and first and second-level analyses of fMRI data

All image processing was performed using the Statistical Parametric Mapping (Version 8) soft-

ware package (SPM8; Wellcome Department of Cognitive Neurology, London, UK; http://

www.fil.ion.ucl.ac.uk) in MATLAB R2009a (Version 7.8; The MathWorks, Inc., Natick, MA).

Data preprocessing comprised the following steps: realignment to correct for subject motion,

coregistration of the functional images on to the T1 anatomical image, spatial normalization

into a standard space using a T1 template (Montreal Neurological Institute [MNI]), and

smoothing with an isotropic Gaussian kernel (8-mm full width at half maximum) to minimize

noise and accommodate residual neuroanatomical variations between participants.

Brain activation and real-life emotion
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Task regressors were analyzed at the subject level using boxcar functions convolved with

the hemodynamic response function after applying 128-s high-pass filtering to remove low-

frequency noise and slow drifts in the signal. For the first-level models, separate regressors

were developed for the presentation of stimuli (8 s) for each of the five trial types. In addition,

the rating and relax portions of each trial were modeled as two separate regressors. Head

movements were accommodated through six motion regressors and their first temporal deriv-

atives. To account for variability in the quality of single-subject whole-brain functional vol-

umes, we used the Artifact Detection Toolbox (www.nitrc.org/projects/artifact_detect) to

censor volumes with motion or intensity artifacts [31]. Volumes were censored when scan-to-

scan movements exceeded 2 mm translation or 2˚ rotation in any direction and/or when the

mean signal intensity per volume departed more than 4 standard deviations from the mean

signal of all volumes in the time series [32]. Participants with censored volumes exceeding 5%

were excluded from further analysis.

A voxel-by-voxel t-map of the instructed downregulation contrast (downregulate negative–

attend negative) and the uninstructed regulation contrast (attend negative–attend neutral) was

computed for each participant. Next, one-sample t-tests were performed at the second level to

determine task effects at the group level. The t-maps and con images of these second-level

whole-brain analyses are provided in the Supporting Information (S1 Dataset) to benefit future

meta-analyses. Our focus in this study was on correlations between brain activation in a priori

defined regions of interest (ROIs) and daily life NA measures.

Brain measures

Twelve spherical 5 mm PFC ROIs (Fig 1) were defined based on the peak coordinates of clus-

ters that consistently featured in NA downregulation, as identified in a recent quantitative

meta-analysis covering 963 participants across 44 studies on emotion downregulation (Table 3

in [4]). For each ROI, we calculated two different subject-specific measures: (1) downregula-

tion, defined as the average decrease in activation during instructed NA downregulation com-

pared with the attend-negative condition (instructed downregulation contrast) and (2)

Fig 1. Downregulation task map and regions of interest. The threshold (T) value for the SPM T-map of the instructed downregulation contrast was 3.12

(uncorrected p< .001). The gray dots in Fig 1 represent peak coordinates of the regulation clusters derived from [4], which are listed with their corresponding

MNI coordinates. Results were visualized using BrainNet Viewer [36].

https://doi.org/10.1371/journal.pone.0202888.g001
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reactivity, defined as the participant’s average response to negative stimuli compared with neu-

tral stimuli (uninstructed regulation contrast). Subsequently, overall downregulation and reac-

tivity measures for PFC were created by averaging values across the 12 ROIs.

We defined separate ROIs for the right and left amygdala, applying the AAL template of the

WFU PickAtlas (Version 3.0 [33,34]). This is because peak coordinates for amygdala downre-

gulation vary widely across meta-analyses and hence, reappraisal-related activation could be

easily overlooked. To prevent distortions of the correlations between brain activation and

daily life NA measures caused by inactive voxels, we applied subject-specific masks, which

retained only active voxels within the ROIs of each participant. For both ROIs, we developed

individual downregulation and reactivity measures based on the mean beta values for the

respective instructed downregulation and uninstructed regulation contrasts.

ESM-fMRI analysis

The brain measures and daily life NA measures for each individual are presented in the S2

Dataset. We performed separate Pearson correlation analyses between the two brain measures

(reactivity and downregulation) and the three daily life NA measures (baseline NA, NA vari-

ability, and NA reactivity) for the left and right amygdalae. A p-value below .05 was considered

statistically significant for all 12 analyses. For the PFC regulation clusters, we performed six

correlational analyses (3 daily life NA measures × 2 brain measures) for the overall measures,

applying an α value of .05. Because we were performing multiple statistical tests for the amyg-

dalae and PFC, we interpreted the general pattern of associations as opposed to each individual

effect (which could lead to capitalization on chance). That is, we considered the proportion of

significant associations compared with the total number of tests conducted for the amygdalae

and the PFC regulation clusters, respectively. We formalized this approach by applying the

false discovery rate (FDR) method [35] to correct for multiple comparisons (the maximum

acceptable FDR value was set at .05). Analyses were performed with SPSS 23 (SPSS Inc., Chi-

cago, IL).

Results

Descriptives

Affect ratings. In the ESM study, baseline NA values ranged from 1.1 to 4.2 (on a 1–7

scale), with an average value of 1.76 (SD = 0.58). The mean NA variability (RMSSD) was 0.72

(SD = 0.24). Mean NA reactivity was 0.35, with a standard deviation of 0.23. Thus, on average,

the occurrence of a negative event predicted an increase of 0.35 points for NA compared with

the NA level at the preceding time point. The standard deviation indicates that the degree to

which participants were affected by the occurrence of negative events varied. During the cog-

nitive reappraisal task performed in the MRI scanner, NA values could range from -3 to 0 (on

a 7-point scale extending up to +3). Affect ratings for attend-negative trials (M = -1.46,

SD = 0.51) were significantly lower than those for attend-neutral trials (M = 0.17, SD = 0.27, t

(68) = -24.49, p< .001). Affect ratings for downregulated negative trials (M = -1.17, SD = 0.62)

were significantly higher than those for attend-negative trials (t(68) = 3.84, p< .001).

fMRI measures. Neither amygdala (left or right) was significantly affected by the instructed

downregulation contrast (right: t(68) = .81, p = .43; left: t(68) = .46, p = .65). By contrast, the

amygdala ROIs were significantly more affected by negative stimuli than by neutral stimuli (i.e.,

uninstructed regulation contrast, right: t(68) = 2.51, p< .05; left: t(68) = 2.71, p< .01).

Fig 1 shows that our a priori defined PFC downregulation clusters, derived from a meta-

analysis conducted by Frank and colleagues [4], were contained within our instructed downre-

gulation task map. These ROIs were evidently more strongly activated by downregulation than

Brain activation and real-life emotion
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by the attend-negative condition. In fact, one-sample t-testing of participants’ average beta val-

ues for the downregulation contrast (all p< .001) showed that all 12 ROIs were significantly

more involved during downregulation than when participants attended to negative stimuli.

Brain measures and NA in daily life

Table 1 shows the correlations between the brain activation measures and the daily life NA

measures. For the amygdalae, only one of the twelve correlational analyses was significant at

the nominal threshold: for the instructed downregulation contrast, activation of the left amyg-

dala was related to NA reactivity in daily life (r = -.26). Thus, individuals demonstrating rela-

tively lower decreases in amygdala activation when instructed to downregulate their NA

(compared with the attend-negative condition) were more reactive to negative events in daily

life. However, this association did not survive FDR-correction.

For the PFC regulation clusters, the two correlational analyses of NA reactivity were signifi-

cant at the nominal threshold and survived the FDR-derived significance threshold (p< .017).

Approximately 10% of the variance in NA reactivity was explained by individual differences in

the degree of recruitment of regulation clusters. Overall activation of the PFC regulation clus-

ters for the instructed downregulation contrast was correlated positively with NA reactivity.

Post-hoc analyses of the raw measures revealed the positive sign for this correlation resulted

from the comparative condition (attend negative: r = -.28, versus downregulate negative: r =

-.05). Overall activation of the regulation clusters for the uninstructed regulation contrast was

correlated negatively with NA reactivity. Thus, the degree to which regulation clusters were

recruited spontaneously when participants were confronted with negative images (compared

to neutral images) was related to NA reactivity in daily life. Post-hoc analyses of the raw mea-

sures indicated that NA reactivity was related to PFC activation during both the attend-nega-

tive and attend-neutral conditions (r = -.30). S1 Fig depicts scatterplots of the correlations

between NA reactivity and PFC activation during the three task conditions.

Post-hoc analyses

Multilevel model for NA reactivity. To verify that significant associations were not

methodological artifacts of correlational analyses, we reanalyzed the NA reactivity data.

Table 1. Correlations between brain activation and daily life measures.

NA baseline NA variability NA reactivity

R P-value R P-value R P-value

Right amygdala

Downregulation (r) -.09 .45 -.16 .19 -.11 .37

Reactivity -.11 .35 -.05 .70 -.04 .73

Left amygdala

Downregulation (r) .01 .93 -.15 .22 -.26 .03�

Reactivity .01 .94 -.03 .80 -.17 .18

Regulation clusters

Downregulation -.16 .19 .16 .19 .33 .01�†

Reactivity -.04 .75 -.16 .20 -.31 .01�†

Notes

� uncorrected p < .05

† p-value < a multiple test correction significance threshold of .017, r = reversed sign. To facilitate interpretation, a greater decrease in activation in the amygdala is

represented by a more positive value for the instructed downregulation contrast.

https://doi.org/10.1371/journal.pone.0202888.t001
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Accordingly, we applied a multilevel approach, accommodating the nested structure of the

data (e.g. [37]), with time points (level 1) nested within individuals (level 2). We included NA

as the dependent variable and the previous NA measurement (t-1) and NE as independent var-

iables at level 1 (person-mean centered). Brain measures and their interactions with NE were

included as person-based variables at level 2 (grand-mean centered). Details of the analysis are

presented in S1 Appendix, and full models of the fixed effects are presented in S1–S3 Tables.

The results were very similar to the correlational analyses. Downregulation of the right amyg-

dala (b = −.11, p = .53) and its reactivity (b = −.04, p = .78) and reactivity of the left amygdala

(b = −.23, p = .24) did not moderate the relationship between a NE and changes in NA (NA

reactivity). The negative relationship between downregulation of the left amygdala and NA

reactivity was no longer statistically significant (b = −.35, p = .07). However, the positive rela-

tionship between NA reactivity and downregulation of the regulation clusters (b = .58, p = .01)

and the negative relationship between NA reactivity and reactivity of the regulation clusters (b
= -.46, p = .04) remained significant.

Whole-brain correlation analyses. Our work on individual differences in brain activation

and real-life NA can inform hypothesis formulation and ROI selection in future studies.

Therefore, we have included t-maps and con images of second-level whole-brain correlation

analyses in the Supporting Information (S3–S5 Datasets). Following the suggestion of a

reviewer of our original manuscript, we conducted a whole-brain analysis to assess the (nega-

tive) correlation between NA reactivity and brain activation during uninstructed regulation,

which confirmed the involvement of our ROIs (Fig 2). Notably, NA reactivity in daily life was

correlated negatively with brain activation in clusters in the left inferior frontal gyrus, left mid-

dle frontal gyrus, and left middle temporal gyrus.

Habitual use of cognitive reappraisal. Our main analyses showed that the degree to

which the frontal regulation clusters are spontaneously (or unconsciously) recruited by individ-

uals when they are confronted with negative images is related to individual differences in daily

life NA reactivity. Following the suggestion of a reviewer, we examined how these findings were

related to habitual cognitive reappraisal strategies deployed in daily life. We found that habitual

cognitive reappraisal (as measured with the Emotion Regulation Questionnaire [38]) was corre-

lated negatively with NA reactivity in daily life (r = -.28, p< .05) but not with the other daily life

NA measures (baseline NA: r = -.08, p = .52; NA variability: r = -.06, p = .60). Thus, NA reactiv-

ity in daily life appears to be related to habitual reappraisal. Moreover, we examined whether

the pattern of results for individual differences in habitual reappraisal was the same as that for

individual differences in NA reactivity. That is, we investigated whether habitual reappraisal

was correlated more strongly with the degree to which regulation clusters were spontaneously

recruited when participants were confronted with negative images compared with their deploy-

ment of regulation clusters when instructed to use reappraisal to downregulate their emotional

responses. There was no correlation between habitual reappraisal and PFC activation either for

the attend-negative condition (r = -.04, p = .72) or for the downregulated negative condition

(r = .01, p = .97). Therefore, although NA reactivity was associated with habitual reappraisal in

our study, its association with PFC activation was stronger.

Discussion

We combined functional neuroimaging and ESM to examine the relationship between brain

activation during a cognitive reappraisal task and emotional daily life processes. Our data did

not support the hypothesized links between amygdala activation and NA dynamics in daily

life. However, an association between the recruitment of frontal regulation clusters and NA

reactivity in daily life was supported.
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Specifically, our hypothesis that individuals whose amygdalae respond more strongly to

negative emotional stimuli show stronger NA responses to negative events, or have generally

higher NA intensity in daily life, was not supported. Moreover, the hypothesis that individuals

who are less able to downregulate amygdala activation in response to negative stimuli have

generally higher baseline levels of NA in daily life and less stable NA was also not supported by

the results. However, we found a significant negative correlation between left amygdala down-

regulation and NA reactivity to negative events in daily life. This finding endorses that of a

recent study, which reported a positive relationship between amygdala activation and trial-to-

trial fluctuations in NA during a cognitive reappraisal task [15]. However, our result could be a

random finding, given that the p-value for the daily life association in our study was only mar-

ginally significant at the nominal level, did not survive correction for multiple comparisons,

and did not reach significance in the multilevel analysis. Moreover, a similar correlation was

not found for the right amygdala. Thus, the relationship between NA reactivity and amygdala

activation did not convincingly extend beyond the confines of the laboratory.

For the frontal regulation clusters, we hypothesized that stronger recruitment relates to gen-

erally lower NA levels, more stable NA, and lower NA reactivity in daily life. Our findings did

not support linkages between PFC activation and baseline NA or NA variability. However,

Fig 2. Whole-brain correlation analysis for NA reactivity during uninstructed downregulation. BrainNet Viewer [36] was used to

visualize a SPM T-map of the correlation between NA reactivity and brain activation based on the instructed downregulation contrast and a T

value of 3.22 (uncorrected p< .001).

https://doi.org/10.1371/journal.pone.0202888.g002
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they did indicate a positive correlation between overall activation of the regulation clusters in

the instructed regulation contrast and NA reactivity and a negative correlation between activa-

tion in the uninstructed regulation contrast and NA reactivity. The direction of these findings

appears contradictory. Post-hoc tests revealed that the differential effects were driven by a neg-

ative correlation existing between NA reactivity and the attend-negative condition, which

underlies both contrasts. In fact, the degree to which the frontal regulation clusters were spon-

taneously recruited by individuals when they were confronted with negative images explained

10% of the variance in daily life NA reactivity. The possibility that this is a random finding can-

not be ruled out. However, the results survived correction for multiple comparisons and were

robust across different modelling approaches. Moreover, of the real-life measures, NA reactiv-

ity to negative events seems to be related most closely to the neural responses evoked by emo-

tional events in the MRI scanner. Furthermore, this finding supports the idea that regulation

of emotions in daily life is less about the ability to regulate emotions under conditions of

prompting and more about whether these skills are deployed spontaneously [11]. In our study,

individuals who demonstrated lower NA reactivity levels in daily life were more prone to rou-

tinely use cognitive reappraisal. It is possible that these individuals intentionally applied reap-

praisal during our task, even in the absence of instructions to do so (i.e. in the attend-negative

condition). Alternatively, these individuals may have unconsciously engaged in implicit regu-

lation strategies [39]. A previous study by Drabant and colleagues [17] showed that higher lev-

els of habitual reappraisal in everyday life were related to increased prefrontal and parietal

activity (and decreased amygdala activity) during the processing of negative emotional facial

expressions. Our findings indicated that although NA reactivity was associated with habitual

cognitive reappraisal, it was more closely related to PFC activation.

Emotion regulation tasks are designed to isolate processes that relate to intentional cogni-

tive control of emotions. These paradigms have been used to map abnormalities in emotion

regulation neural circuitry in psychiatric disorders such as depression in the hopes of shedding

light on their pathogenesis [40]. Our findings suggest that brain regions targeted by cognitive

reappraisal tasks are involved in emotional daily life processes. Further, activation of these

brain regions during uninstructed conditions may better capture real-life differences in emo-

tional processing than activation during instructed regulation conditions. Thus, a cognitive

reappraisal task could be used when attempting to identify regulation regions, but more

implicit tasks may be appropriate for mapping emotion regulation difficulties in psychiatric

disorders. Researchers have posited that spontaneous use of regulation strategies, as opposed

to the ability to deploy these strategies with prompting, is integral to psychopathology, but this

hypothesis requires more extensive testing (e.g., [41]).

This study was the first to relate brain activation during a cognitive reappraisal task to emo-

tional daily life processes. Our pursuit of a hypothesis-driven approach and our selection of

only regions demonstrated to be strongly implicated in emotion regulation in a recent meta-

analysis [4] were strengths of the study. All implicated regions were activated during the per-

formance of our task. A limitation of the study was that coverage of the vmPFC was not opti-

mal. It has been suggested that the vmPFC plays an important role in emotion regulation, but

only a minority of studies (e.g. [7]) have demonstrated its significant activation. This could be

attributed to variations in experimental designs but also to signal loss in its basal parts, as evi-

denced in our study. Therefore, it remains unclear how vmPFC activation relates to NA

dynamics in daily life. Another limitation of the study is that we focused exclusively on healthy

young women (to restrict the number of potentially confounding variables). Hence, we do not

know whether our results are generalizable to men, older individuals, and clinical populations.

Women have been reported to be more susceptible to negative emotions than men (e.g. [42]),

and studies have revealed sex differences in brain structure and function (e.g. [43–44]).
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However, recent research suggests that these differences may not be as pronounced as the liter-

ature suggests (e.g. [45]). Moreover, the majority of our sampled participants used oral contra-

ceptives, which are known to have a mood-stabilizing effect [46].

In sum, the external validity of fMRI tasks is often considered to be low because of the artifi-

cial nature of the stimuli and task instructions, the need for repetition, and the constrained set-

ting. We have shown that frontal brain activation during an artificial emotion regulation task

does relate to real-life emotional reactivity (but not to baseline NA or NA variability). The

degree to which frontal clusters are spontaneously engaged by individuals may be central to

the relevance for everyday life. This study provides a partial external validation of cognitive

reappraisal tasks and suggests that frontal brain activation during implicit task conditions may

have the strongest connection with real-life behaviors. If replicated, these findings may have

important implications for the interpretation of cognitive reappraisal tasks.
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