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ABSTRACT: Coral reefs host some of the highest concentrations of biodiversity
and economic value in the oceans, yet these ecosystems are under threat due to
climate change and other human impacts. Reef monitoring is routinely used to help
prioritize reefs for conservation and evaluate the success of intervention efforts.
Reef status and health are most frequently characterized using diver-based surveys,
but the inherent limitations of these methods mean there is a growing need for
advanced, standardized, and automated reef techniques that capture the complex
nature of the ecosystem. Here we draw on experiences from our own
interdisciplinary research programs to describe advances in in situ diver-based
and autonomous reef monitoring. We present our vision for integrating
interdisciplinary measurements for select “case-study” reefs worldwide and for
learning patterns within the biological, physical, and chemical reef components and
their interactions. Ultimately, these efforts could support the development of a
scalable and standardized suite of sensors that capture and relay key data to assist in categorizing reef health. This framework has the
potential to provide stakeholders with the information necessary to assess reef health during an unprecedented time of reef change as
well as restoration and intervention activities.
KEYWORDS: coral reef, interdisciplinary, technology, monitoring, sensor, autonomous

■ INTRODUCTION
Coral reefs are essential and iconic ocean ecosystems that
provide vital services to more than 1 billion people and
contribute $2.7 trillion to the global economy.1 However,
climate change, disease, overfishing, pollution, and other
human impacts have negatively affected reefs globally,2−4

with 13.5% of corals lost globally in the past decade.1 A
response to this loss is an enhanced emphasis on conservation
and intervention-based approaches, including restoration, or
the rebuilding of reef ecosystems harboring complex and
interwoven biological, chemical, and physical components.5

We believe that attention to interdisciplinary-based reef
observational and monitoring methodologies could provide
new insights into reef function and health and contribute to the
advancement of intervention and conservation approaches.
Here, we propose an integrated science and technology plan

to accelerate coral reef conservation and restoration. We
propose to develop “case study” coral reefs that are equipped
with sensors and technologies to quantitatively characterize the
biological, chemical, and physical parameters of the reef.
Supervised and unsupervised machine learning can then be
applied to these data to identify underlying patterns of reef
health, highlight parameters in need of additional monitoring,
and ultimately drive development of integrated data products
that communicate reef health to stakeholders. This new era of
coral reef monitoring will reduce barriers to detecting and

predicting the health of coral reefs and bridge gaps in our
understanding of overall reef function. These advancements
will be critical to the successful mitigation of climate impacts
and restoration of reef ecosystems in an uncertain future.

■ CURRENT OBSERVATIONAL AND MONITORING
APPROACHES

Long-standing coral reef monitoring practices are based on
photographic and diver-based documentation such as fish
abundances, coral cover, species assemblages, and the presence
of lesions or other health-related visual signs (e.g., AGGRA
surveys). Newer structures from motion photogrammetry
techniques stitch together reef images into three-dimensional
reconstructions, providing added details about individual corals
and other noncryptic benthic organisms.6,7 If reefs are
routinely visited, photogrammetry techniques can be used to
document coral growth, recovery, and survival changes over
time. Globally, reefs are monitored via satellite-based data

Published: March 17, 2023

Perspectivepubs.acs.org/est

© 2023 The Authors. Published by
American Chemical Society

5117
https://doi.org/10.1021/acs.est.2c05369

Environ. Sci. Technol. 2023, 57, 5117−5124

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Amy+Apprill"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yogesh+Girdhar"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="T.+Aran+Mooney"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Colleen+M.+Hansel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+H.+Long"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yaqin+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="W.+Gordon+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="W.+Gordon+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jason+Kapit"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Konrad+Hughen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jeff+Coogan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Austin+Greene"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.est.2c05369&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c05369?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c05369?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c05369?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.2c05369?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/esthag/57/13?ref=pdf
https://pubs.acs.org/toc/esthag/57/13?ref=pdf
https://pubs.acs.org/toc/esthag/57/13?ref=pdf
https://pubs.acs.org/toc/esthag/57/13?ref=pdf
pubs.acs.org/est?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.est.2c05369?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/est?ref=pdf
https://pubs.acs.org/est?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


acquisition and modeling (e.g., NOAA’s Coral Reef Watch), a
framework that provides valuable information and local-scale
predictions related to thermal heat stress on reefs.8,9 Addi-
tionally, some monitoring programs provide integrated frame-
works, such as the Florida Keys National Marine Sanctuary
Water Quality Protection10 and AIMS Long-Term Monitor-
ing11 programs. While a standardized index for describing reef
health based on benthic, fish, and culture-based microbial data
known as The Coral Health Index was created to integrate
some of these data,12 it is not widely used. We agree that a
health index is needed to assess the state of global reefs and
evaluate restoration or intervention approaches. However, we
believe that such an index should include an expanded set of
indicators that better integrate the biological, chemical, and
physical parameters to describe reef health at an ecosystem
level and contextualize these with the unique oceanographic
conditions present on coral reefs.

■ TOWARD A NEW ERA OF MONITORING: CASE
STUDY REEFS

We envision selecting several dozen geographically separated
case study reefs representing different reef types (e.g., patch,
fringing, barrier, and lagoon) and oceanographic settings that
will be outfitted with a suite of advanced sensors and sampling
devices in addition to being the focus of diver-based
measurements. Ideally, these reefs will already be part of
existing monitoring programs to leverage efforts by local divers,
scientists, funding, and management resources to build
additional monitoring capacity. Selection of reefs could include
the Moorea Long-Term Ecological Research site,13 those
identified as Mission Blue Hope Spots,14 or those included
within the 100 Island Challenge,15 among others. These case
study reefs need to be joined together though common
instrumentation and observation methodology as well as a
shared data integration and analysis framework. A similar
framework has already been put in place by the U.S. National
Science Foundation’s Ocean Observatories Initiative, which
includes real-time ocean instrument arrays and data integration
in six geographic regions used for scientific exploration and

Figure 1. Conceptual diagram of case study reefs in which multiple diagnostic measures of reef health are collected in parallel by moored
equipment, divers, and autonomous instruments to examine biological, chemical, and physical reef components and processes represented in Table
1. Measurements and equipment from the top right, moving clockwise, include hydrodynamics simulated using numerical models; assessment of
reef metabolism using an acoustic Doppler instrument coupled to chemical sensors and hydrodynamics measured in situ using sensors, such as a
Doppler current meter; water sampling using Niskin bottles (or other collection devices) to obtain samples for reef water microbes, eDNA, and
metabolites; measurement of reactive oxygen species in situ using the DISCO instrument; a hydrophone to record the reef soundscape; and an
autonomous vehicle capable of imaging the reef benthic and fish communities.
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coastal protection purposes.16,17 We believe this initial focus
on a small number of case study reefs will provide valuable
overlap in measurements while also allowing time to address
logistical challenges specific to each region. Admittedly, the
initial cost burden of reef instrumentation and monitoring is
large but is being reduced by the development of low-cost
instruments. The funding needed to support this endeavor
could come from philanthropy, coral reef investment strategies
designed to enhance the economic benefits of reefs, such as
through the Global Fund for Coral Reefs,18 or underwriting
initiatives that provide insurance funding for reef monitoring
for the purposes of coastline protection. In the US, $2.5B
annually is spent on national park maintenance.19 A fraction of
this raised through state and federal coastal protection
programs could cover the expense of establishing case study
reefs, an investment that is easily justified by the erosion-
mitigation, ecotourism, and biodiversity benefits.

■ TOWARD A NEW ERA OF MONITORING:
MEASUREMENTS

We envision deploying instruments and diver-based sampling
on case study reefs that provide a holistic measure of the coral
and reef ecosystem health and the surrounding oceanographic
conditions. Below we offer a broad overview of some of the
techniques that we have been employing on reefs in St. John,
U.S. Virgin Islands (Figure 1), which we believe may be ideal
for use on case study reefs, and these techniques are specifically
summarized in Table 1.
Reef Imaging. Visual observations provide indispensable

knowledge about macro-organismal presence and diversity on
reefs as well as insight into growth, predation, and herbivory
processes. Recent advancements in underwater camera systems
now allow for cameras to be embedded throughout coral reefs
and left for long-term deployments to enhance temporal-based
observations, including coral recruitment and postsettlement
selection events20 as well as of fish and other mobile reef
organisms for diversity, biomass, and abundance estimates.21

Deployment of camera systems on autonomous underwater
vehicles (AUVs) will further enhance spatial coverage of reef
imaging efforts, including depths challenging for divers.22

While our focus here is on in situ measurements, we
acknowledge that integration of satellite and airborne mapping
approaches23−25 with in situ imaging could bridge the gap
between capturing detailed and broad-scale reef changes.
Soundscapes. Many coral reef fish and invertebrates make

sounds, signals that travel efficiently in water. These acoustic
cues collectively comprise the reef soundscape and inform
animal presence, such as invasive species,26 species diversity,
responses to chemical−physical changes, occurrence and rates
of specific behaviors, including spawning, and even patterns of
reef recovery from restoration.27 Due to decades-long
advances, acoustics technologies are increasingly utilized and
cost-effective, allowing for temporally continuous monitoring
of reef soundscapes. Acoustic recorders include SoundTraps,28

HydroMoths,29 and others (compared in ref 30), which are
typically moored onto a reef. Enhancing the spatial resolution
of reef-scale soundscapes is accomplished by mooring multiple
recorders on reefs and integrating hydrophones onto AUVs. A
new advancement is real-time telemetered soundscape
observations, which removes the laborious instrument
maintenance while also offering insight into real-time reef
alterations as well as vessel traffic.31 Currently, soundscape data
are analyzed by trained individuals using custom algorithms. T
ab
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Robust open-access software to support reef soundscape
monitoring by nonspecialists is still needed to advance
soundscape analyses and allow it to be integrated into reef
monitoring protocols.
Reef Water Microbes, Metabolites, and eDNA. Given

the fast rate of microbial growth and organismal-based
metabolite production and consumption on reefs, microbial
and/or metabolite profiles in reef water can provide non-
invasive, temporally sensitive measures of reef and environ-
mental conditions. Observations of reef water microbial
communities capture microbial processes on reefs, which are
often linked to water quality, macro-organismal composition,
protection and conservation status, oceanographic and biogeo-
graphic patterns,32−36 and even pathogens.37 Additionally, reef
organisms excrete distinct metabolites into reef waters, which
contribute to reef biogeochemistry and microbial pro-
cesses,38−41 coral heat stress,42 and cues for recruitment and
predation processes.43,44 Reef water also contains environ-
mental DNA (e.g., eDNA) from eukaryotic organisms,
including fish and other mobile organisms, and eDNA provides
insights into reef biodiversity and community patterns.45,46 To
capture eDNA as well as microbial and metabolite patterns on
reefs, discrete volumes of water are collected by divers using
Niskin bottles or syringes or vessel-based sampling devices.
The water is filtered, and the samples are preserved, followed
by lab-based analysis, which is available at a growing number of
sequencing (microbes and eDNA) and mass spectrometry
(metabolomics) facilities. Data analysis can be conducted with
a variety of open-access software platforms. Interpretation of
data trends generally requires some experience with these data
types, and further streamlining software for use on reef data
sets could advance these monitoring efforts.
Increasingly, in situ samplers (e.g., Remote Access Samplers,

McLane Laboratories, Inc.) are available for filtration and
capture of eDNA and microbial biomass, allowing continuous
temporal monitoring. Additionally, AUVs with integrated
sampling devices will enhance the spatial coverage of
measurements. As this type of approach works to identify
key microorganisms, metabolites, or eDNA patterns diagnostic
of reef condition, there is potential to develop specific sensors
for real-time detection and reporting.
Reef Metabolism. Determining rates of photosynthesis,

respiration, and calcification of reefs is a central component to
reef ecosystem health monitoring. Physical−chemical ap-
proaches use changes in chemical constituents (e.g., O2,
CO2, and alkalinity) and the transport of water across the reef
to infer metabolic rates. The gradient exchange and eddy
covariance techniques incorporate high-frequency physical−
chemical measurements and are ideal for reef monitoring.
These techniques couple temporal or spatial changes in
chemical constituents with physical measurements of water
turbulence to directly measure metabolic and calcification rates
in situ47−50 using custom-built measurement platforms utilizing
commercially available sensors (e.g., refs 48, 49, and 51).
These high-frequency measurements are currently limited to
short time scales (days) but provide ecosystem-scale analysis
(∼10−1000 m2 spatial resolution) that incorporates all
organisms that contribute to reef metabolism and calcification.
Thus, physical−chemical measurements have the potential to
capture entire reef ecosystem function over time and can serve
as powerful indicators of reef change due to climate impacts as
well as human restoration and interventions. Advancing these
ecosystem-scale physical−chemical approaches for repeatable

and long-term analyses of reefs, coupled with reef photo-
mosaics, automated classification of taxa, and three-dimen-
sional reconstructions (e.g., refs 52 and 53), could provide
information-rich, detailed analyses of reef-scale rates and
greatly improve our ability to monitor and diagnose reef
degradation.
Reactive Oxygen Species. The reactive oxygen species

(ROS) superoxide (O2−) and hydrogen peroxide (H2O2) are
produced by organisms for a host of physiological reasons,
including cell signaling, tissue repair, and defense.54 While
these two ROS are produced by healthy organisms,
concentrations are increased in response to external stress
(e.g., pathogens, heat, and light) and may indicate stress
symptoms prior to visible signs (e.g., bleaching). A submersible
hand-held sensor (DISCO) overcomes the challenges
associated with the short lifetime of ROS (seconds to hours)
to measure O2− within shallow reefs (<30 m).

55 A DISCO is a
diver-deployed and -operated instrument, and it is most useful
for measuring ROS in key indicator species and specific times,
such as during potential stress events. Hydrogen peroxide may
be a more ideal target for understanding the health of corals
because it can cross biological membranes and thus reflects
internal stress levels and also has a longer lifetime (hours to
days).54,55 Hydrogen peroxide can be measured at discrete
times using a DISCO in situ or in filtered water samples using
lab-based fluorescent or chemiluminescent instruments shortly
after collection. Adapting a DISCO within a microfluidics
platform and/or developing targeted electrochemical sensors
for long-term autonomous deployments would enable hydro-
gen peroxide to be an organismal health proxy.
Hydrodynamics. Due to complex interactions among

flows, atmospheric forcing, and reef terrain, coral reef
hydrodynamics vary dramatically over fine spatial scales (e.g.,
meters) and short temporal scales (e.g., hours). This can lead
to reef-scale variations in residence times, dispersal patterns,
and connectivity. Even widespread deployment of an array of
sensors and robotic sensing platforms may not fully capture
these fine-scale dynamics. Therefore, high-resolution, high-
fidelity computational simulations of reef hydrodynamics with
widely used community ocean models, such as the Regional
Ocean Modeling System (ROMS)56 in conjunction with
strategically positioned in situ and remote-sensing platforms
and arrays, are crucial for bridging observational gaps in space
and time, quantifying the ever-changing reef environment, and
examining the influence of large-scale atmospheric and
oceanographic processes on coral reefs (e.g., ref 56). The
platforms and arrays should concurrently measure meteoro-
logical conditions (e.g., air temperature, humidity, winds, and
solar radiation) and hydrodynamic conditions (e.g., water
temperature, salinity, pressure, flow velocity, and wave period
and height) over the reefs. These targeted measurements
provide key data for forcing, calibrating, and validating the
models, and the models provide both regional context and fine-
scale variability of the reef hydrodynamic environment. These
environmental measurements and modeling together provide
an oceanographic backdrop for a systematic understanding of
the interaction of different components of the reef biophysical
systems (e.g., refs 57 and 58). Model-observation-integrated
systems also provide the capacity to quantify the variability of
reef parameters on the scale of meters (e.g., across a lagoon or
bay) and hours (e.g., at different phases of internal waves).
Meanwhile, predictive simulations with the validated models
forced by projected future atmospheric and oceanic conditions
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will provide crucial information for more targeted reef
conservation and restoration efforts and thus improve the
efficiency and effectiveness of the efforts.

■ ROBOTS FOR ENABLING REPRODUCIBLE
HIGH-RESOLUTION OBSERVATION AT SCALE

There are new types of robots (e.g., ref 59) coming online that
would be ideal additions to the case study reefs. These new
robots are enabled by machine learning and artificial
intelligence and can safely and adaptively operate in complex,
dynamic environments such as coral reefs. Precision collision
avoidance and adaptive path planning capabilities, similar to
what has been demonstrated in aerial vehicles (e.g., ref 60),
could enable repeated sampling at low altitudes and at precise
locations on the reefs that, until now, have required divers.
AUVs that automatically characterize habitat types (e.g., ref
61) can also be used to adaptively target specific habitat types
(such as marginal seagrass or high-coral cover habitats) with
minimal prior planning and mapping.
Informative path planning (IPP) is a general class of

algorithms for adaptively planning robot paths, while
optimizing information gained toward answering a specific
question or reducing the uncertainty in estimates of a variable
of interest. IPP-based approaches have been used extensively
to scale up environmental monitoring.62,63 In the context of
coral reefs, IPP-based approaches provide a natural framework
for enabling robots to adaptively focus their observations to
spatial and temporal locations on reefs that could inform most
about changes in reef health or biodiversity. IPP-based
approaches can also be used to take advantage of the vehicle
and environment dynamics such as reef hydrodynamics, thus
enabling much longer and more energy-efficient missions.

■ CASE STUDY REEFS: TOWARD HEALTH PROFILE
REPORTS AND SCALABLE SENSING

Combining observations and data from multiple sensing
technologies provides an opportunity to assemble a more
holistic view of reefs. We envision that data will first be
individually examined according to data product, to first
determine typical measurement values or patterns. We believe
that the wealth of data from the case study reefs will help in the
development of a “profile report” that is a combined report of
the values or patterns from the different types of measure-
ments. This concept is similar to a human comprehensive
metabolic panel, in which a series of parameters are measured
(e.g., glucose, calcium, creatinine, etc.), and the results are
listed alongside an established normal range for each
measurement. The profile could augment common indices
used in reef assessment and management, such as percent coral
cover, providing more comprehensive parameters of the reef
ecosystem.
In addition to creating a profile of the results from individual

reef tests, there is an opportunity to integrate the data products
emerging from each instrument or measurement (such as data
from the approaches presented in Table 1 and Figure 1).
Integrating data from different instruments and sensors is
challenging due to the fact that these observations or their
derivatives take on various forms and may have been collected
over different spatial or temporal scales. This variation in data
types and spatiotemporal components makes it difficult to
apply standard statistical or machine learning techniques to
examine the reef ecosystem. We therefore call for the

development of novel machine learning and statistical
approaches to characterize reef health. Approaches for
semantic dimensionality reduction (for high-dimensional data
such as images, sounds, or microbial communities) will need to
be identified, so that all sensing modalities can be processed
jointly by a neural network trained to quantify reef health into
a simpler parameter. A similar approach exists for forest
monitoring for management purposes.64 Also, the Blue Cross
Blue Shield Health Index quantifies ≥300 human health
conditions to provide U.S. regional-based health assessments
related to longevity and quality of life.65

We envision that this combined approach of examining case
study reef measurements using profiles in an integrated fashion
will help us identify key parameters that may be most
indicative of reef health. To enable a rapid reef diagnostics
platform, sensors need to be developed for identified physical,
chemical, and biological targets of reef health, which would
provide a mechanism for scaling these measurements to reefs
beyond the case study reefs, such as reefs undergoing
restoration or other interventions.
Our vision is to leverage new technologies and research that

provide a holistic accounting of the diverse components that
comprise biodiverse and complex reef systems. This
information could help us develop specific indicators of
anomalies in reef systems that will facilitate diagnosis of the
connections between changes and reef health, ultimately
serving as a quantitative measure of intervention success.
Importantly, universally consistent measures that holistically
capture reefs will empower further studies that deepen our
understanding of ecological links between organisms living in
or close to reefs that are essential for the development of
intervention strategies for reefs. We envision a path through
which key parameters of reef health are identified using a suite
of advanced sensors and instruments within case study reefs.
Ideally, this approach could facilitate the development of
affordable, real-time versions of a reef health monitoring
system that can be applied globally to even remote reef
locations.
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