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Simple Summary: Lymphoproliferative disorders comprise a heterogeneous group of hematological
malignancies characterized by abnormal lymphocyte proliferation. Autologous hematopoietic stem
cell transplantation plays a very important role in the treatment of lymphoproliferative diseases. The
key element in this process is the effective mobilization of hematopoietic cells from the marrow niche
to the peripheral blood. Mobilization of HSC is regulated by many factors, out of which miRNAs
present in the hematopoietic niche via targeting cytokines, and signaling pathways may play an
important regulatory role. This study investigated the expression of selected miRNAs in patients with
multiple myeloma, Hodgkin’s lymphomas, and non-Hodgkin’s lymphomas undergoing mobilization
procedures. The aim of the study was to evaluate the expression of hsa-miR-15a-5p, hsa-miR-16-5p,
hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p, and hsa-miR-223-3p during the
mobilization procedure, and to assess their role in mobilization efficacy. The level of miRNAs was
tested at two time points before the initiation of mobilization and on the day of the first apheresis.
Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p, may influence the
efficacy of HSC mobilization.

Abstract: microRNAs play an important role in the regulation of gene expression, cell fate, hematopoiesis,
and may influence the efficacy of CD34+ cell mobilization. The present study examines the role of
hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-155-5p,
and hsa-miR-223-3p in the course of hematopoietic stem cell mobilization. The numbers of CD34+
cells collected in patients with hematological malignancies (39 multiple myelomas, 11 lymphomas)
were determined during mobilization for an autologous hematopoietic stem cell transplantation. The
miRNA level was evaluated by RT-PCR. Compared to baseline, a significant decline in hsa-miR-15a-
5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p was observed on the day
of the first apheresis (day A). An increase was observed only in the expression of hsa-miR-34a-5p.
On day A, a negative correlation was found between hsa-miR-15a-5p and hsa-miR-146a-5p levels
and the number of CD34+ cells in peripheral blood. A negative correlation was observed between
hsa-miR-146a-5p and the number of collected CD34+ cells after the first apheresis. Good mobilizers,
defined according to GITMO criteria, demonstrated a lower hsa-miR-146a-5p level on day A than
poor mobilizers. Patients from the hsa-miR-146a-5p “low expressors” collected more CD34+ cells than
“high expressors”. Our results suggest that the investigated miRNAs, especially hsa-miR-146a-5p,
may influence the efficacy of HSC mobilization.

Biology 2021, 10, 668. https://doi.org/10.3390/biology10070668 https://www.mdpi.com/journal/biology

https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-5651-2000
https://orcid.org/0000-0001-6052-3557
https://orcid.org/0000-0002-8033-4662
https://doi.org/10.3390/biology10070668
https://doi.org/10.3390/biology10070668
https://doi.org/10.3390/biology10070668
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/biology10070668
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology10070668?type=check_update&version=1


Biology 2021, 10, 668 2 of 16

Keywords: miRNA; hsa-miR-146a-5p; mobilization; CD34+; multiple myeloma; hematopoietic
stem cells

1. Introduction

Lymphoproliferative disorders (LD) comprise a heterogeneous group of hematologi-
cal diseases that demonstrate a dysregulated proliferation of lymphoid lineage cells [1].
An important role in LD treatment is played by high-dose chemotherapy with autolo-
gous hematopoietic stem cell transplantation (auto-HSCT). Successful mobilization of
hematopoietic stem cells (HSC) is a crucial step in this procedure. In the mobilization
process, mononuclear cells with the CD34+ antigen are released from the bone marrow after
chemotherapy and the administration of granulocyte colony-stimulating factor (G-CSF) [2].
Mobilization of HSC and their homing after auto-HSCT are regulated by many factors,
among which cytokines present in the hematopoietic niche play an important regulatory
role [3]. Changes in their expression affect the ligand–receptor system, significantly in-
fluencing the signal pathways active in hematopoiesis [3,4]. CD34+ cell migration is also
significantly influenced by microRNAs (miRNAs). miRNAs are small, endogenous RNA
molecules (consisting of 19–25 nucleotides) that bind to the 3′ or 5′ UTR region of the
messenger RNA (mRNA) and usually cause mRNA degradation and translation inhibition.
It has been reported that miRNAs can also activate translation or regulate transcription.
miRNAs influence the regulation of gene expression in physiological and pathological
conditions [5,6]. miRNA molecules are known to significantly affect the expression of genes
responsible for the angiogenesis, apoptosis, development, and differentiation of HSC [5,7].

An extremely important step in the treatment of multiple myeloma and lymphomas is
the adequate mobilization of HSC, as this is essential for obtaining a sufficient number of
CD34+ cells needed for auto-HSCT. The parameters influencing the efficacy of mobilization
include the clinical condition of the patient, the chemotherapy regimen, and the duration
of G-CSF administration [8–10]. Although such chemotherapy and G-CSF mobilization
protocols have been performed for many years, the exact mechanism by which they act
remains unclear.

HSC migration is primarily controlled by several key factors associated with the
bone marrow niche, which affects crucial aspects of mobilization: duration of apheresis,
the number of apheresis, and acquisition of the optimal number of CD34+ cells for auto-
HSCT. Recent research indicates that hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p,
hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p play an important regulatory role
in the hematopoietic niche and significantly affect HSC migration [11–24] (Figure 1). The
expression of the abovementioned miRNAs was the subject of our research in the course
of the auto-HSCT [25]. In this paper, we evaluate their roles in HSC migration during
mobilization.

Alterations in the expression of hsa-miR-15a-5p and hsa-miR-16-5p are commonly ob-
served in solid tumors, chronic lymphocytic leukemia, lymphomas, and in more than half
of multiple myeloma patients [26,27]. In follicular lymphoma, hsa-miR-16p downregulates
the expression of BCL2 and, hence, acts pro-apoptotic [28]. The hsa-miR-15a-5p/hsa-
miR-16-5p cluster downregulates the expression of vascular endothelial growth factor A
(VEGFA) and influences angiogenesis and regeneration after auto-HSCT. A negative corre-
lation was observed between hsa-miR-15a-5p/hsa-miR-16-5p expression and the VEGFA
level in myeloma cells [13]. Alterations in the expression of hsa-miR-15a-5p/hsa-miR-16-
5p are associated with chemoresistance [29]. hsa-miR-15a-5p/hsa-miR-16-5p inhibits the
serine/threonine kinase 1 (AKT1) signaling pathway, which is responsible for adhesion
and migration in B cells [30]. Decreased expression of these miRNAs inhibits apoptosis,
promotes angiogenesis, and encourages the proliferation of tumor cells [29,31].
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Figure 1. Influence of miRNAs on individual signaling pathways in the marrow niche. The following ligand–receptor 
interactions play a key role in the HSC migration in the bone marrow niche: CXCL12 (SDF-1)/CXCR4, NOTCH1/JAG1 
(Jagged-1), ANGPT1/ANGPT2/TEK (Tie-2), SPP1 (OPN)/CD44/integrin receptors, KITLG (SCF)/KIT (c-Kit), VEGFA 
(VEGF)/FLT1/KDR (VEGFR1/2), VCAM1/ITGA4 (VLA-4), and IGF1/IGF1R, which are significantly influenced by the se-
lected miRNAs: hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-223-3p, hsa-miR-34a-5p, and 
hsa-miR-155-5p. 
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Figure 1. Influence of miRNAs on individual signaling pathways in the marrow niche. The following ligand–receptor
interactions play a key role in the HSC migration in the bone marrow niche: CXCL12 (SDF-1)/CXCR4, NOTCH1/JAG1
(Jagged-1), ANGPT1/ANGPT2/TEK (Tie-2), SPP1 (OPN)/CD44/integrin receptors, KITLG (SCF)/KIT (c-Kit), VEGFA
(VEGF)/FLT1/KDR (VEGFR1/2), VCAM1/ITGA4 (VLA-4), and IGF1/IGF1R, which are significantly influenced by the
selected miRNAs: hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-223-3p, hsa-miR-34a-5p, and
hsa-miR-155-5p.

Hsa-miR-34a-5p is considered to be a tumor suppressor, and its increased expression
in multiple myeloma stem cells is associated with decreased cell proliferation and reduced
tumor growth. [21,32,33]. Together with hsa-miR-155-5p, hsa-miR-34a-5p is involved in the
pathogenesis of lymphoma [34]. Increased expression of hsa-miR-34a-5p upregulates the
level of Diablo IAP-binding mitochondrial protein (DIABLO), resulting in the inhibition
of myeloma cell growth and altered sensitivity of cancer cells to chemotherapy [33]. Hsa-
miR-34a-5p inhibits cell viability by inactivating the AKT1 and mitogen-activated protein
kinase 1/3 (MAPK1/MAPK3) pathways, which are both involved in the regulation of HSC
motility, proliferation, and survival [21,35].

Hsa-miR-126-3p is expressed by HSC, megakaryocytes, and endothelial cells
(EC) [36,37]. Moreover, the elevated expression of hsa-miR-126-3p is observed in G-CSF-
mobilized CD34+ cells [36]. Hsa-miR-126-3p regulates the migration of hematopoietic
and progenitor stem cells (HPSC) by targeting the vascular cell adhesion molecule 1
(VCAM1) [38]. G-CSF stimulation promotes the accumulation of microvesicles containing
hsa-miR-126-3p at the time of mobilization treatment; this is associated with the downregu-
lation of VCAM1 expression on the bone marrow cell surface [15,38]. The resulting low level
of VCAM1 improves the release of HPSC from the bone marrow niche during mobilization
and impairs homing after HSCT [15,36,38]. Hsa-miR-126-3p influences HSC proliferation,
survival, and migration by affecting the phosphatidylinositol-4,5-bisphosphate 3-kinase
catalytic subunit alpha serine/threonine kinase 1 (PIK3CA/AKT1) signaling axis [39].

Hsa-miR-146a-5p is expressed on HSCs and affects the bone marrow niche homeosta-
sis [40,41]. This prevents an excessive inflammatory response by regulating the nuclear
factor kappa B subunit 1 (NFKB1) pathway and inhibiting the expression of the TNF
receptor-associated factor 6 (TRAF6) and interleukin 1 receptor-associated kinase 1 (IRAK1)
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genes [42]. In addition, hsa-miR-146a-5p affects the growth of myeloid and lymphoid
tumors. This significantly influences the mobilization of hematopoietic cells, as well as
the regeneration after auto-HSCT [43,44]. During G-CSF administration, hsa-miR-146a-5p
interferes with the C-X-C motif chemokine ligand 12/C-X-C motif chemokine receptor 4
(CXCL12/CXCR4) signaling axis, resulting in more efficient HSC mobilization and slower
homing after auto-HSCT [20].

Hsa-miR-155-5p affects the development of myeloproliferative diseases, and its ex-
pression is also increased in patients with lymphoma [45–49]. In the indolent B-cell non-
Hodgkin lymphomas, hsa-miR-155-5p via targeting SPI1 mRNA leads to the inhibition
of B-cell differentiation [28]. In myeloma patients, fluctuations in the expression of hsa-
miR-155-5p may be a prognostic factor in the course of the disease [50]. Furthermore,
increased hsa-miR-155-5p expression reduces proteasome activity and increases myeloma
cell sensitivity to bortezomib [51]. An increased expression of hsa-miR-155-5p was ob-
served in CD34+ progenitor cells in G-CSF mobilized patients [36]. Hsa-miR-155-5p affects
the CXCL12/CXCR4 signaling axis via AKT1 activation, and influences the effectiveness of
mobilization [22,23]. The expression of hsa-miR-155-5p is associated with HSC differentia-
tion [47]. Elevated hsa-miR-155-5p levels inhibit the PIK3CA/AKT1 signaling pathway,
which promotes cell proliferation and inhibits apoptosis [34,52,53].

In hematological malignancies, hsa-miR-223-3p is a tumor-suppressive molecule that
plays a significant role in cancer development [54,55]. Its abnormal expression is observed
in B-cell malignancies, MM, and acute myeloid leukemia (AML) [56]. Downregulation of
NOTCH1 signaling in mesenchymal stem cells from multiple myeloma patients leads to
an elevated expression of hsa-miR-223-3p and a decrease in the VEGFA level [32]. Hsa-
miR-223-3p is associated with myeloid lineage development by promoting granulopoiesis
while repressing macrophage differentiation [57]. On the other hand, hsa-miR-223-3p is
an important molecule participating in the differentiation and maturation of hematopoi-
etic progenitor cells (HPC) [58]. It is also essential for maintaining the homeostasis of
mature neutrophils and limiting inflammation [55,58]. Hsa-miR-223-3p is involved in the
development and maturation of myeloid progenitors to granulocytic, erythroid, mono-
cyte/macrophage lines [56,58]. Hsa-miR-223-3p regulates the PIK3CA/AKT1 axis and
controls cell survival, proliferation, and migration by targeting the insulin-like growth
factor 1 receptor (IGF1R) [55,59]. An elevated expression of hsa-miR-223-3p was observed
in CD34+ peripheral blood stem cells (PBSC) [23]. The downregulation of hsa-miR-223-3p
impairs granulopoiesis and progenitor cell differentiation [55,60,61].

The hematopoietic niche forms a unique microenvironment for HSC development that
is modulated by a complicated network of molecules, particularly key regulators: miRNAs.
Migration of the HSC during mobilization is therefore influenced by a variety of factors,
including competing ones.

This study evaluated the expression of selected miRNAs during the mobilization
procedure and assessed their role in mobilization efficacy.

2. Materials and Methods

Twenty-five females and twenty-five males with a median age of 60 years were
enrolled in the study. The investigated cohort consisted of thirty-nine multiple myeloma
(MM), seven non-Hodgkin lymphoma (NHL), and four Hodgkin lymphoma (HL) patients.
More comprehensive clinical data are presented in Table 1. The blood plasma samples were
collected at two time points: before hematopoietic stem cell mobilization chemotherapy
(day 0) and on the day of the first apheresis (day A).

The blood was centrifuged at 1000× g for 10 min at 4 ◦C. Plasma samples were stored
frozen at −80 ◦C. MiRNA expression was assessed in peripheral blood (PB).

The mobilization regimens consisted of Endoxan (cyclophosphamide), Ara-C (cy-
tarabine), DCEP (Dexamethasone, Cyclophosphamide, Cisplatin, Etoposide), plus G-CSF
or G-CSF in monotherapy for patients with MM. For patients with lymphoma, the mo-
bilization chemotherapy consisted of ICE (Ifosfamide, Carboplatin, Etoposide), R-ICE
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(with rituximab), DHAP (Dexamethasone, Cytarabine, Cisplatin), R-DHAP (with ritux-
imab), plus G-CSF. Two patients with lymphoma received cytostatics in monotherapy: one
Endoxan and one AraC treatment. Aphereses were started when the number of CD34+
cells in peripheral blood was ≥10/µL. Flow cytometry counting of CD34+ cells was as-
sessed. Apheresis was performed using a Spectra Optia device. In patients mobilized with
chemotherapy and the granulocyte growth stimulation factor (G-CSF), the median length
of G-CSF administration until the first apheresis was nine days (range: 5–22).

Table 1. Characteristics of the patients enrolled to the study.

Characteristics Numbers

Age (years) Median 60 (range 44–69)
Sex (female/male) 25/25
Multiple myeloma 39 (7 CR, 24 VGPR, 8 PR)

Hodgkin lymphoma 4 (1 CR, 3 PR)
non-Hodgkin lymphoma: 7

Diffuse large B-cell lymphoma 3 (1 CR, 2 PR)
Mantle cell lymphoma 2 (CR)

Anaplastic large-cell lymphoma 1 (PR)
Hepatosplenic T-cell lymphoma 1 (PR)

CD34+ cells collected during mobilization (total
number) [×106/kg] Median 5.07 (range 2.2–21)

CD34+ collected on Day A [×106/kg] Median 3.0 (range 0.3–21)
Number of apheresis needed to collect at least

2 × 106/kg CD34+ Median 2 (range 1–6)

WBC count on Day A [×103/µL] Median 16.67 (range 2.68–47.42)
Mobilization chemotherapy:

Multiple myeloma
Endoxan (Cyclophosphamide) 25

DCEP (Dexamethasone, Cyclophosphamide, 7
Cisplatin, Etoposide)
Alexan (Cytarabine) 3

only G-CSF in monotherapy 5
Hodgkin and non-Hodgkin lymphoma

ICE (Ifosfamide, Carboplatin, Etoposide) 4
R-ICE (with rituximab) 1

DHAP (Dexamethasone, Cytarabine, Cisplatin) 1
R-DHAP (with rituximab) 2

Endoxan (Cyclophosphamide) 1
Alexan (Cytarabine) 1
Mobilization efficacy

Good mobilizers 44
Poor mobilizers 6

Best response achieved prior to mobilization procedure: CR—complete remission, VGPR—very good partial
remission (only multiple myeloma), PR—partial remission.

2.1. RNA Isolation and cDNA Synthesis

RNA was isolated using the miRNeasy Serum/Plasma KIT (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol. For qPCR miRNA analysis, TaqMan MicroRNA
assays (Thermo Fisher Scientific, Waltham, MA, USA) were used with the following
primers: hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-34a-5p, hsa-miR-126-3p, hsa-miR-146a-
5p, hsa-miR-155-5p, and hsa-miR-223-3p. Conversion of miRNA to cDNA was performed
by incubation of 10 ng of total RNA with 3 µL of specific reverse transcription (RT) primer,
0.15 µL of 100 mMdNTPs, 1 µL of reverse transcriptase, 1.50 µL of 10x buffer, 0.19 µL of
RNase inhibitor, and 4.16 µL of nuclease-free water in a 15-µL reaction (TaqMan MicroRNA
Reverse Transcription Kit, Thermo Fisher Scientific). RT conditions were normalized using
5 nmol mirVana miRNA Mimic (cel-miR-39) as an exogenous control (Thermo Fisher
Scientific, Waltham, MA, USA). The thermal condition steps of the reverse transcription
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reaction were as follows: 1–16 ◦C for 30 min; 2–42 ◦C for 30 min; 3–85 ◦C for 5 min; 4 ◦C
for ∞.

2.2. qPCR miRNA Expression

Every qPCR reaction consisted of 4.5 µL of RT product diluted with nuclease-free
water in a 1:15 ratio, 5 µL of TaqMan Fast Advanced Master Mix (Thermo Fisher Scientific,
Waltham, MA, USA), and 0.5 µL of MicroRNA Assay. Samples were run in duplicate. An
Applied Biosystems 7900HT Fast Real-Time PCR System machine was used for real-time
PCR evaluation, according to the manufacturer’s recommendations. The following thermal
conditions were set: initial activation at 95 ◦C for 10 min, 40 cycles of denaturation at 95 ◦C
for 15 s, and annealing/extension at 60 ◦C for 60 s. SDS 2.4 and RQ Manager 1.2 software
(Thermo Fisher Scientific) were used for the miRNA expression assay. Relative expression
was calculated according to the Ct method 2−∆∆CT.

2.3. Statistical Analysis

The Wilcoxon signed-rank test was used to compare groups of dependent continuous
variables: miRNA RQ (relative quantification) levels at two different time points. Spear-
man’s rank correlation coefficient was used to measure the statistical dependence between
two variables. The Mann–Whitney U-test was used to compare independent variables:
number of collected CD34+ cells during the first apheresis and miRNA RQ level; miRNA
expression in good and poor mobilizers on day A. Statistical significance was set at p < 0.05.

3. Results
3.1. Mobilization Data

The median number of total collected CD34+ cells during mobilization was
5.07 × 106/kg (range: 2.2–21). The median number of CD34+ cells collected after the
first apheresis was 3 × 106/kg (range: 0.3–21). The median number of CD34+ cells esti-
mated in peripheral blood on the day of the first apheresis was 51.2/µL (range: 4.8–449.5).
The median number of apheresis attempts needed to collect at least 2 × 106/kg CD34+ was
2 (range: 1–6). Detailed clinical data of the patients enrolled in the study with miRNA raw
data (RQ levels) are presented in Table S1.

3.2. miRNA Expression and Mobilization Efficacy

To assess the effectiveness of mobilization, the miRNA expression was tested against
(1) the number of CD34+ cells in peripheral blood at the first apheresis, (2) the number of
CD34+ cells collected on the day of the first apheresis, (3) the total number of CD34+ cells
collected during mobilization, and (4) the number of apheresis attempts.

3.2.1. miRNA Expression and the Number of CD34+ Cells in Peripheral Blood at
First Apheresis

Negative correlations were observed between hsa-miR-15a-5p and hsa-miR-146a-5p
expression on day A and the CD34+ number in the peripheral blood at the same time point
(R = −0.30, p = 0.04), (R = −0.37, p = 0.008), respectively.

3.2.2. miRNA Expression and the Number of Collected CD34+ Cells on the Day of
First Apheresis

No correlation was observed between the expression of miRNAs on day 0 and the
number of collected CD34+ cells at the first apheresis. Only for hsa-miR-146a-5p was a
negative correlation observed between its expression on day A and the number of CD34+
cells collected at the first apheresis (R = −0.32, p = 0.02).
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3.2.3. miRNA Expression and the Total Number of CD34+ Cells Collected
during Mobilization

Negative correlations were found between hsa-miR-15a-5p, hsa-miR-146a-5p, and
hsa-miR-223-3p levels on day A and the total number of collected CD34+ cells (R = −0.30,
p = 0.03), (R = −0.37, p = 0.007), (R = −0.30, p = 0.03), respectively.

To evaluate the influence of miRNA expression on the total number of CD34+ cells
collected after mobilization, patients were divided into “high” and “low” expression groups
according to median miRNA levels on day A (above and below median). The group of
hsa-miR-146a-5p “low expressors” collected more total CD34+ ×106/kg cells than “high
expressors” (5.67 vs. 4.33 CD34+ ×106/kg, p = 0.02) (Figure 2).
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3.2.4. miRNA Expression and the Number of Apheresis Attempts

Positive correlations were noticed between hsa-miR-15a-5p, hsa-miR-126-3p, and
hsa-miR-146a-5p expressions on day A and the number of apheresis attempts (R = 0.34,
p = 0.02), (R = 0.29, p = 0.04), (R = 0.35, p = 0.01).

3.3. miRNA Expression in Good and Poor Mobilizers According GITMO Criteria

For better evaluation of miRNA expression’s influence on mobilization efficacy, pa-
tients were divided into “poor” (n = 6) and “good” (n = 44) mobilizer groups. The “poor
mobilizer” group was defined according to the Italian Group for Stem Cell Transplantation
(GITMO) criteria [62]: lymphoma/myeloma patients in whom, after adequate mobilization
(G-CSF 10 µg/kg if used alone or ≥5 µg/kg after chemotherapy), the circulating CD34+
cell peak was <20/µL up to 6 days after mobilization with G-CSF, or up to 20 days after
chemotherapy and G-CSF, or if they yielded <2 × 106 CD34+ cells per kg in ≤3 aphereses.

The “good mobilizers” had a lower hsa-miR-146a-5p level on the day of the first
apheresis than the “poor mobilizers” (Me = 4.56 vs. 7.11, p = 0.04) (Figure 3). No significant
differences were found in the expression of other miRNAs in either the “poor” or the
“good” mobilizer groups.
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Figure 3. hsa-miR-146a-5p expression on the day of the first apheresis in patients divided into “good” and “poor” mobilizers
according to GITMO criteria.

miRNA Expression According to CD34 Peak in Peripheral Blood

A negative correlation was also found between hsa-miR-146a-5p expression and the
total CD34+ cell count collected in the good mobilizer group (R = −0.38, p = 0.006). A
multivariate analysis was performed to identify factors influencing the achievement of
≥20 CD34+ cells/µL in peripheral blood before the first apheresis. Clinical parameters
(sex, age, quality of myeloma/lymphoma response) and the levels of hsa-miR-15a-5p and
hsa-miR-146a-5p at the day of apheresis were taken into account. The only factor associated
with an adequate CD34+ peak in peripheral blood in univariate analysis was hsa-miR-146a-
5p expression on day A, with an odds ratio of 1.88 (95% CI, 1.06–3.33, p = 0.03) (Table 2).
According to multivariate regression, hsa-miR-146a-5p level on day A was an independent
factor for mobilization of a sufficient number of CD34+ cells (2 × 106/kg).

Table 2. Univariate analysis of factors associated with achievement of at least 20 CD34+ cells/µL in
peripheral blood before first apheresis.

Factor Odds Ratio (95% CI) p Value

Male vs. female 1.64 (0.26–10.21) 0.59

Age (continuous) 1.03 (0.94–1.13) 0.46

CR vs. not CR 1.17 (0.13–10.89) 0.89

hsa-miR-15a-5p (Day 0) 1.01 (0.96–1.07) 0.69

hsa-miR-146a-5p (Day 0) 0.99 (0.86–1.13) 0.89

hsa-miR-15a-5p (Day A) 0.89 (0.74–1.08) 0.23

hsa-miR-146a-5p (Day A) 1.88 (1.06–3.33) 0.03
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3.4. Kinetics of miRNA

The level of miRNA expression was evaluated at two time points: before the mobiliza-
tion of HSC (day 0) and on the day of the first apheresis (day A). Statistical analysis was
performed using the Wilcoxon matched-pairs test. Our study revealed a profound decrease
the hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, and hsa-miR-155-
5p expression on day A compared to day 0 (baseline). hsa-miR-34a-5p expression was
increased after mobilization chemotherapy compared to day 0 (Figure 4). No significant
change in hsa-miR-223-3p expression was observed between day 0 and day A. The levels
of investigated miRNAs during the mobilization period are presented in Table 3.
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Figure 4. The kinetics of miRNAs expression at two time points: the day before HSC mobilization (day 0) and the day
of the first apheresis (day A): hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-126-3p, hsa-miR-146a-5p, hsa-miR-34a-5p, and
hsa-miR-155-5p.

To evaluate the influence of miRNA expression on the total number of CD34+ cells
collected after mobilization, the number of CD34+ cells collected on Day A, and the CD34+
peak in peripheral blood on Day A, patients were divided into “increase” and “decrease”
expression groups. The “increase” group consisted of patients with an observed increase
in the expression of each miRNA on Day A compared to Day 0. The “decrease” group
consisted of patients with an observed decrease in expression of each miRNA on Day
A compared to Day 0. The number of patients from “increase” and “decrease” groups
was as follows: hsa-miR-15a-5p (n = 14 vs. n = 36), hsa-miR-16-5p (n = 13 vs. n = 37),
hsa-miR-126-3p (n = 20 vs. n = 30), hsa-miR-146a-5p (n = 10 vs. n = 40), and hsa-miR-155-5p
(n = 18 vs. n = 32). We found no statistically significant differences between the “increase”
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and “decrease” groups in relation to the analyzed mobilization parameters. Results of the
analysis are presented in Supplementary Table S2.

Table 3. Changes in miRNA expression (RQ) before mobilization chemotherapy and on the day of
the first apheresis.

miRNA Day 0 Day A p Value

hsa-miR-15a-5p Me = 21.92
range: 1–156.83

Me = 12.67
range: 1.24–50.35 p < 0.001

hsa-miR-16-5p Me = 3.03
range: 0.64–16.53

Me = 2.14
range: 0.52–19.07 p = 0.006

hsa-miR-126-3p Me = 4.39
range: 0.46–20.38

Me = 3.83
range: 0.69–10.9 p = 0.03

hsa-miR-146a-5p Me = 10.42
range: 0.40–49.52

Me = 4.74
range: 0.16–12.42 p < 0.001

hsa-miR-223-3p Me = 14.51
range: 0.69–105.31

Me = 15.69
range: 1.9–55.84 p = 0.66

hsa-miR-34a-5p Me = 1.74
range: 0.04–5.13

Me = 3.95
range: 0.48–18.78 p < 0.001

hsa-miR-155-5p Me = 0.80
range: 0.16–1.69

Me = 0.66
range: 0.13–1.98 p = 0.03

Day 0—the day before hematopoietic stem cell mobilization, day A—the day of the first apheresis.

3.5. Relationship between WBC Count and miRNA Expression

The correlation between miRNA expression and granulopoiesis during the mobiliza-
tion procedure was determined using the Spearman’s rank correlation coefficient analysis.
White blood cell (WBC) count was assessed on the day of the first apheresis. A positive
correlation was observed only between hsa-miR-223-3p level and WBC (R = 0.39, p = 0.005).

3.6. miRNA Expression and Remission Status

The relationship between both miRNA expression on day 0 and day A and the depth
of myeloma/lymphoma response (CR vs. not CR before mobilization chemotherapy) was
also tested. Of these, only hsa-miR-146a-5p demonstrated a negative correlation between
the expression on day 0 and the depth of response after previous treatment (R = −0.33,
p = 0.02).

4. Discussion

MicroRNAs are molecules involved in the differentiation and migration of the HSC in
the bone marrow niche [6,7]. In our previous studies, we found that miRNAs might affect
the migration of HSC in the post-transplantation period, and changes in their expression
are associated with the efficiency of regeneration after auto-HSCT [25]. However, although
microRNAs influence CD34+ cell migration from the bone marrow niche to peripheral
blood, their impact on the efficiency of mobilization remains unknown. In our study, we
assessed selected miRNAs at the key time points of this procedure.

In the present study, the expressions of hsa-miR-15a-5p, hsa-miR-16-5p, hsa-miR-
126-3p, hsa-miR-146a-5p, and hsa-miR-155-5p significantly decreased during the process
of CD34+ cell mobilization compared to the baseline. In contrast, only hsa-miR-34a-5p
expression was upregulated. Chemotherapy impairs the proliferation and migration of
hematopoietic cells, which can promote a significant decrease in miRNA expression [63,64].
A similar relationship was observed in patients after the administration of conditioning
chemotherapy [25].

In our study, a slight decrease in hsa-miR-126-3p expression on the day of the first
apheresis, as compared to the baseline, was observed. It is likely that mobilization
chemotherapy inhibited its expression. However, microvesicles containing hsa-miR-126-3p
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have been found to occur during mobilization, and they are associated with the suppression
of VCAM1 expression [15,38]. This, in turn, allows an easier release of HSC from the bone
marrow niche to peripheral blood, especially under G-CSF stimulation [15,36,38].

For hsa-miR-34a-5p, a significant increase in the expression was noted. It is likely that
this miRNA also deregulates directly after mobilization chemotherapy. We suppose that
the stimulation of G-CSF appears to significantly increase hsa-miR-34a-5p expression until
apheresis begins. Increased hsa-miR-34a-5p expression affects the NOTCH1, AKT1, and
MAPK1/MAPK3 signaling pathways, which may be involved in HSC migration from the
bone marrow niche to peripheral blood [21,35].

Surprisingly, on the day of the first apheresis, hsa-miR-223-3p levels did not signif-
icantly differ from the baseline. Hsa-miR-223-3p is a key molecule that regulates granu-
lopoiesis [56–58] and, as such, it was surprising that no such change happened after G-CSF
stimulation [23]. It is worth noting, however, that an upward trend in hsa-miR-223-3p
expression was observed. After mobilization chemotherapy, a decrease in WBC is observed
and the processes of regeneration of the marrow niche, including granulopoiesis, follow. In
our previous studies, we noted a significant decrease in the hsa-miR-223-3p expression after
conditioning chemotherapy [25]. We suppose that a relatively stable level of hsa-miR-223-
3p observed in our study might be a result of a G-CSF co-stimulation, which significantly
affects granulopoiesis and presumably also hsa-miR-223-3p concentration. On the day of
the first apheresis, the patients had a relatively high level of WBC following several days
of G-CSF stimulation, and the granulopoiesis process was not as intense as at the end of
chemotherapy. Hence, lower hsa-miR-223-3p levels result in a higher number of CD34+
cells after the first apheresis. In addition, a positive correlation was observed between
hsa-miR-223-3p expression and the total WBC count. Our findings are in line with previous
studies that indicate that hsa-miR-223-3p expression significantly affects granulopoiesis,
which accelerates during G-CSF stimulation [55,57]. This observation confirms findings
from our previous studies, where a positive correlation was found between WBC count
and hsa-miR-223-3p level after auto-HSCT [25].

Regarding the effect on the depth of response after the previous chemotherapy and
miRNA expression before mobilization chemotherapy, patients in CR demonstrated a
lower hsa-miR-146a-5p expression. In previous studies, hsa-miR-146a-5p was considered
a tumor suppressor, and its reduced expression was associated with the growth of many
hematological cancers [40–42]. This miRNA, by affecting the NFKB1 pathway, participates
in the inflammatory response, and also affects the development of myeloid and lymphoid
tumors [40–42]. We suppose that, in complete remission, these signaling pathways are not
as severely disturbed as they are during progression, where the increased expression of
hsa-miR-146a-5p is observed [65].

Alterations in hsa-miR-146a-5p expression may be important for the hematopoiesis
and effective mobilization of CD34+ cells [43,44]. Hsa-miR-146a-5p expression influenced
the number of CD34+ cells in peripheral blood on the day of the first apheresis, as well
as the amount of harvested CD34+ cells after the first apheresis. In the context of G-CSF
stimulation, hsa-miR-146a-5p significantly affects the CXCL12/CXCR4 signaling pathway,
which is associated with HSC migration [43]. Hsa-miR-146a-5p influences CXCR4 mRNA
expression, which results in the disruption of the CXCL12/CXCR4 complex and subsequent
release of CD34+ HSC [20,43,66]. Previous findings indicating the regulatory role of
hsa-miR-146a-5p in the CXCL12/CXCR4 axis were performed in vitro in different cell
lines [20,43] Our study is the first one evaluating the hsa-miR-146a-5p level in sequential
patients’ PB samples and correlating its expression with CD34+ cells number in peripheral
blood. In our previous research, low hsa-miR-146a-5p expression was observed after
auto-HSCT, in the nadir of bone marrow aplasia; this facilitated HSC homing and efficient
adhesion in the hematopoietic niche [25].

Interestingly, upregulated hsa-miR-146a-5p expression accompanied by reduced cell
proliferation and increased sensitivity to chemotherapy was observed in leukemia cells [67].
Decreased hsa-miR-146a-5p expression was also seen in these cells during monocyte
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differentiation [43,67]. The downregulated expression of hsa-miR-146a-5p is associated
with increased hematopoietic differentiation, including megakaryocytes [43,67]. Since the
G-CSF stimulates these processes in the bone marrow, low levels of hsa-miR-146a-5p do
not negatively affect the effectiveness of mobilization. It is probable that the impact of this
miRNA on the CXCL12/CXCR4 signaling pathway is only one of many factors affecting
HSC migration.

Patients who were defined as good mobilizers according to the GITMO criteria had
lower hsa-miR-146a-5p expression than poor mobilizers. Furthermore, patients who
had lower hsa-miR-146a-5p expression on the day of the first apheresis obtained more
CD34+ cells during apheresis. These results might suggest that low hsa-miR-146a-5p has a
more relevant impact on hematopoietic precursors than on the CXCL12/CXCR4 pathway,
and does not disturb CD34+ cells’ migration from the hematopoietic niche to peripheral
blood. We assume that the reduced expression of hsa-miR-146a-5p positively affects the
mobilization of CD34+ cells.

Expression of hsa-miR-15a-5p was lower in patients who had a high CD34+ cell
number in peripheral blood. These patients also obtained more CD34+ cells after the first
apheresis. The hsa-miR-15a-5p/-16-5p cluster expression inversely correlates with VEGFA
expression and significantly influences hematopoiesis and bone marrow reconstitution
after HSCT [13,29]. This process is particularly evident in myeloma cells [13]. Moreover,
downregulation of the hsa-miR-15a-5p/-16-5p cluster influences AKT1 signaling and regu-
lates HSC migration. A low level of hsa-miR-15a-5p/-16-5p influences VEGFA expression,
which promotes proliferation and HSC mobilization and inhibits apoptosis [13,30,68].

We are aware that the number of patients was certainly a limiting factor in our
research. However, we would like to point out that our results indicate the direction of
further research on the effectiveness of mobilization in a larger group of patients. Hsa-
miR-146a-5p may be an important prognostic factor for the effectiveness of CD34+ cell
mobilization. The other limitation of our study is the heterogeneity of the population due
to the inclusion of all consecutive patients with lymphoproliferative disorders scheduled
for auto-HSCT in our department. The number of lymphoma patients, however, is too
small to evaluate lymphoma and myeloma patients separately. Moreover, when analyzing
the kinetics of miRNA expression, although the miRNAs expression medians showed
an overall decline after mobilization, it was observed that, in some patients, there was
an increase in more than one miRNA from day 0 to day A. Exploring the expression of
miRNAs in larger cohorts seems warranted, and this should be conducted separately for
myeloma and lymphoma patients and for different chemotherapy regimens.

In conclusion, miRNAs play an important role in the migration of HSC and can affect
the efficiency of CD34+ cell mobilization for future auto-HSCT. miRNAs may be predictive
biomarkers for a successful mobilization of CD34+ cells. The exact role of miRNAs active
in the hematopoietic niche, especially hsa-miR-146a-5p in the process of mobilization, is
worth exploring.
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