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Abstract: Scaffold proteins serve important roles in cellular signaling by integrating inputs from
multiple signaling molecules to regulate downstream effectors that, in turn, carry out specific biological
functions. One such protein, Axin, represents a major evolutionarily conserved scaffold protein in
metazoans that participates in the WNT pathway and other pathways to regulate diverse cellular
processes. This review summarizes the vast amount of literature on the regulation and functions of
the Axin family of genes in eukaryotes, with a specific focus on Caenorhabditis elegans development.
By combining early studies with recent findings, the review is aimed to serve as an updated reference
for the roles of Axin in C. elegans and other model systems.
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Axin was first discovered as a negative regulator of WNT (wingless and int-1) signaling in mice
while deciphering its role in embryonic axis formation [1]. This protein is the product of the mouse
Fu (Fused) gene [2–4] and was named Axin for its initial discovered role in inhibiting axis formation
(Axis inhibition). Soon after, Axin and its homolog Axil (for Axin-like, also known as Axin2 or
conductin) were discovered in a yeast two-hybrid screen for GSK-3β (glycogen synthase kinase-3
beta)-interacting proteins [5,6]. Since then, involvement of Axin family proteins in WNT signaling
has been extensively characterized, revealing that they can bind to and facilitate interactions between
several WNT pathway components such as the WNT co-receptor LRP (low-density lipoprotein-related
protein), Dvl (Dishevelled), APC (tumor suppressor Adenomatous Polyposis Coli), GSK-3β, β-catenin,
CKs (casein kinases), and many others [7–18].

Over the years, Axin homologs have been identified in several organisms. Many of these
discoveries were facilitated by the availability of whole-genome sequences. While functional studies
are currently limited to a few animal models, the findings and sequence data show that Axin
is conserved in metazoans, with invertebrates carrying an ancestral gene and higher eukaryotes
possessing two distinct Axin1 and Axin2 genes [1,5,19,20]. The nematode lineage contains an additional,
divergent, Axin homolog [21] (see Figure 1 and further discussion below). Experiments performed
in mice have revealed that while both Axin proteins regulate WNT signaling, they have different
functions [22–24]. Whereas Axin1 is ubiquitously expressed in embryos and is essential for viability,
Axin2 is restricted to a few tissues and serves as a transcriptional target of WNT signaling [25,26].
Similar to the published literature, the ‘Axin1’ and ‘Axin’ names have been used interchangeably
in this article, whereas the term ‘Axin family’ refers to both Axin1 and Axin2 homologs that share
conserved protein-interaction domains.

J. Dev. Biol. 2019, 7, 20; doi:10.3390/jdb7040020 www.mdpi.com/journal/jdb

http://www.mdpi.com/journal/jdb
http://www.mdpi.com
https://orcid.org/0000-0002-9423-7134
https://orcid.org/0000-0002-4395-2293
https://orcid.org/0000-0001-8572-7054
http://www.mdpi.com/2221-3759/7/4/20?type=check_update&version=1
http://dx.doi.org/10.3390/jdb7040020
http://www.mdpi.com/journal/jdb


J. Dev. Biol. 2019, 7, 20 2 of 23

J. Dev. Biol. 2019, 7, x FOR PEER REVIEW 2 of 23 

 

 
Figure 1. Axin family is conserved in multicellular eukaryotes. Multiple sequence alignment 
dendrogram was generated by LIRMM (http://www.phylogeny.fr/simple_phylogeny.cgi) using 
default program parameters. 

1. Axin Domains 

Axin possesses multiple regions that facilitate its interactions with various proteins (Figure 2). 
One of these regions is involved in regulating G protein signaling (the RGS domain) near the N-
terminus that can bind the APC protein [11] (Figure 2). In the context of the WNT pathway, APC 
requires Axin to form a destruction complex with GSK-3β and other proteins [27]. The C-terminus of 
Axin possess a DIX (Dishevelled/Axin homologous) domain that facilitates WNT pathway-specific 
interactions by forming homodimers and heterodimers with the Axin and Dvl proteins [14,28] 
(Figure 2). In addition to these well-defined domains, Axin also contains regions between the RGS 
and DIX domains that bind β-catenin (in Armadillo repeats 2–7) [5] and two serine/threonine kinases 
GSK-3β [29] and CKIα (casein kinase I) [30] (Figure 2). Through these regions, Axin recruits APC, 
GSK-3β, CKIα, and β-catenin to form a multimeric complex in the absence of WNT signaling. The 
complex causes enhanced phosphorylation of β-catenin by GSK-3β and CKIα [31,32] and targets it 
for ubiquitination and proteasomal degradation. Activation of WNT signaling inhibits the 
destruction of β-catenin and promotes nuclear translocation of the non-phosphorylated form and 
activation of WNT-responsive genes [32]. Axin also possesses additional sequences that can facilitate 
protein–protein interactions, thereby promoting activation of other, non-WNT pathway, factors ([33], 
also see below). 

Figure 1. Axin family is conserved in multicellular eukaryotes. Multiple sequence alignment
dendrogram was generated by LIRMM (http://www.phylogeny.fr/simple_phylogeny.cgi) using default
program parameters.

1. Axin Domains

Axin possesses multiple regions that facilitate its interactions with various proteins (Figure 2). One
of these regions is involved in regulating G protein signaling (the RGS domain) near the N-terminus
that can bind the APC protein [11] (Figure 2). In the context of the WNT pathway, APC requires Axin
to form a destruction complex with GSK-3β and other proteins [27]. The C-terminus of Axin possess
a DIX (Dishevelled/Axin homologous) domain that facilitates WNT pathway-specific interactions
by forming homodimers and heterodimers with the Axin and Dvl proteins [14,28] (Figure 2). In
addition to these well-defined domains, Axin also contains regions between the RGS and DIX domains
that bind β-catenin (in Armadillo repeats 2–7) [5] and two serine/threonine kinases GSK-3β [29] and
CKIα (casein kinase I) [30] (Figure 2). Through these regions, Axin recruits APC, GSK-3β, CKIα,
and β-catenin to form a multimeric complex in the absence of WNT signaling. The complex causes
enhanced phosphorylation of β-catenin by GSK-3β and CKIα [31,32] and targets it for ubiquitination
and proteasomal degradation. Activation of WNT signaling inhibits the destruction of β-catenin and
promotes nuclear translocation of the non-phosphorylated form and activation of WNT-responsive
genes [32]. Axin also possesses additional sequences that can facilitate protein–protein interactions,
thereby promoting activation of other, non-WNT pathway, factors ([33], also see below).

http://www.phylogeny.fr/simple_phylogeny.cgi
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Figure 2. Axin binds to a wide array of proteins. Shown here are the WNT signaling components—
APC, CKI, GSK-3, β-catenin and Dvl, with known relative binding positions in Mouse Axin1 
(NP_001153070.1). The C-terminus domain (DIX) facilitates formation of homo and hetero dimers. 

2. Overview of the Developmental Roles of the Axin Family 

2.1. Vertebrate Models 

The Axin family of genes are involved in diverse developmental processes. Analyses of mutant 
and gene knock-down experiments in different animal models have shown defects in anterior–
posterior-axis formation and organogenesis. In some cases, these abnormalities may also contribute 
to early stage lethality. As mentioned above, Axin was initially identified for its role in embryonic 
axis formation, as mutant mice exhibited axial defects [1]. Subsequently, the gene was also shown to 
be essential for viability and the formation of many other organs, including the heart, tail, primitive 
streak, brain, and muscles [24,34–36]. In zebrafish, mutations in Axin cause abnormal fate 
determination of the eyes and telencephalon, with defective establishment of asymmetries of the 
nervous system [37,38]. Experiments in Xenopus laevis revealed that a failure to regulate Axin activity 
results in duplication of the dorsal axis due to the constitutive activation of WNT signaling as 
determined by the expression analysis of target genes [39]. 

In addition to their requirements for the formation of axis and organs, Axin family members also 
play crucial roles in neuronal development. Alterations in Axin expression, caused by mutations, 
knock-down, or dysregulation, show defects in various processes including neurogenesis, neuronal 
differentiation, axon outgrowth, and synapse formation. As a scaffolding protein, Axin facilitates the 
recruitment of various proteins to regulate gene expression and cytoskeletal dynamics. Through 
these actions, Axin affects signaling pathway activities, e.g., WNT-β-catenin, JNK (c-Jun N-terminal 
kinase) and TGF-β (transforming growth factor-beta) (see below for more details), and organization 
of proteins such as microtubules (reviewed in [40,41]). Previously, it was shown that ectopic Axin 
expression in cultured cells blocked neuronal differentiation, a process that involved WNT-3a-β-
catenin signaling [42]. In a separate study, it was demonstrated that Axin inhibition in a 
neuroblastoma cell line, through the application of Li (lithium) and a GSK-3β inhibitor, promoted 
neurite outgrowth, whereas ectopic Axin expression caused an opposite phenotype [43]. 
Subsequently, several reports have shown Axin’s role in neuronal proliferation and differentiation, 
axon formation, dendritic spine morphology, and synapse formation [44–48]. 

Cell proliferation is another process where Axin’s involvement has been investigated in 
considerable detail. The findings have shown that, as a negative regulator of the WNT-β-catenin 
signaling, Axin functions to inhibit cancerous growth and appears to act as a tumor suppressor [49]. 
Altered Axin regulation and activity are associated with various types of cancers such as lung cancer, 
colorectal cancer, and HCC (hepatocellular carcinoma) [50–52]. Characterizations of human HCC 
cultures identified Axin1 mutations in many of the cell lines and a corresponding increase in the 
DNA-binding activities of TCF/LEF (T-cell factor/Lymphoid enhancer-binding factor 1) and β-catenin 
[53]. Interestingly, when human and mouse HCCs lacking Axin were examined, it was found that in 
most cases, human HCCs were not associated with increased β-catenin activation [54]. Moreover, 
HCC induction in mice due to Axin1 mutation was independent of WNT-β-catenin signaling [54,55]. 
Further investigations on gene signatures of human and mouse HCCs revealed a significant overlap 

Figure 2. Axin binds to a wide array of proteins. Shown here are the WNT signaling components—APC,
CKI, GSK-3,β-catenin and Dvl, with known relative binding positions in Mouse Axin1 (NP_001153070.1).
The C-terminus domain (DIX) facilitates formation of homo and hetero dimers.

2. Overview of the Developmental Roles of the Axin Family

2.1. Vertebrate Models

The Axin family of genes are involved in diverse developmental processes. Analyses of mutant and
gene knock-down experiments in different animal models have shown defects in anterior–posterior-axis
formation and organogenesis. In some cases, these abnormalities may also contribute to early stage
lethality. As mentioned above, Axin was initially identified for its role in embryonic axis formation,
as mutant mice exhibited axial defects [1]. Subsequently, the gene was also shown to be essential for
viability and the formation of many other organs, including the heart, tail, primitive streak, brain,
and muscles [24,34–36]. In zebrafish, mutations in Axin cause abnormal fate determination of the
eyes and telencephalon, with defective establishment of asymmetries of the nervous system [37,38].
Experiments in Xenopus laevis revealed that a failure to regulate Axin activity results in duplication of
the dorsal axis due to the constitutive activation of WNT signaling as determined by the expression
analysis of target genes [39].

In addition to their requirements for the formation of axis and organs, Axin family members
also play crucial roles in neuronal development. Alterations in Axin expression, caused by mutations,
knock-down, or dysregulation, show defects in various processes including neurogenesis, neuronal
differentiation, axon outgrowth, and synapse formation. As a scaffolding protein, Axin facilitates
the recruitment of various proteins to regulate gene expression and cytoskeletal dynamics. Through
these actions, Axin affects signaling pathway activities, e.g., WNT-β-catenin, JNK (c-Jun N-terminal
kinase) and TGF-β (transforming growth factor-beta) (see below for more details), and organization
of proteins such as microtubules (reviewed in [40,41]). Previously, it was shown that ectopic Axin
expression in cultured cells blocked neuronal differentiation, a process that involved WNT-3a-β-catenin
signaling [42]. In a separate study, it was demonstrated that Axin inhibition in a neuroblastoma cell
line, through the application of Li (lithium) and a GSK-3β inhibitor, promoted neurite outgrowth,
whereas ectopic Axin expression caused an opposite phenotype [43]. Subsequently, several reports
have shown Axin’s role in neuronal proliferation and differentiation, axon formation, dendritic spine
morphology, and synapse formation [44–48].

Cell proliferation is another process where Axin’s involvement has been investigated in
considerable detail. The findings have shown that, as a negative regulator of the WNT-β-catenin
signaling, Axin functions to inhibit cancerous growth and appears to act as a tumor suppressor [49].
Altered Axin regulation and activity are associated with various types of cancers such as lung
cancer, colorectal cancer, and HCC (hepatocellular carcinoma) [50–52]. Characterizations of human
HCC cultures identified Axin1 mutations in many of the cell lines and a corresponding increase
in the DNA-binding activities of TCF/LEF (T-cell factor/Lymphoid enhancer-binding factor 1) and
β-catenin [53]. Interestingly, when human and mouse HCCs lacking Axin were examined, it was found
that in most cases, human HCCs were not associated with increasedβ-catenin activation [54]. Moreover,
HCC induction in mice due to Axin1 mutation was independent of WNT-β-catenin signaling [54,55].
Further investigations on gene signatures of human and mouse HCCs revealed a significant overlap
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between genes affected by Axin1, Notch and YAP (Yes-associated protein), which may provide new
avenues for treatments of Axin1-linked tumors [54].

Among its other roles, Axin appears to be necessary for maintaining cell survival, metabolic
homeostasis, and thymic adipogenesis. Overexpression studies in transgenic mice and certain cultured
cells demonstrated increased apoptosis, possibly due to activation of the cell-death pathway [56,57].
Axin can also regulate the activation of AMPK (AMP (adenosine monophosphate)-activated protein
kinase), a sensor of the cellular-energy status [58]. Axin forms a complex with AMPK and a
serine-threonine kinase LKB1 (Liver kinase B1), which then leads to AMPK activation to protect
cells against increased stress, such as under a condition of low nutrient levels (see below for more
discussion on this topic). Finally, in the case of thymus function, Axin promoted age-related adipogenic
programming of thymic stromal cells [59]. This process is linked to reduced T-cell production and
thymic involution, suggesting that any potential therapeutic intervention to prolong aging may involve
lowering Axin activity.

2.2. Invertebrate Models

Studies in invertebrates have been instrumental in uncovering the developmental roles of Axin
homologs in tissues and organs, in the context of intact animals. The Drosophila melanogaster Axin
(D-Axin) homolog is necessary for the development of embryos and organs, such as the wings, eyes,
heart, gut, and circulatory system [20,60–62]. Analysis of the Tribolium castaneum Axin homolog
(Tc-Axin) revealed its dynamic expression during embryogenesis. Tc-Axin was initially localized at
the anterior pole, extending posteriorly during subsequent development and eventually becoming
somewhat ubiquitous [63]. This expression pattern was essential for the formation of head structures,
considering that Tc-Axin knockdown led to an absence of the head and thoracic parts. In the case
of the nematode C. elegans, two divergent Axin-like proteins, specifically PRY-1 (poly ray 1) and
AXL-1 (Axin-like 1) have been identified. The roles of both these family members are discussed in a
separate section.

In summary, the roles of Axin family of proteins described above rely on its scaffolding properties
that are mediated by conserved domains facilitating interactions with WNT-β-catenin pathway
components (Figure 2). Additionally, Axins utilize other unique regions (not shown in Figure 2) to
recruit non-WNT pathway components involved in other developmental processes that are summarized
in the next section (also see Figure 3).
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in this review.

3. Axin Proteins Interact with Many Factors Including Signaling Pathway Components

Given that Axins play essential roles in metazoan development, it is not surprising that Axin
family members form complexes with various cellular factors and components of signal transduction
pathways (Figures 2 and 3A). While much research has focused on their involvement in the canonical
WNT-β-catenin signaling pathway, which was summarized in the previous section, additional studies
have demonstrated Axin’s participation in non-canonical WNT signaling (Figure 3A). These include
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the PCP (planar cell polarity) pathway that provides directional information during organ formation,
the WNT/calcium pathway that regulates muscle contraction and PKC (protein kinase C) enzyme
activation, and the Ror2 (receptor tyrosine kinase-like orphan receptor)- and Ryk (related to tyrosine
kinase)-dependent WNT pathway in coordinating cell movement and polarity (Figure 3A) (reviewed
in [64]). These WNT pathways are unique in that they do not utilize the canonical effector, β-catenin.

In addition to the above conserved WNT-mediated signaling events, studies in C. elegans have
shown the presence of a divergent asymmetry pathway that regulates nuclear factor POP-1 in a WRM-1
(worm armadillo 1)/β-catenin-LIT-1 (loss of intestine 1)/NLK (Nemo-like kinase)-dependent manner
(see [65] and references therein, [66]). In these cases, PRY-1 affects asymmetric POP-1 localization to
control EMS (endomesodermal) precursor division in the embryo and seam cell divisions in larvae
(discussed below).

Axin family members also cooperate with an increasing number of proteins in other, non-WNT,
processes. These interactions involve pathways such as JNK, TGF-β, p53, and AMPK. Tissue
culture experiments involving kidney 293T cells and embryonic fibroblast cells showed that Axin
binds to MEKK1 and MEKK4, two members of the MEKK (MAPK (Mitogen-activated protein
kinase)/ERK (Extracellular signal-regulated kinase) kinase kinase) family, through domains distinct
from those involved in WNT signaling and activates the MKK4- and MKK7- (also belonging to
MEKK family) mediated JNK cascade [67,68]. This Axin-dependent JNK activation is inhibited by
the WNT pathway components Dvl, GSK-3β, CKIα, and CKIε. Furthermore, during dorsalization
of zebrafish embryos, an Axin-interacting protein, Aida, inhibits Axin-mediated JNK activation by
disrupting Axin homodimerization [69]. JNK signaling is a key regulator of various cellular processes
occurring in response to external signals. Upon activation, JNK translocates to the nucleus and activates
gene-expression changes.

Axin’s function in TGF-β pathway involves regulation of transcription factor Smad3 activity to
affect gene transcription. In human MSCs (mesenchymal stem cells), Axin and GSK-3β physically
interact to facilitate Smad3 phosphorylation by the active TβRI (TGF-β type-I receptor) kinase (reviewed
in [70]). This interaction is needed to promote MSC proliferation. Axin and GSK-3β also act to regulate
ubiquitin-dependent proteasomal degradation of Smad3 in human keratinocytes and hepatocellular
carcinoma cells in a manner analogous to the β-catenin degradation process [71]. In yet another study,
Axin acted as a scaffold to form a ternary complex with Smad7 and the ubiquitin E3 ligase Arkadia in
cultured cells to enhance Sma7 ubiquitination, leading to the activation of TGF-β signaling [72].

While the tumor-suppressor role of Axin has been traditionally investigated in the context of
WNT-β-catenin signaling, some studies have demonstrated its interactions with p53, a DNA-binding
protein that responds to genotoxic stress and controls cell proliferation and cancerous growth. During
p53 signaling, Axin interacts with HIPK2 (homeodomain-interacting protein kinase-2) to facilitate
p53 phosphorylation, which stimulates p53-dependent transcription of target genes [73]. Subsequent
work showed that this regulatory mechanism involves the formation of distinct complexes consisting
of additional proteins such as Pirh2 (p53-induced RING-H2) and the histone acetyl transferase,
Tip60 [74,75]. Axin can also associate with a death domain-associated protein, Daxx, to regulate p53
function to induce cell death following exposure to ultraviolet light [76].

Research on Axin has also uncovered its role in controlling cellular energy, nutrient sensing, and
metabolic processes. One of these processes involves glucose homeostasis. In Drosophila, D-Axin was
reported to physically interact with a component of the glucose-transport regulatory complex, DCAP
(Drosophila catabolite activator protein), to increase glycogen utilization through insulin signaling
and glucose transport [77,78]. Additionally, Axin formed a ternary complex with the TNKS2 (ADP
(adenosine diphosphate)-ribosylase tankyrase 2) enzyme and the kinesin motor protein KIF3A in
cultured cells to facilitate translocation of the insulin-stimulated glucose transporter, GLUT4, and
glucose uptake [79]. In an unrelated study, mouse Axin2 was reported to participate in signaling through
a Drosophila Pygo2 (Pygopus) homolog to affect glucose metabolism [80]. Another energy-homeostasis
system involving Axin function is the AMPK signaling network. AMPK is a central player involved
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in sensing AMP and ADP levels in response to ATP (Adenosine triphosphate) consumption. During
AMPK signaling, accumulation of AMP and glucose-starvation initiates Axin binding to LKB1 to
enable AMPK phosphorylation [58]. Because Axin depletion inhibits AMPK stimulation, which results
in the loss of lipid homeostasis, Axin acts as a metabolic rheostat and energy sensor [58].

Beyond their other functions, Axins also form complex with Dvl to facilitate cytoskeletal
rearrangement during gastrulation (Reviewed in [34]) and orientation of the mitotic spindle during
asymmetric cell division [81]. Both these proteins possess a common DIX domain that is responsible
for this binding [82]. In addition, Axin interacts with other cellular components to regulate cytoskeletal
arrangement. Cowan and Henkemeyer [83] showed that one of the ways that Axin participates in the
process is by modulating Eph/ephrin-bidirectional signaling. Specifically, interactions of Axin with
Grb4, a SH2/3 domain adaptor protein of the Eph/ephrin pathway, facilitates the recruitment of other
proteins leading to cytoskeletal rearrangement during cell and axon growth–cone movement.

In summary, Axin participates in both WNT-dependent and -independent signaling events
(Figure 3A). By acting as a scaffold protein, it helps recruit other factors to execute a wide variety
of cellular and molecular processes in eukaryotes (Figure 3B). While Axin’s role in WNT-β-catenin
signaling appears to be conserved in metazoans, several studies have also reported its involvement in
other, WNT-independent, pathways. To what extent the later functions of Axin are conserved remains
to be established, though it is worth pointing out that Axin-AMPK interaction has been shown in both
mice and C. elegans systems (see the section ‘Regulation of Developmental Processes in C. elegans’).

4. Regulation of Axin Functions

The crucial roles of Axin family members in metazoans depend on multiple mechanisms that
operate at spatiotemporal and subcellular levels. Several reports have shown that Axin is regulated
both at transcriptional and post-translational levels. Using an auto-feedback loop, Axin controls its
own expression [26,84–86], although the relevance of such a mechanism at the organismal and cellular
levels remains to be understood. Modulation of protein functions can also occur via changes in their
oligomeric state or through interactions with binding partners. As described above, Axin possesses a
DIX domain at the C-terminus, which mediates both homo- and hetero-interactions, thus contributing
to its essential activities [87–90]. The same domain is also found in other proteins, such as Dvl. It
has been proposed that Dvl might recruit Axin from the destruction complex to the LRP receptor via
DIX-domain interactions [91,92].

The post-translational modifications of Axin include phosphorylation, ubiquitination, and
SUMOylation. These alterations affect the subcellular localization, stability, or potential interactions
of the protein with other factors (reviewed in [93,94]). Similar to β-catenin, under basal conditions,
Axin is phosphorylated by both GSK-3β and CKI [10,95,96] to function in the destruction complex and
is subsequently dephosphorylated upon WNT pathway activation [10,97,98]. In updated regulation
models, Axin phosphorylation occurs during both the ‘off’ and ‘on’ states of WNT signaling, and is
dependent on another key destruction complex member, APC [99,100]. Another kinase that is reported
to phosphorylate Axin is Cdk5 (Cyclin-dependent Kinase 5). During mouse cortex development,
Cdk5-mediated phosphorylation was found to be necessary for the interaction of Axin with GSK-3β,
leading to microtubules stabilization during axon formation [45].

Axin is subjected to ubiquitin-mediated proteolysis through poly ADP-ribose modification.
Experiments in cell culture systems showed that poly ADP-ribosylation of Axin by ADP-ribose
polymerase enzymes, tankyrase 1 and tankyrase 2, targeted Axin for proteasomal degradation when
the pathway was in the ‘off’ state [101–103]. The role of tankyrase in Axin regulation has also been
demonstrated in the Drosophila system [104,105]. Feng et al. [105] reported that Axin levels were
moderately higher in Tnks (Tankyrase)-mutant flies. Since a further increase in Axin expression in
animals lacking Tnks function disrupted expression of Wingless/WNT reporter gene, it was concluded
that Tnks-dependent regulation normally acts to buffer Axin activity. The ubiquitination of Axin is
facilitated by several ubiquitin E3 ligases. Ji et al. [106] used human cell lines to investigate the roles of
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two RING (really interesting new gene) family ligases, SIAH1 and SIAH2 (seven in absentia homologs
1 and 2), and found that Axin was ubiquitinated and degraded as a feed-forward mechanism to achieve
sustained activity of WNT-β-catenin signaling. The Drosophila homolog, Iduna (also a RING family
member), acts as a key factor in the breakdown of ADP-ribosylated Axin [62,107]. Other ligases (e.g.,
Smurf2 of HECT (homologous to the E6-AP carboxy terminus) family) also appear to modify Axin’s
stability [108,109].

Axin is also known to be SUMOylated. The earliest role of SUMOylation in Axin regulation
was revealed by the discovery of Axam (Axin associated molecule), an enzyme that possesses
deSUMOylation activity [110,111]. Axam formed a complex with Axin and prevented its interactions
with Dvl [110]. Later on, studies reported that Axin is SUMOylated and that this modification affects
its role in the JNK pathway [112] and may protect Axin from ubiquitination [113].

Adding to its complex mode of regulation, Axin is proposed to utilize an autoinhibitory mechanism.
The N-terminus region of the protein was earlier suggested to play an inhibitory role in binding to
its partner proteins [7,114] and later shown to associate with the C-terminus, thus forming a closed
conformation during the WNT signaling-off state [115]. Thus, Axin can adopt different conformational
states depending on its assembly with the destruction complex or the “WNT-LRP5/6 signalosome”
(Reviewed in [93]).

Yet another mechanism by which Axin function is modulated involves miRNA
(microRNA)-mediated gene silencing. Experiments in the Drosophila system showed that Axin
was negatively regulated by miR-315 via conserved 3′- UTR (untranslated region) miRNA consensus
sequences [116]. Likewise, studies using different human cell types demonstrated that the Axin2
transcript was targeted by let-7f at the 3′ UTR, by hsa-miR-34a at both the 5′ UTR and 3′ UTR,
and by miR-205 at the 3′ UTR, which regulated expression of a WNT/β-catenin target gene and a
β-catenin-activated reporter [117–119].

The findings summarized above show that Axin is subjected to multiple modes of regulation.
Although the full picture of its regulatory mechanism is far from complete, it is evident that
alterations help modulate Axin’s function and its interactions with other cellular factors and signaling
pathway components.

5. Regulation of Developmental Processes in C. elegans

As mentioned above, the C. elegans genome encodes two Axin family members, PRY-1 and AXL-1.
Although both proteins act as scaffolds to recruit other factors, major domains (RGS and DIX) are not
well conserved (Figure 4). Of the two, PRY-1 has been investigated in some detail. The protein shows
an overall 18–21% amino acid similarity with vertebrate and D-Axin. This level of conservation is
primarily restricted to the RGS and DIX domain, with 27% identity (48% similarity) and 31% identity
(49% similarity) with the respective domains of D-Axin [120]. Apart from the RGS and DIX domains,
PRY-1 has no obvious GSK-3β- and β-catenin binding region(s). Despite this sequence discrepancy,
genetic and biochemical experiments showed that PRY-1 acts as a scaffold for components of the
destruction complex and negatively regulates canonical WNT signaling [120].

The genetic epistasis experiments confirmed that, similar to mammalian Axin, pry-1 functions
upstream of bar-1 (beta-catenin/armadillo related)/β-catenin and pop-1 (posterior pharynx defect
1)/TCF/LEF and downstream of egl-20 (egg laying defective 20)/WNT and mig-5 (abnormal cell
migration 5)/Dvl, thus establishing it as a core component of the canonical WNT signaling pathway
in C. elegans (reviewed in [121]). Additionally, when introduced in vertebrates, PRY-1 behaves as a
functional Axin homolog, as its overexpression in zebrafish rescued the phenotype of Axin-mutation,
masterblind, and inhibited WNT signaling in mammalian cells based on a TCF reporter analysis [120].
Consistent with its involvement in many processes, pry-1 is broadly expressed during development,
starting from embryogenesis [120]. At the early L1 stage, pry-1 is mainly localized to the Q neuroblast
cells (QL and QR), seam cells (V5 and V6), ventral hypodermal (P) cells (P7/8 to P11/12), body-wall
muscle cells, and neurons in the head, tail, and ventral nerve cord. In addition, pry-1 continues to be
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expressed in all seam cells and QL/R cells through the late-L1 stage. At later stages, pry-1 expression
persists in hypodermal cells and several neurons in the ventral cord, head, and tail ganglia [120].
Furthermore, pry-1 expression is also observed in reproductive tissues, including vulval precursors
and their progeny, as well as the male tail. A similar expression pattern of pry-1 ortholog, Cbr-pry-1,
was also seen in Caenorhabditis briggsae, a sister species of C. elegans [122]. In agreement with these
expression data, constitutive activation of WNT signaling (due to the loss of PRY-1 function) causes a
wide range of defects in C. elegans that are discussed below.

The other C. elegans Axin-like protein, AXL-1, also acts as a functional ortholog of Axin to regulate
the canonical WNT signaling [21]. The protein shows an overall 14–16% identity to members of the
D-Axin and vertebrate Axin1 and Axin2, and 20% identity to PRY-1. Similar to PRY-1, sequence
conservation is restricted to the RGS and DIX domains (24% and 35%, respectively), with no obvious
domains for GSK-3β and β-catenin binding [21] (Figure 4). Functional studies revealed that AXL-1
physically interacts with GSK-3/GSK-3β, MIG-5, and DSH-2 (dishevelled related 2)/Dvl, but not APR-1
(APC related 1)/APC to form a destruction complex with BAR-1 [21]. This partial destruction complex
is predicted to enable BAR-1 phosphorylation by GSK-3 to inhibit WNT signaling. Furthermore, similar
to PRY-1, AXL-1 overexpression inhibited WNT-induced TCF reporter in mammalian cells, suggesting
its functional interaction with mammalian GSK-3β and β-catenin.

Although both AXL-1 and PRY-1 are components of the WNT signaling pathway, they are
not functionally interchangeable and perform partially overlapping roles in downregulating BAR-1
signaling in developmental processes (see below) [21]. In addition, AXL-1 functions independently of
PRY-1 in axonal migration and excretory cell development. Recently, Chen et al. [123] reported a novel
role for AXL-1 in aging. The authors showed that following metformin treatment, AXL-1 localizes to
lysosomes and regulates the PAR-4 (abnormal embryonic partitioning of cytoplasm 4)/LKB1-dependent
lysosome pathway and subsequently activates AAK-2 (AMP activated kinase 2)/AMPK to extend the
lifespan of C. elegans [123].
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Figure 4. Protein sequence alignment of PRY-1 and AXL-1 in C. elegans. The three major domains (RGS,
GSK-3-β-catenin, and DIX) in PRY-1 are indicated by colored boxes. The corresponding regions in AXL-1
and their amino acid sequence identity and similarity are also shown. Sequence alignment was done
using CLUSTAL W and T-COFFEE (http://www.clustal.org/clustal2/, http://tcoffee.crg.cat) [124,125].

Below, we describe the major developmental events and tissues that depend on PRY-1 and AXL-1
function and their interactions with other cellular factors.

5.1. Neuronal Development

As mentioned earlier, Axin’s role in mice was initially discovered based on characterization of
fused locus [1]. In the absence of Axin function, mice exhibited neurological defects. Additionally,
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the animals showed a neuroectodermal phenotype, which included either incomplete closure or
malformation of the head. Since then, Axin family members in other organisms have been found to
be essential for neuronal development. In C. elegans, pry-1 mutants exhibit defects in some of their
neurons (reviewed in [121]). These include the Q neuroblast system, which consists of a pair of cells,
i.e., the QL cell (left lateral side) and QR cell (right lateral side), in the animal (Figure 5A). Interestingly,
while the lineages of QL and QR cells are identical, both cells and their descendants migrate in opposite
directions, i.e., anterior in the case of QR and posterior in the case of QL (Figure 5A). The progeny of
these two neuroblasts give rise to different types of neurons during larval development.

J. Dev. Biol. 2019, 7, x FOR PEER REVIEW 9 of 23 

 

malformation of the head. Since then, Axin family members in other organisms have been found to 
be essential for neuronal development. In C. elegans, pry-1 mutants exhibit defects in some of their 
neurons (reviewed in [121]). These include the Q neuroblast system, which consists of a pair of cells, 
i.e., the QL cell (left lateral side) and QR cell (right lateral side), in the animal (Figure 5A). Interestingly, 
while the lineages of QL and QR cells are identical, both cells and their descendants migrate in 
opposite directions, i.e., anterior in the case of QR and posterior in the case of QL (Figure 5A). The 
progeny of these two neuroblasts give rise to different types of neurons during larval development. 

Molecular genetic studies have shown that pry-1-mediated WNT signaling is essential for the 
migration of Q-lineage cells and guiding them along specific trajectories [126]. PRY-1 activity is 
specifically needed in the QR cell to restrict mab-5 (male abnormal 5)/Hox (homeobox) expression and to 
enable anterior migration of their descendants. Loss of PRY-1 function mimics constitutively active 
WNT pathways with high MAB-5 expression in the QR cell and their progeny, resulting in their 
migration in an opposite (posterior) direction [120] (Figure 5A,B). Genetic studies have identified 
other components of the WNT pathway including the ligand, EGL-20, as well as BAR-1 [126] (Figure 
5B). 

 
Figure 5. PRY-1 regulates neuronal development in C. elegans. (A) EGL-20/WNT signaling activates 
the Hox gene mab-5 in QL to induce posterior migration of QL descendants. mab-5 is not activated in 
QR, and as a consequence, the QR descendants migrate in the default anterior direction. In pry-1(mu38) 
mutant animals, mab-5 is ectopically expressed in QR leading to the migration of QR descendants 
towards posterior region. (B) PRY-1 acts in the canonical WNT signaling to regulate the expression of 
mab-5/ Hox target gene. The dotted line indicates indirect interaction. (C) pry-1 mutants exhibit defects 
in dopaminergic neurons (marked with dat-1p::GFP). The cell bodies are frequently missing or appear 
abnormal and dendrites show punctate-like patterns (arrows) (scale bar represents 0.05 µm). (D) 
qPCR experiment shows that manf-1 is significantly downregulated in pry-1 mutant adults (p < 0.05, 
two batches). 

Other neuronal processes in which roles for pry-1 have been demonstrated include axon 
guidance and synapse formation. Axonal function was uncovered in a genetic screen using an RNAi 

Figure 5. PRY-1 regulates neuronal development in C. elegans. (A) EGL-20/WNT signaling activates the
Hox gene mab-5 in QL to induce posterior migration of QL descendants. mab-5 is not activated in QR,
and as a consequence, the QR descendants migrate in the default anterior direction. In pry-1(mu38)
mutant animals, mab-5 is ectopically expressed in QR leading to the migration of QR descendants
towards posterior region. (B) PRY-1 acts in the canonical WNT signaling to regulate the expression
of mab-5/ Hox target gene. The dotted line indicates indirect interaction. (C) pry-1 mutants exhibit
defects in dopaminergic neurons (marked with dat-1p::GFP). The cell bodies are frequently missing or
appear abnormal and dendrites show punctate-like patterns (arrows) (scale bar represents 0.05 µm).
(D) qPCR experiment shows that manf-1 is significantly downregulated in pry-1 mutant adults (* p < 0.05,
two batches).

Molecular genetic studies have shown that pry-1-mediated WNT signaling is essential for the
migration of Q-lineage cells and guiding them along specific trajectories [126]. PRY-1 activity is
specifically needed in the QR cell to restrict mab-5 (male abnormal 5)/Hox (homeobox) expression and to
enable anterior migration of their descendants. Loss of PRY-1 function mimics constitutively active
WNT pathways with high MAB-5 expression in the QR cell and their progeny, resulting in their
migration in an opposite (posterior) direction [120] (Figure 5A,B). Genetic studies have identified other
components of the WNT pathway including the ligand, EGL-20, as well as BAR-1 [126] (Figure 5B).

Other neuronal processes in which roles for pry-1 have been demonstrated include axon guidance
and synapse formation. Axonal function was uncovered in a genetic screen using an RNAi (RNA
interference)-hypersensitive strain [127]. It was found that pry-1 RNAi caused defects in ventral
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cord neurons, such as branched commissures and abnormal midline crossing. In a separate study,
Schneider et al. [128] reported that pry-1 acts in a canonical WNT-β-catenin pathway to promote
synapse formation of a specific motor neuron, based on results showing that pry-1 mutants enhanced
movement defects in animals lacking unc-4 (uncoordinated 4)/Hox function.

In addition to its essential function in the development of neurons, pry-1 may also participate
in neuroprotection in adults. This possibility is supported by our findings that pry-1 mutants show
accelerated degeneration of dopaminergic neurons (S. Taylor, unpublished) (Figure 5C). Whether such
a role of pry-1 involves other components of the WNT signaling pathway remains to be investigated. In
this regard, it is worth mentioning that WNT signaling has been linked to neurodegenerative diseases,
such as Alzheimer’s and Parkinson’s (reviewed in [129,130]). One of the ways whereby pry-1-mediated
WNT signaling may protect neurons in C. elegans is by regulating the expression of genes that confer
neuroprotection. This hypothesis is based on our preliminary observation that the transcription of
manf-1, a homolog of mammalian MANF (Mesencephalic astrocyte-derived neurotrophic factor) [131],
was significantly downregulated in pry-1 mutant worms (S. Taylor, unpublished) (Figure 5D). In the
future, it will be interesting to investigate pry-1′s role in manf-1 regulation and its link to neuroprotection.

5.2. Embryogenesis

Embryogenesis in C. elegans is another process that depends on the pry-1-mediated, non-canonical
WNT signaling pathway. This divergent pathway, known as the WNT-β-catenin-asymmetry pathway,
has been shown to control the division of several different types of somatic cell, such as EMS blastomeres
in the embryo and larval seam cells (reviewed in [121]). During early embryonic development, the
zygote divides into a large anterior blastomere (AB) and a small posterior blastomere (P1) (Figure 6A).
P1 then divides to give rise to EMS and P2 blastomeres. The division of EMS has been studied in some
detail, which is regulated by the WNT-asymmetry pathway. Upon receiving the WNT ligand, MOM-2,
from the adjacent P2 blastomere, the EMS divides to give rise to MS (producing mesoderm) and E
(producing endoderm) blastomeres with different cell fates [132,133] (Figure 6A). While cells of the MS
lineage contribute to mesodermal tissues (i.e., pharynx and muscles), cells of the E lineage generate
endodermal tissues (i.e., intestine).

In the event of asymmetric division, WNT pathway components are asymmetrically localized
with MOM-5 (more of MS 5)/Frizzled (Fz), DSH-2, and MIG-5 in the posterior cortex [134,135],
and with WRM-1, APR-1, PRY-1, and LIT-1 in the anterior cortex [136,137]. Subsequently, during
telophase, WRM-1, SYS-1 (symmetrical sister cell hermaphrodite gonad defect 1)/β-catenin, and LIT-1
preferentially localize to the posterior nucleus [136–140], whereas POP-1 is found mostly in the anterior
nucleus (POP-1 asymmetry) [141,142] (Figure 6A). Consistent with its localization in the anterior cortex,
PRY-1 antagonizes WRM-1 function, leading to low WRM-1 activity in anterior nucleus that helps
establish POP-1 asymmetry [136].

5.3. Seam Cell Development

Similar to the EMS, the PRY-1-mediated WNT-asymmetry pathway is also essential for seam cell
development (reviewed in [121]) (Figure 6B). Seam cells are lateral hypodermal cells that give rise to
specialized adult cuticular structures, namely the alae (Reviewed in [143]). During early development,
a newly hatched L1 stage worm possesses 10 seam cells on either side of the body along the anterior
posterior axis [144]. These cells undergo stage-specific divisions (mostly asymmetric) to produce
anterior daughters with hypodermal fates and posterior daughters with seam cell fates, and ultimately
differentiate to form alae by the end of the L4 stage. The components of WNT-asymmetry pathway
in this developmental system are the same as those involved in EMS divisions (Figure 6A, B). Thus,
prior to their division, APR-1 and PRY-1 localize to the anterior cortex of a seam cell, whereas MOM-5,
DSH-2, and MIG-5 are found in the posterior cortex [134,145–147]. The fates of daughter cells depend
on the nuclear levels of SYS-1 and POP-1, such that the anterior nucleus possesses high POP-1 and low
SYS-1, and the posterior nucleus possesses low POP-1 and high SYS-1 (Figure 6B).
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Figure 6. PRY-1 negatively regulates asymmetric cell division during C. elegans development. (A) Model
for EMS division. PRY-1, located in the anterior cortex of EMS during asymmetric division, is involved
in conferring endodermal and mesodermal fates of daughter cells. (B) Similar to EMS division, a
model for seam cell division. PRY-1 negatively regulates WNT signaling in the anterior cell, which
ultimately adopts a hypodermal fate. (C) A genetic pathway consisting of PRY-1-mediated regulation
of heterochronic miRNAs and their targets during seam cell development. (D) pry-1(mu38) males show
defective tail morphology. In wild-type (WT) animals, rays are located in the fan-like region (marked
by arrows in the upper panel). In pry-1 mutants, alae have been replaced with ectopic rays (arrows in
the lower panel). The vertebrate homologs of C. elegans genes are listed on the bottom. Panels B and C
adopted with permission from [66] and panel D from [148].

In support of its role in the asymmetric division of seam cells, pry-1 mutation disrupts the
nuclear localization of WRM-1, SYS-1, and POP-1 [66,134,149], thereby leading to increased seam
cell proliferation [65,66]. Work from our lab has shown that in the absence of PRY-1 function, POP-1
localization is disrupted in seam cell daughters [66]. As expected, RNAi knockdown of wrm-1 and lit-1
suppressed the seam cell phenotype in pry-1 mutants whereas pop-1 RNAi exacerbated the defect.

The temporal division pattern of seam cells relies on several heterochronic miRNAs and their
target genes (reviewed in [150,151]. We analyzed the miRNA transcriptome in pry-1 mutants, which
revealed five DE (differentially expressed) miRNAs of lin-4 (lineage defective 4) and let-7 (lethal 7) families.
Further experiments revealed that all DE miRNAs were repressed by PRY-1 in a POP-1-dependent
manner [66] (Figure 6C).

In addition, pry-1 plays a role in V-lineage development in males, where it restricts expression of
the Hox gene mab-5 to posterior V-cell descendants, which ensures correct specification of cell fates
and leads to the formation of sensory rays, alae, and the postdeirid [148]. Thus, in males, only the
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V5 and V6 cell lineages (expressing mab-5) generate rays whereas the V1–V4 lineages (with no mab-5
expression) give rise to alae [152,153]. Males with no pry-1 function show defective alae and ectopic
rays as the V cells can now differentiate to make more rays due to the inappropriate expression of
mab-5 [148] (Figure 6D). Moreover, altered mab-5 expression in pry-1 mutants inhibits the formation of
the postdeirid, a sensory structure resulting from the differentiation of V5.pa descendants [148].

5.4. Vulva Development

Although pry-1 was identified initially based on its role in the Q neuroblast-cell lineage,
pry-1-mutant animals were subsequently reported to exhibit defects in vulva formation (Figure 7A).
C. elegans vulva has been studied extensively to understand how signal transduction pathways control
cell fates and organogenesis (reviewed in [154]). As a reproductive organ, the vulva serves as a system
for mating with males and egg laying. The organ develops from three of the six equipotential groups
of P-lineage cells (Pn.p, n = 3–6), termed vulval precursor cells (VPCs), which are induced to adopt
primary (10 - P6.p) and secondary (20 - P5.p and P7.p) cell fates. Mutations in pry-1 cause more than
three VPCs to get induced and lead to the formation of ectopic pseudo-vulvae-like structures in adults,
which is referred to as the multivulva (Muv) phenotype [155] (Figure 7A,B). Genetic experiments
revealed that the gene acts in the canonical WNT-β-catenin pathway to repress inappropriate induction
of vulval precursors. Because of its role as a negative regulator, reduction or elimination of pry-1
function leads to the constitutive activation of WNT signaling and the dysregulation of downstream
targets. One such target is the homeobox family member, lin-39 (lineage defective 39), which is necessary
for pry-1-mediated vulval development [155].
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VPC fates are defective in pry-1(mu38) animals. Unlike the wild-type, where the progeny of P(5-7).p 
give rise to the vulva, P7.p in pry-1(mu38) and P7.p and P8.p in Cbr-pry-1(sy5353) animals remain 
unfused (panel adapted with permission from [122]). (C) A proposed model of interactions between 
WNT, Ras, and Notch pathways to specify the 20 fate of induced VPCs. (D) pry-1(mu38) mutants show 
an extra P12.pa-like cell in the place of P11.p. The wild-type P11.p has a large nucleus and a nucleolus 
compared to P12.pa, which is noticeably smaller. In the case of bar-1(ga80) mutants, an opposite 
phenotype is seen, i.e., two P11.p-like cells [156]. (E) Ectopic hook-like structures in pry-1 mutant 
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laboratory identified mutations in the C. briggsae pry-1 ortholog (Cbr-pry-1) and showed that Cbr-pry-

Figure 7. pry-1 is necessary for the development of P lineage cells. (A) Multiple vulva-like protrusions
seen in a pry-1(mu38) animal (white arrows). Black arrows mark the main vulva. WT, wild-type (B) VPC
fates are defective in pry-1(mu38) animals. Unlike the wild-type, where the progeny of P(5-7).p give
rise to the vulva, P7.p in pry-1(mu38) and P7.p and P8.p in Cbr-pry-1(sy5353) animals remain unfused
(panel adapted with permission from [122]). (C) A proposed model of interactions between WNT, Ras,
and Notch pathways to specify the 20 fate of induced VPCs. (D) pry-1(mu38) mutants show an extra
P12.pa-like cell in the place of P11.p. The wild-type P11.p has a large nucleus and a nucleolus compared
to P12.pa, which is noticeably smaller. In the case of bar-1(ga80) mutants, an opposite phenotype is
seen, i.e., two P11.p-like cells [156]. (E) Ectopic hook-like structures in pry-1 mutant males are marked
by arrowheads (panel adapted with permission from [157]).

Axin family members have also been genetically characterized in other nematodes. Our laboratory
identified mutations in the C. briggsae pry-1 ortholog (Cbr-pry-1) and showed that Cbr-pry-1 functions in
vulva development in a Cbr-bar-1/β-catenin-, Cbr-pop-1/tcf/lef -, and Cbr-lin-39/hox-dependent manner [122]
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(Figure 7B). Research in a more distant nematode, Pristionchus pacificus (Diplogastridae family),
uncovered an Axin family member that is most closely related to C. elegans axl-1 [158]. Mutations
in Ppa-axl-1 caused a Muv phenotype suggesting that the gene plays an important role in vulva
development. Further experiments revealed that Ppa-axl-1 genetically interacts with WNT-β–catenin
pathway components.

Experiments aimed at understanding the mechanism of pry-1 function have discovered crosstalk
between different signaling pathways. Gleason et al. [155] found that pry-1 mutants bypass the
requirements of EGFR–Ras signaling components, which led them to propose that the WNT-β-catenin
and EGFR–Ras pathways can act in parallel to promote vulva formation (Figure 7C). Subsequently,
our group showed that PRY-1-mediated WNT signaling interacts with the LIN-12/Notch cascade to
confer a 20 fate on induced VPCs, since the loss of pry-1 leads to inappropriate activation of the lin-12
target gene lip-1 (lateral-signal-induced phosphatase 1)/MAPK phosphatase [122]. How the three pathways
interact to regulate downstream targets (see a model in Figure 7C), leading to correct specification of
VPC fates, is currently not understood.

5.5. P11/12 Development

P11 and P12 cells also depend on pry-1-mediated signaling for proper differentiation of their
progeny. These two cell lineages contribute to the formation of the ventral nervous system [144].
Whereas their anterior daughters, i.e., P11.a and P12.a, are neuroblasts that divide to form several
neurons, the posterior daughters, i.e., P11.p and P12.p, take on different fates. The P11.p fuses with
the hyp7 syncytium. The P12.p divides to generate two daughters, one of which, P12.pp (posterior
daughter), undergoes programmed cell death and the other, P12.pa (anterior daughter), acquires a
unique hypodermal cell fate, hyp12. In pry-1-mutant animals, P11.p appears to adopt a P12.pa-like fate,
based on the presence of two cells having the characteristics of P12.pa [157] (Figure 7D). Mutations
in bar-1 exhibit an opposite phenotype, i.e., two P11.p-like cells [156]. Since these phenotypes may
arise due to cell-fate changes at the level of P11 and P12, it is likely that PRY-1–BAR-1-mediated WNT
signaling plays a role in conferring the correct fates of these two P cells.

5.6. Male Hook Development

The role of pry-1 in the development of the male hook has also been investigated. The hook
sensillum is a copulatory structure that helps in locating the hermaphrodite vulva during mating [157].
Cell-morphology and -lineage studies have shown that the hook is formed by the progeny of P10.p and
P11.p precursors [157]. These two cells are induced to adopt 10 (P11.p) and 20 (P10.p) fates through the
actions of the WNT, EGFR-Ras, and LIN-12 pathways. The P10.p and P11.p progeny differentiate to
form a functional hook that includes sensory neurons, structural cell, and support cells. It was found
that pry-1 mutants have ectopic hook-like structures due to inappropriate induction of some of the
anterior Pn.p (n = 3–8) cells that normally fuse with the surrounding hypodermal syncytium [157]
(Figure 7E). This phenotype was suppressed by mutations in bar-1 and a downstream target (mab-5).
Additional genetic experiments led the authors [157] to propose a model in which a graded WNT
signal from the tail region causes maximal activation of the pathway in P11.p, leading to inhibition of
PRY-1 function and specification of the 10 fate. The neighboring P10.p cell receives a comparatively
lower signal and thereby adopts a 20 fate.

5.7. Lipid Metabolism

The processes described above were related to the development of cells and tissues. Recently,
our group uncovered a novel role of PRY-1 that involves the regulation of lipid metabolism [86]. In
C. elegans and other eukaryotes, fatty acids (such as triacylglycerols, phospholipids, and sphingolipids)
serve as building blocks for lipids. Fatty acids are synthesized from thioesters or isoprene units
via condensation reactions (Reviewed in [159]). We analyzed the mRNA transcriptome in pry-1
mutant animals and determined that DE genes are highly linked to biological processes such as lipid
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metabolism, cellular responses to lipids, and aging [86]. Functional studies involving a subset of DE
genes revealed that vits (vitellogenins, yolk lipoproteins) and fats (fatty acid desaturases) participate in
pry-1-mediated lipid metabolism. Consistent with these findings, pry-1 mutants exhibited defects in
lipid content (Figure 8A), egg laying, and survival following starvation [86]. Genetic experiments
showed that vits act downstream of pry-1, and RNAi knockdowns of vit genes rescued lipid defects in
pry-1 mutants.
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Figure 8. pry-1 is necessary to regulate lipid metabolism. (A) pry-1 mutant animals show reduced lipid
content compared to wild-type (WT) animals as revealed by Oil Red O staining. (B) A model for pry-1
genetic network in regulating lipid synthesis based on findings presented in [86]. pry-1 acts upstream
of sbp-1 and in parallel to nhr-49 and nhr-80. pry-1 also regulates the expression of vit genes. Whether
bar-1 participates in this process (dotted connecting lines) and how vits affect lipid synthesis (question
mark) are currently not understood.

In C. elegans, MUFAs and PUFAs (monounsaturated and polyunsaturated fatty acids, respectively)
can be derived from saturated fatty acid precursors by the actions of fat desaturases (FAT-5, FAT-6,
and FAT-7) [159,160]. The expression of desaturases is regulated by transcription factors SBP-1 (sterol
regulatory element-binding protein 1, SREBP-1 family) and two HNF4 (hepatocyte nuclear factor 4)
families of nuclear receptors NHR-49 (nuclear hormone receptor 49) and NHR-80 (nuclear hormone
receptor 80) (Reviewed in [159]). More recently, SBP-1-mediated regulation of MUFA synthesis was
shown to extend lifespan when exposed to anti-aging drug combinations [161]. We found that pry-1
mutants had reduced transcription of fat desaturases and sbp-1. However, transcription of the nhr-49
and nhr-80 genes was unaltered. Thus, a working model is that pry-1 acts via sbp-1 to regulate the
expression of fat genes that, in turn, regulate lipid synthesis [86]. This model (Figure 8B) is supported
by the findings that fatty acid levels were reduced in pry-1 mutants and supplementing the diet with
oleic acid, a MUFA, rescued lipid defects in mutant animals [86].

The requirements of lipids in many biological processes and across multicellular eukaryotes
is well documented. These macronutrients are vital for proper growth and reproduction; however,
their excessive intake contributes to a variety of diseases in humans. Changes in lipid metabolism
could affect a host of processes including signaling, cell structure, and aging [162]. Outside of the
C. elegans system, Axin family members are reported to function in lipid biology. Axin expression in
mice contributes to an age-related increase in adiposity in thymic stromal cells [59]. A recent study
showed that Axin knockdown in mouse liver impaired AMPK activation and abrogated AMPK-LKB1
colocalization upon starvation [58]. Therefore, understanding the role of PRY-1 and its homologs in
maintaining energy homeostasis is of considerable interest in biomedical research.
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6. Major Findings from C. elegans Studies

As described in the previous section, PRY-1 and AXL-1 show significant sequence divergence in
GSK-3β and β-catenin binding domains. In spite of this, both of these proteins physically interact with
BAR-1 and regulate WNT-β-catenin signaling. The functional conservation may be brought about by
conserved structures of RGS and DIX domains, thereby making them bona fide Axin family members.

Similar to other eukaryotes, C. elegans Axins participate in developmental processes such as cell
proliferation, cell differentiation and cell migration. The examples include the formation of the vulva
and male hook, P11/12 fate specification, and neuronal development. All of these involve interactions
with WNT-β-catenin pathway components, suggesting that this might be the most ancestral mechanism
of Axin function. Among other roles of PRY-1, its involvement in lipid metabolism is a recent discovery
that may potentially fit into a broader role of Axin as an energy sensor and regulator in eukaryotes.

In addition to their conserved roles, studies in C. elegans have also uncovered a unique
Axin-mediated WNT signaling during embryogenesis and seam cell development. Typically,
interactions between β-catenin and TCF lead to transcriptional regulation of the target genes. However,
this divergent WNT signaling has evolved to utilize WRM-1/β-catenin to regulate nuclear localization
of POP-1/TCF, leading to the specification of asymmetric cell fates. Thus, research in the C. elegans
model has shed a new light on the novel mechanism of Axin function in eukaryotes.

7. Concluding Remarks

Axin is a well-characterized scaffold protein that is conserved in eukaryotes. While vertebrate
genomes carry two Axin genes, a single ancestral family member is found in invertebrates. Axin’s
function has been studied mainly in the context of WNT-β-catenin signaling; however, the protein
also interacts with multiple factors belonging to WNT-independent signal transduction pathways.
Over the years, studies have shown that Axin homologs are necessary for the development of various
tissues and cell types. In C. elegans, Axin’s role has been investigated during embryogenesis and larval
development. Given the extensive conservation of genes and signaling mechanisms in C. elegans,
future studies on PRY-1 and AXL-1 hold the potential to further advance our understanding of
shared mechanisms of Axin function in animal development. By harnessing the power of C. elegans
genetics, new and novel interacting partners of Axin could be identified. Additionally, the discovery of
Axin-target genes could help unravel pathways and process-specific functions associated with this
family of proteins.
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