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Currentmethods for the design and analysis of neglected tropical disease prevalence surveys largely rely on clas-
sical survey sampling ideas that treat prevalence data from different locations as an independent random sam-
ple from the probability distribution induced by a random sampling design. We set out an alternative, explicitly
geospatial paradigm that can deliver muchmore precise estimates of the geospatial variation in prevalence over
a country or region of interest. We describe the advantages of this approach under three headings: streamlining,
whereby more precise results can be obtained with smaller sample sizes; integrating, whereby a joint analysis of
data from two or more diseases can bring further gains in precision; and adapting, whereby the choice of future
sampling location is informed by past data.
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Introduction
The conventional approach to the design and analysis of
neglected tropical disease (NTD) prevalence surveys is to select
a representative set of communities in the area of interest
and apply a diagnostic test to a sample of individuals in each
selected community. The resulting data are then analysed by
an agreed, context-dependent protocol. To provide a specific
focus, we consider the transmission assessment survey (TAS)
protocol for establishing whether an evaluation unit (EU) has
achieved elimination of lymphatic filariasis (LF). Under the TAS
protocol, for each EU the total number of sampled individu-
als who test positive for LF is compared with a tabulated cut-
off value depending on the numbers of communities and indi-
viduals sampled, and elimination or non-elimination is declared
accordingly.1
This approach suffers from several shortcomings. First, it deliv-

ers an unqualified yes/no answer rather than stating how likely it
is that EU-level prevalence exceeds any prespecified threshold.
Second, by ignoring spatial context, it delivers an unnecessar-
ily imprecise estimate of prevalence. Third, its ‘one-disease-at-a-
time’ approach misses an opportunity to make better use of the
limited resources by jointly collecting and analysing data on two
or more coendemic diseases.
Here, we argue that model-based geostatistics (MBG)2 offers

a better approach to the design and analysis of georeferenced
prevalence surveys.3 In what follows, we expand on the advan-
tages of MBG as a paradigm for the design and analysis of tropical

disease prevalence surveys under three broad headings: stream-
lining, integrating and adapting.

Streamlining
Figure 1 shows a hypothetical prevalence surface along with
a set of locations at which prevalence, y say, has been mea-
sured. A classical approach to predicting the area-wide average
prevalence uses the sample mean, ӯ, the sample variance, s2
and the sample size, n, to calculate an approximate 95% pre-
diction interval, ӯ±1.96�(s2/n). The result, in this example, is
41.3±8.6. If the measurement locations are chosen at random,
this result is valid, but also needlessly imprecise because it takes
no account of the spatial context. Inspection of Figure 1 sug-
gests that eachmeasured value not only tells you what the value
of the prevalence surface is at that location, it also gives you a
good idea of the prevalence at nearby locations. In other words,
the prevalence surface exhibits spatial correlation, with the cor-
relation between a pair of measured values decreasing as the
distance between their locations increases. MBG does not pre-
sume this behaviour, but estimates it from the data and exploits
it; for our example, MBG produces a 95% prediction interval
of 41.6±1.4.
We have found comparable gains in precision in case studies

of district-level prevalence of LF in Ghana4 and of trachomatous
trichiasis prevalence in Ethiopia.5
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Figure 1. A hypothetical prevalence surface, colour-coded from red (low)
through orange and yellow to white (high). Data locations are indicated
by open circles whose radii are proportional to the true prevalence at each
location.

Integrating
The key to the success of MBG is that measured values of preva-
lence are correlated with unmeasured values. The same applies
to studies of two or more coendemic diseases, or of a single dis-
ease using multiple diagnostic instruments. If measurements of
two different things are correlated, data on one will help to pre-
dict both.
Amoah et al.6 developed geostatistical models for the joint

distribution of two or more spatial prevalence surfaces and used
these to map Loa loa parasitological prevalence using a com-
bination of parasitological prevalence data and a lower-cost
questionnaire-based alternative (RAPLOA).7 The practical advan-
tage of a joint analysis is that the parasitological method is more
accurate, but the lower cost of the RAPLOA method allows its
implementation at many more locations.
A joint MBG analysis of prevalence data on two coendemic dis-

eases can also lead to more efficient mapping of both, especially
if the measurements for the two diseases are not colocated. The
gains in precision from a joint analysis are likely to be modest
if diagnostic tests for two or more diseases are applied to the
same individuals. However, the reduction in the associated costs
of fieldwork may be substantial, enabling the collection of larger
samples, and hence greater precision, for fixed cost.

Adapting
Inspection of Figure 1 shows that the measurement locations
are not distributed randomly, but are spaced somewhat regu-
larly over the area. The advantage of this is that the existence
of spatial correlation implies that measurements at a pair of
very close locations will give essentially the same information
as a single measurement. Random sampling allows this wasteful

circumstance to occur by chance, whereas a spatially regulated
sample prevents it.
Now imagine that measurements are recorded sequentially

and, at each stage, this information can be used to decide where
to place the next measurement location. Chipeta et al.8 devel-
oped a formal strategy for conducting an adaptive sampling
strategy of this kind. They envisaged collecting and analysing
data in batches, with each stage of the process informing the
selection of the next batch of measurement locations.
Adaptive sampling is particularly advantageous when not all

ranges of prevalence are of equal importance. For example, in
assessing whether a district has or has not achieved elimination
of a particular disease, once we have established that prevalence
in a particular EU is unequivocally above or below the elimina-
tion threshold, there is no need to take additional samples to pre-
dict its exact value. Kabaghe et al.9 use adaptive sampling to find
malaria hotspots in rural Malawi.
Adaptive sampling is not always practicable. However, one

simple formof adaptive sampling that is both practical and statis-
tically advantageous is in posteliminationmonitoring for recrude-
scence, wheremore intense samplingmight well be conducted in
areas of high historical prevalence. The same logic applies to the
design and analysis of a sequence of prevalence surveys to assess
the progress of a mass drug administration (MDA) programme,
where survey designs appropriate to the early stages of a pro-
gramme can be adapted in response to spatially heterogeneous
changes in prevalence over consecutive rounds of MDA.
We emphasise that sampling from a set of locations, among

which the probability of inclusion varies in a knownmanner, leads
to correct inferences provided the analysis protocol respects the
sampling design. By contrast, sampling subjectively at locations
that are believed more likely to find positive cases and analysing
the resulting data as if they had been randomised introduces
bias.10

Obstacles to implementation
MBG methods will only be adopted widely if they can be imple-
mented robustly by in-country teams. MBG has become well
established through a process of peer review in the statistical
and epidemiological literature. Case studies have demonstrated
its usefulness in the context of tropical disease prevalence map-
ping. The methodology is implemented in open source software,
namely the R package PrevMap (R Foundation for Statistical Com-
puting, Vienna, Austria, URL https://www.R-project.org/).11 We
are developing a user-friendly, dashboard-style interface to allow
statistical novices to run a limited set of MBG analyses with mini-
mal supervision.Wehave run2-d training courses in several coun-
tries aimed at researchers with some knowledge of statistics, and
are developing a version of this training that is accessible to other
staff engaged in practical public health decision-making.
Our vision is for a triple-layer ecosystem, in which trained,

in-country champions can both advise statistically unqualified
colleagues on a day-to-day basis and be advised by ourselves
when they encounter problems that cannot be solved using
prepackaged methods. This reflects our general philosophy of a
symbiotic relationship between statistical theory and practice,
whereby real-life public problems motivate the development of
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novel methodology that is then available for future applications
in an ever-improving virtuous cycle.
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