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ABSTRACT JC polyomavirus (JCPyV) may cause clinical syndromes such as progres-
sive multifocal leukoencephalopathy in immunocompromised patients. Here, we re-
port seven complete genome sequences of JCPyV genotype 7A, generated directly
from urine samples from Vietnamese renal transplant recipients by using rolling-
circle amplification and next-generation sequencing.

JC polyomavirus (JCPyV) is a circular double-stranded DNA virus from the Betapolyo-
mavirus genus of the Polyomaviridae family. In highly immunosuppressed individu-

als, JCPyV can cause severe disease, most commonly progressive multifocal leukoen-
cephalopathy (1). JCPyV genotypes have been used to trace human migration, with
genotypes 2, 4, and 7 predominating in Southeast Asia (2, 3). This study used a targeted
metagenomic method to produce draft full-length JCPyV genome sequences from
seven renal transplant recipients from Hanoi, Vietnam.

Seven urine samples were collected from Vietnamese renal transplant recipients
between 2015 and 2017. Viral DNA was extracted from 250 �l of urine (already
identified as BK polyomavirus positive using the artus BK virus RG PCR kit [Qiagen
GmbH, Hilden, Germany]) with the EZ1 DSP virus kit (Qiagen). To ensure sufficient
polyomavirus DNA reads from the clinical specimens, a primer-directed rolling-circle
amplification method was used to enrich DNA extracts for JCPyV (4). After enrichment,
DNA libraries prepared by employing the Nextera XT library preparation kit v2 were
sequenced on a NextSeq 500 system (Illumina, Australia) using paired-end 150-bp
chemistry.

Raw sequencing reads were trimmed with Trimmomatic v0.36 (sliding window;
minimum Phred score, 20) (5). Human reads were removed by mapping reads to a
JCPyV reference genome (GenBank accession number J02226) using Burrows-Wheeler
alignment (BWA-MEM v0.7.12) (6). Mapped reads were converted to fastq files using
SAMtools v1.6 (7) (the numbers of mapped reads [percentage of total reads] are as
follows: VN-24, 3,609,902 [99%]; VN-67, 217,170 [52%]; VN-68, 1,346,904 [34%]; VN-214,
5,346,640 [99%]; VN-247, 3,447,166 [99%]; VN-291, 4,586,564 [99%]; and VN-347,
3,557,524 [77%]) (8). Reference mapping, de novo assembly, and alignments were
conducted using the software package CLC Bio Genomics Workbench v9.0 (Qiagen).

Read mapping to the reference sequence and de novo assembly were performed in
parallel to confirm the draft genome sequences, because indels and duplications
are known to occur within the noncoding control region. Reference mapping

Citation Van TD, Rockett RJ, Ha APH, Nguyen
TV, Dwyer DE. 2020. Complete genome
sequences, derived by next-generation
sequencing, of JC polyomavirus strains isolated
from Vietnamese renal transplant recipients.
Microbiol Resour Announc 9:e01350-19.
https://doi.org/10.1128/MRA.01350-19.

Editor Steven R. Gill, University of Rochester
School of Medicine and Dentistry

Copyright © 2020 Van et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Trang Dinh Van,
vandinhtrang.nhtd@gmail.com.

Received 26 October 2019
Accepted 4 December 2019
Published 9 January 2020

GENOME SEQUENCES

crossm

Volume 9 Issue 2 e01350-19 mra.asm.org 1

https://orcid.org/0000-0001-5815-2179
https://www.ncbi.nlm.nih.gov/nuccore/J02226
https://doi.org/10.1128/MRA.01350-19
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:vandinhtrang.nhtd@gmail.com
https://crossmark.crossref.org/dialog/?doi=10.1128/MRA.01350-19&domain=pdf&date_stamp=2020-1-9
https://mra.asm.org


resulted in high average coverages (83,802� [VN-24]; 56,675� [VN-67]; 35,023�

[VN-68]; 143,065� [VN-214]; 87,133� [VN-247]; 116,532� [VN-291]; and 90,135� [VN-
347]) and a GC content of 40.2%. De novo assembly produced a single contig spanning
the length of the JCPyV genome for specimens VN-24 (96,285�, 5,116 bp), VN-214
(142,644�, 5,115 bp), VN-247 (89,920�, 5,116 bp), and VN-291 (119,699�, 5,116 bp).
The remaining specimens produced a maximum of 3 contigs with BLAST� identity to
JCPyV (9) (VN-67, 2 contigs, 53,880�, 3,933 bp; VN-68, 3 contigs, 33,746�, 3,952 bp;
VN-347, 2 contigs, 88,362�, 3,937 bp).

Phylogenetic analysis of draft assemblies indicated that all seven JCPyV genomes
were genotype 7A (Fig. 1), which is consistent with reports that this genotype pre-
dominates in Southeast Asia. Currently, only a small number of genotype 7 JCPyV
genomes are publicly available. This result also demonstrates that JCPyV can be clearly
differentiated using metagenomics and that high levels of JCPyV in the viromes of renal
transplant recipients may be common.

Data availability. Raw fastq files and final consensus draft JCPyV genomes have

been deposited in the European Nucleotide Archive (ENA) under accession numbers
ERR3561211 to ERR3561215 (fastq files) and LR215999 to LR216005 (genomes).
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FIG 1 Unrooted phylogenetic tree constructed from the consensus sequences of 43 JCPyV genomes with the noncoding control region removed (alignment
length, 4,854 bp). The seven new JCPyV genomes (ENA accession numbers LR215999 to LR216005) produced in this study are depicted as red stars. Previously
characterized JCPyV reference sequences (GenBank accession numbers AB038249, U61771, AB048547, AB048550, JVU73501, AF295735, AF295737, AF295738,
AF300960, AF300965, AF300963, AF363833, AF363832, AF300950, AF300951, AF300957, AF300959, AF015536, AF004350, AF015533, AF396423, AF295732,
AF396432, AF281623, AB038252, AF015537, AF015534, AB038251, AB048576, AB048574, AB048563, J02226, AF281625, and AF015528), representing a range of
JCPyV genomes, were also included in the phylogeny (3, 10). The tree was constructed using IQ-TREE software (11) (ModelFinder; substitution model,
HKY�F�R2; number of bootstrap replicates, 1,000). The phylogeny was visualized using Microreact and annotated using Inkscape (12). Node colors represent
each of the JCPyV genotypes; all of the draft JCPyV genomes produced in this study are genotype 7A. These genomes have high homology (3 to 7
single-nucleotide polymorphisms) to other JCPyV genotype 7A reference sequences (GenBank accession numbers AF295737, AF295738, AF300960, AF300965,
AF300963, and U61771) and also are closely related to each other (0 to 3 single-nucleotide polymorphisms) (13). The scale bar represents the number of
nucleotide substitutions per site. Asterisks indicate branches with bootstrap support of �85%.
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