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Background: The investigation of incidental pulmonary nodules has rapidly become
one of the main indications for 18F-fluorodeoxyglucose (FDG) positron emission
tomography (PET), currently combined with computed tomography (PET-CT). There is
also a growing trend to use artificial Intelligence for optimization and interpretation of
PET-CT Images. Therefore, we proposed a novel deep learning model that aided in
the automatic differentiation between malignant and benign pulmonary nodules on FDG
PET-CT.

Methods: In total, 112 participants with pulmonary nodules who underwent FDG PET-
CT before surgery were enrolled retrospectively. We designed a novel deep learning
three-dimensional (3D) high-resolution representation learning (HRRL) model for the
automated classification of pulmonary nodules based on FDG PET-CT images without
manual annotation by experts. For the images to be localized more precisely, we defined
the territories of the lungs through a novel artificial intelligence-driven image-processing
algorithm, instead of the conventional segmentation method, without the aid of an
expert; this algorithm is based on deep HRRL, which is used to perform high-resolution
classification. In addition, the 2D model was converted to a 3D model.

Results: All pulmonary lesions were confirmed through pathological studies (79
malignant and 33 benign). We evaluated its diagnostic performance in the differentiation
of malignant and benign nodules. The area under the receiver operating characteristic
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curve (AUC) of the deep learning model was used to indicate classification
performance in an evaluation using fivefold cross-validation. The nodule-based
prediction performance of the model had an AUC, sensitivity, specificity, and accuracy
of 78.1, 89.9, 54.5, and 79.4%, respectively.

Conclusion: Our results suggest that a deep learning algorithm using HRRL without
manual annotation from experts might aid in the classification of pulmonary nodules
discovered through clinical FDG PET-CT images.

Keywords: pulmonary nodules, 3D high-resolution representation learning, fluorodeoxyglucose (FDG), positron
emission tomography-computed tomography (PET-CT), operating characteristic curve (AUC), artificial
intelligence, deep learning

INTRODUCTION

Lung cancers usually present as either abnormal lung masses or
small pulmonary nodules on chest computed tomography (CT)
images and are the leading cause of cancer deaths worldwide,
including in Taiwan. Several guidelines have stipulated that
patients at high risk must undergo annual screening with low-
dose CT scanning for pulmonary nodules to be more easily
discovered (1–6). These incidentally detected pulmonary nodules
could be benign or malignant (7), and differentiating between
them is challenging for clinical physicians. Understanding the
nature of these pulmonary nodules is crucial because it has
vital implications in both therapeutic and prognostic areas.
Fluorodeoxyglucose-positron emission tomography (FDG PET)
has played a crucial role in the diagnosis of indeterminate
pulmonary nodules with CT imaging. FDG PET detects
malignancy based on the high FDG uptake, which reflects the
increased glucose metabolic activity of cancer cells. Traditionally,
a standardized uptake value of 2.5 has been used as a threshold
to differentiate between malignant and benign nodules (8, 9).
There is evidence showing that dual time point (18)F-FDG
PET imaging is an important non-invasive method for the
differentiation of malignant and non-malignant lesions (10–13).
For instance, the sequential dual-time-point [18F]FDG PET-CT
examinations may increase the sensitivity and the specificity of
the PET-CT method in differential palatine tonsils diagnosis
according to Pietrzak et al. (11). In addition, PET is typically
used as an adjunct to CT in the evaluation of suggestive
nodules (11, 14–16). However, FDG PET has several intrinsic
limitations in differentiating lesions with extreme metabolic rate,
leading to false positives or false negatives (17). In addition,
many researchers reported that ground-glass nodules with minor
metabolic activities and lower SUVmax might have a high
malignancy potential (18).

Artificial intelligence (AI) algorithms based on convolutional
neural networks have been increasingly applied in cross-domain
image translation (19). According to previous studies, machine
learning (ML) models can help in detection, differentiation
from benign lesions, segmentation, staging, response assessment,
and prognosis determination. More specifically, researchers have
found that FDG-PET-CT metrics and radiomics features had
a significant role in predicting the final diagnosis of solitary
pulmonary nodules (20–22).

Conventional radiographic findings that are suggestive of
benignity or malignancy include size, density, stability over
time, margin appearance, wall thickness, and the presence
of cavitation and calcification. According to several previous
studies, uptake parameters from FDG PET have shown good
diagnostic performance (accuracy between 65 and 91%) (23–28)
with potential improvements coming from the characterization
of uptake heterogeneity. However, a meta-analysis (29) suggested
that FDG PET-CT showed insufficient sensitivity and specificity
for diagnosing malignant solitary pulmonary nodules; it cannot
replace the “gold standard” pathology by either resection
or percutaneous biopsy. Therefore, we planned not to use
traditional imaging features to differentiate benign from
malignant pulmonary nodules in this study. Instead, we hoped
to utilize deep learning methods that learn these features
directly from data, without the need of hand-engineered feature
extraction from inputs (20–22, 30).

Some of the most remarkable results of AI algorithms have
been produced by systems that aid in medical image diagnoses.
Several state-of-the-art AI models, such as Visual Geometry
Group (VGG) and ResNet, are widely used in nuclear medical
imaging (31). These algorithms take advantage of stride and
pooling to downsize the feature maps, which are done prior to
input from a classifier. However, the aforementioned methods
result in the loss of intrinsic high-resolution information
of medical images. This study aimed to use high-resolution
representation learning (HRRL) as the AI algorithm to retain the
high-resolution imaging features, without any stride or pooling,
to reserve the size of the images (32). Therefore, we implemented
automated HRRL without manual annotation by an expert as the
deep learning approach to aid in the differential diagnoses of FDG
PET-CT scanning for pulmonary nodules.

MATERIALS AND METHODS

Patients
A total of 112 consecutive cases of eligible patients (age range
29–85 years; mean age 62.28) with pulmonary nodules (PN)
were enrolled in this retrospective study from 30 December 2008
through 30 July 2010 at China Medical University Hospital.
Patients were selected for this study according to the following
criteria: (a) underwent integrated FDG PET-CT and (b) had
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definitive diagnosis determined by surgical pathology (Figure 1).
The final study group of 112 patients comprised 60 men
and 52 women. Overall, pulmonary nodules detected by CT
of the chest were divided into two groups (i.e., benign and
malignant) as diagnosed by surgical pathology (Table 1). The
first group comprised 33 benign nodules (mean diameter:
24.88 ± 16.49 mm), 4 of them were ground-glass nodules (GGN)
and the other 29 were solid nodules. The second group comprised
79 malignant nodules (mean diameter: 29.86 ± 18.99 mm), 12
of them were GGN and the other 67 were solid nodules. The
imaging and clinical data of these patients were reviewed and
analyzed retrospectively. This study was approved by the Ethics
Committee of our hospital [DMR99-IRB-010-(CR-12)].

Fluorodeoxyglucose Positron Emission
Tomography-Computed Tomography
Imaging Protocol
All patients were asked to fast for at least 4 h before FDG
PET-CT imaging. Imaging was performed with a PET-CT
scanner (Discovery STE, GE Medical Systems, Milwaukee, WI,
United States). Whole-body FDG PET-CT images were acquired
approximately 45 min after intravenous injection of 370 MBq
(10 mCi) of FDG. Delayed FDG PET-CT images were obtained
approximately 70 min after FDG injection (33–35). In this study,
however, we only adopted the delayed FDG PET-CT images for
further preprocessing and input to the deep learning models.
PET emission images were acquired after CT scans at 2 min
per field of view in the three-dimensional acquisition mode. The
CT images were reconstructed onto a 512 × 512 matrix with a
section thickness of 3.75 mm, reconstructed onto a 128 × 128
matrix, and converted into 511 keV equivalent attenuation
factors for attenuation correction of the corresponding PET
emission images. The maximum SUVmax of lung nodules on
early and delayed FDG PET-CT images were measured.

Preprocessing for Automated Models
We defined each patient’s lung territories by using the mediastinal
window on the CT images. The CT mediastinal window level
(WL) was 40, and the window width (WW) was 400. Therefore,
values less than −160 were rendered entirely black, and values
>240 were rendered entirely white (Figure 2A). Under this
setting, the tracheal lumen and lung parenchyma appeared to be
almost black. Such an image preprocessing can help the program
automatically determine which trans-axial slice of image is the
upper edge of the lung parenchyma. The lungs were indicated by
the presence of air.

In order to accurately determine the contour of bilateral lung
regions, the body block must be found first. This study used
the Python Open Source Computer Vision Library (OpenCV)
package. It comes free with a cross-platform program and can
execute a few functions, such as finding contours. The contour
function can perform threshold calculations for grayscale images
or customize the threshold of the cutting block to optimize the
contour finding function. In this study, we used the contour
function of the OpenCV package to identify all the contours on
the CT images (Figure 2B).

FIGURE 1 | The analysis workflow of the collected dataset. A total of 112
consecutive cases of eligible patients with pulmonary nodules (PN) were
enrolled in this retrospective study from 30 December 2008 through 30 July
2010 at China Medical University Hospital. Patients with pulmonary nodules
had definitive diagnosis determined by surgical pathology. All of them
underwent integrated FDG PET-CT prior to surgical resection of pulmonary
nodules.

When identifying the contour block of CT images in OpenCV,
determining the contour block of the body is essential. The
contour area of the body can be determined according to the
center of gravity and the size of the contour area (Figure 2C).
A contour area with its center of gravity biased toward
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TABLE 1 | Patient characteristics.

Patient Benign Malignant P-value

Sex

Male 21 39 0.120

Female 12 40

Age

Age, mean (years)b 58.55 ± 13.31 63.84 ± 11.60 0.038*

Age, range (years) 29–85 39–82

Pathology of pulmonary nodules (PNs)

Diameter, means (mm)b 24.88 ± 16.49 29.86 ± 18.99 0.192

Early maximum SUVb 2.97 ± 3.30 5.20 ± 3.80 0.004*

Delayed maximum SUVb 3.45 ± 3.82 6.13 ± 4.56 0.002*

Solid/GGNa 29/4 67/12 0.775

Total 33 (29.46) 79 (70.54)

PNs, pulmonary nodules; Excluded, without surgical pathology reports; GGN, ground-glass nodules.
aChi-square (χ2) test.
bStudent’s t-test.
*The p-value of <0.05 was considered statistically.

FIGURE 2 | (A) The red contour delineates the air (black area) within the tracheal lumen, which helps the program determine the upper edge of the lungs
(B) OpenCV identifies the contour area of the body on the CT images (C) Body contour block (red contour block) (D) Green area indicates the limited calculation
area. Only the black area in the green range is included in the calculation of the ratio.
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the edge area or with an overly small size is generally not
the main body area.

After identifying the body contour area, we determined the
upper edge of the lung parenchyma within the body area. As we
viewed the consecutive trans-axial slices of the CT images from
the top to the button, the lung parenchyma usually begins at the
level where the air (i.e., black area) does. When the block area of
the uppermost lung air exceeds a certain percentage (e.g., 5%)
of the body block area, the block is adopted as the starting level
of the lungs. However, in this circumstance, the presence of some
unusual, poor quality CT images results in the presence of many
hollow black areas in the body contour block, which may cause
errors in the capture. Therefore, to determine the area of the body
block accurately, we took the center of the images as the starting
point and extended to the left and right of it until the framed
area was 33% of the body block area. The derived region (marked
in green on Figure 2D) was then defined as the calculation
region of interest, and only the black area (i.e., air) within that
region (marked in red on Figure 2D) was subsequently adopted
for further calculation. When the proportion of air exceeded a
particular proportion (e.g., 5% of the body block area), the trans-
axial slice of that image was regarded as depicting the upper
edge of the lung parenchyma, and the image was ready to be
captured for training.

To obtain accurate three-dimensional (3D) CT images and to
improve training efficiency, the body contour area was obtained
from the determined uppermost level trans-axial image slice of
the lung parenchyma. The center of gravity of the body contour
area was identified. Subsequently, we retrieved 256-pixel wide
images that extended outward based on the center of gravity of
the body contour block, followed by obtaining the counterpart
PET images. From the uppermost level trans-axial image slice
of the lung parenchyma, 96 consecutive trans-axial image slices
were captured downward from both CT and PET images.

The 96 images retrieved from CT and PET, respectively, were
of the same thickness and size and could cover the entire bilateral
lung regions. Finally, both CT and PET 3D images from 112
patients were obtained for subsequent input to the deep learning
models. The 3D image data were unified into 256 × 256 × 96 and
64 × 64 × 96 for the CT and PET images, respectively (Figure 3).

Preprocessing by Manual Annotation
An experienced nuclear physician carried out conventional
manual annotation by determining the representative image
slices that contain the maximum diameters (i.e., tumor
coordinates) of pulmonary nodules. A total of 16 consecutive
image slices (adjacent to the aforementioned representative
image slices) were then retrieved. We cropped out CT images
of 64 × 64 × 16 and PET images of 16 × 16 × 16, followed by
resizing the PET images to the same size as the CT images.

Input to Deep Learning Models
Under the lung window setting (WL: −400 and WW: 1,500),
we normalized the input image data by converting the data to
a value from 0 to 1. For PET images, the maximum value in
the image range was normalized. Furthermore, PET image data

were converted into values ranging from 0 to 1 to enhance the
convergence efficiency of the model.

Conventional convolutional neural network such as VGG and
ResNet models pass through the stride and pooling layers to
continuously reduce the sizes of the feature maps and finally
enter the classifiers (Figure 4). However, reducing the sizes of the
features leads to the loss of resolution. Therefore, we proposed
a High-Resolution Network (HRNet) architecture with a view to
preserving high-resolution features. The top layer of HRNet does
not pass through any of the stride and pooling layers so that the
features were able to retain their sizes.

Statistical Analyses
The statistical analysis was performed using SPSS 26 statistical
software (IBM, Armonk, NY, United States) and MedCalc
statistical software1. Fisher’s exact or Chi-square (χ2) test was
used to compare categorical variables. Student’s t-test was used
to compare continuous variables between groups as appropriate.
The p-value of <0.05 was considered statistically significant.
MedCalc statistical software was used to perform ROC curve
analysis, the value of the models was predicted based on the
ROC curve analysis and corresponding 95% confidence intervals
(CIs) were calculated. ROC analysis for the models prediction
with benign and malignant lesion revealed an area under the
ROC curve (AUC) of 0.781 (95% CI = 0.755–0.834), 0.789
(95% CI = 0.761–0.906), 0.652 (95% CI = 0.582–0.737), and
0.743 (95% CI = 0.680–0.842) for High-Resolution Network
(HRNet)-automated, High-Resolution Network (HRNet)-
manual, Residual Network (ResNet)-automated, and Residual
Network (ResNet)-manual models, respectively (Figure 5).

Deep learning often uses heat maps to differentiate regions
with characteristic features (Figure 6). The lungs are adjacent
to other internal organs and tissues, such as the heart, liver, and
lymph nodes. If these organs also exhibit high FDG uptake, they
may disrupt the focus of the deep learning model and affect the
accuracy (ACC) of the analysis. Therefore, the heat map is based
on the feature map in the last layer of the proposed model and is
concentrated on the area of pulmonary nodules.

RESULTS

The effects of the two groups of PET-CT images on the
differentiation between benign and malignant pulmonary
nodules were evaluated. First, when applied only to automatically
detected pulmonary nodules on the PET-CT images, the HRNet
model [sensitivity (SEN): 0.899; specificity (SPE): 0.545; ACC:
0.795] performed significantly better than the ResNet model
(SEN: 0.785; SPE: 0.394, ACC: 0.670) did. Compared with the
ResNet model, the HRNet performed better in terms of SEN and
ACC. HRNet and ResNet models performed comparably when
applied only to the PET-CT images of pulmonary nodules. The
ACC of the ResNet model was only slightly better than that
of the HRNet model. In summary, HRNet is suitable for two

1www.medcalc.org
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FIGURE 3 | Extraction of the 3D images of the lungs with a thickness of 96 slices of trans-axial CT images.

FIGURE 4 | Overall structure of the proposed deep learning model (i.e., HRNet).

types of PET-CT datasets, and its performance is more stable
than that of ResNet.

Model Comparison
Compared with the traditional model, the HRNet-automated
model used in this study performed significantly better than the
ResNet-automated models. When models which automatically
detected pulmonary nodules were compared with each other,
HRNet performed significantly better than ResNet (significance
level: 0.0036) did. The performance for the HRNet-automated
versus that for the ResNet-manual (significance level: 0.3343) did
not significantly differ, indicating that this study’s method, which
functions without manual expert annotation, yield comparable
predictions as traditional labeling models that require expert
annotation (Table 2).

The results of manual and automated detection show that the
prediction performance of ResNet is low in automated detection
(AUC = 0.652), and the prediction effect must be improved by
manually labeling detection (AUC = 0.743). The results of HRNet
manual (AUC = 0.789) and automated detection (AUC = 0.781)
have comparable prediction performances.

According to the ROC curves based on image data from
automated detection, the prediction performance of HRNet using
PET-CT (AUC = 0.781) is moderately better than that of only

using CT (AUC = 0.725); and the performance of ResNet utilizing
PET-CT (AUC = 0.652) is also better than that of utilizing only
CT (AUC = 0.566).

The sensitivity (0.899) and AUC of HRNet-PET-
CT-automated are moderately better than those of
HRNet-CT-automated (p-value = 0.742). Although the specificity
of HRNet-PET-CT-automated (0.545) is slightly lower than that
of HRNet-CT-automated, it does not markedly affect the
overall prediction performance, as evidenced by the satisfactory
precision (0.795) of HRNet-PET-CT-automated. Therefore, the
HRNet-PET-CT-automated model is quite effective in predicting
malignant pulmonary nodules, which is also one of the most
prominent findings in this research.

DISCUSSION

With the advancement of chest CT and plain radiographs, the
detection rate of pulmonary nodules has drastically improved
(36, 37). The assessment of pulmonary nodules is crucial because
they may be the first indications of early lung neoplasm.
Approximately 35% of single pulmonary nodules are primary
malignancies (38). Differentiating small nodules into malignant
and benign nodules is challenging because of their small size and
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FIGURE 5 | ROC analysis of the 4 models based on the PET-CT images.
Receiver operating characteristic (ROC) curves for the four deep learning
models (i.e., HRNet-automated, HRNet-manual, ResNet- automated and
ResNet-manual) based on the PET-CT images. The area under the ROC curve
(AUC) of the HRNet-automated, HRNet-manual, ResNet-automated, and
ResNet-manual models were 0.781 (95% CI = 0.755–0.834), 0.789 (95%
CI = 0.761–0.906), 0.652 (95% CI = 0.582–0.737), and 0.743 (95%
CI = 0.680–0.842), respectively.

lack of specific morphological features (39). A study reported that
approximately half of lung cancer patients missed the optimal
time for surgical treatment, resulting in a decrease in the 5-year
survival rate by 10–15% (40). Therefore, the accurate diagnosis of
patients with pulmonary nodules helps to improve the ACC of the

initial cancer staging and prognosis of patients with malignant
nodules (23).

Nevertheless, pulmonary nodules are not all malignant lesions.
Pulmonary nodules, except in lung cancer, can be inflammatory
or infectious lesions and can have other relatively rare benign
etiologies. The prevalence of lung cancer in pulmonary nodules
is high, and the early detection of malignant nodules might
improve the chances of successful treatment. Transbronchial
needle aspiration biopsy, percutaneous transthoracic biopsy, or
video-assisted thoracoscopic surgery can yield histopathological
information. However, they have variable ACC in diagnosing
lung cancer because these are invasive procedures dependent on
the diameter and position of the nodule and whose execution is
dependent on skill.

FDG-PET-CT is commonly used in the diagnosis of
pulmonary nodules. It can be used to detect malignancy
through high FDG accumulation, which indicates the presence
of metabolically active cancer cells by quantifying the rate of
cellular glucose metabolism. Malignant nodules generally have
increased glucose transporter expression and metabolic activity,
which is evidenced by a high FDG uptake (41). However, benign
lesions also occasionally exhibit increased metabolic activity,
such as infections, tuberculosis, and granulomatous disease
(29, 42–44). Conversely, malignant lung lesions with false-
negative findings on PET scan may be relevant tumors with low
glycolytic activity (such as adenocarcinomas, bronchioloalveolar
carcinomas, carcinoid tumors, and low-grade lymphomas),
small-sized tumors (partial volume effect), or metastasized
tumors with a mucinous component (relative low cellularity)
(45). In pooled results from a meta-analysis, FDG-PET-CT
had a diagnostic SEN of 0.89 [95% confidence interval (CI),
0.87–0.91] and an SPE of 0.70 (95% CI, 0.66–0.73) in the
diagnosis of malignant solitary pulmonary nodules (29). Thus,
at present, the evidence in the literature indicates only moderate
ACC for FDG-PET-CT in differentiating malignant from benign
pulmonary nodules. Further research is required to improve
its reliability.

FIGURE 6 | Heatmap visualization of the HRNet-automated model. The highlighted (e.g., red) area on the heat map were used to indicate the portions/pixels of an
image that have the greatest contribution to the output of the model. The heated area matched quite well with the actual locations of pulmonary nodules on the
DICOM PET-CT images and the clinical records, which potentially serves as a beneficial clinical tool for patient treatment planning.
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TABLE 2 | Model comparison.

Model comparison Significance level, p*

HRNet-automated vs. HRNet-manual 0.6526

HRNet-automated vs. ResNet-automated 0.0036*

HRNet-automated vs. ResNet-manual 0.3343

HRNet-manual vs. ResNet-automated 0.0039*

HRNet-manual vs. ResNet-manual 0.6398

ResNet-automated vs. ResNet-manual 0.0014*

ResNet-PET-CT vs. ResNet-CT 0.0749

HRNet-PET-CT vs. HRNet-CT 0.7422

*The p-value of <0.05 was considered statistically.

Recently, several studies have applied deep learning or
machine learning approaches to conventional CT and FDG-
PET-CT images to diagnose lung cancer (20–22). A study
evaluated the performance of a deep learning system for the
differential diagnosis of lung cancer with conventional CT and
FDG-PET-CT by using transfer learning and metadata (46).
The introduction of metadata and data on SUVmax and lesion
size derived from PET-CT into baseline CT models improved
diagnostic performance for models applied to CT images derived
from PET-CT [area under the receiver operating characteristic
curve (AUC) = 0.837 vs. 0.762] or conventional CT images
(AUC = 0.877 vs. 0.817) models.

In our study, we sought to assess whether deep learning may
be helpful in the differentiation of pulmonary nodules in FDG
PET-CT imaging. In total, 112 patients with pulmonary nodules
who underwent FDG PET-CT before surgery were enrolled
retrospectively. The images of the lungs were automatedly
extracted through deep HRRL without the aid of an expert.
The deep convolutional networks were trained within a HRNet
framework, which executes high-resolution classification instead
of using the conventional segmentation method to provide more
precise localization of image data.

The performance of two-dimensional (2D) and 3D networks
were evaluated. According to a recently published study, the
additional spatial dimension of the 3D network substantially
improved the quality of the inference because the additional
dimension allowed an equivalent 3D network to produce volumes
with higher fidelity across all spatial dimensions. Therefore,
we implemented the 3D model instead of the conventional
2D model. The lung images obtained were then fed to
the HRRL algorithm to automatically classify the detected
pulmonary nodules into malignant and benign ones, followed
by an assessment of ACC. To our knowledge, our study is
the first to determine the value of deep learning for the
automated classification of pulmonary nodules on FDG-PET-
CT images.

Conventional deep learning model architectures generally use
a classification task model as the primary framework. When the
image is being extended, its size is gradually compressed, which
compromises its high-resolution representations. Therefore, we
applied the conventional deep learning algorithm for the overall
3D image classification, which led to decreased diagnostic ACC
and loss of features.

The proposed HRNet retains the high-resolution features.
However, it is challenging to solve multiscale problems effectively
by using only high-resolution representations. Therefore, we
implement the proposed architecture to preserve high-resolution
features. The network solves multiscale problems through
continuous reduction, followed by multiscale fusions, to
maintain the resolution of various scales. Therefore, in this study,
HRNet used for lung image recognition did not lead to the loss of
pulmonary nodule characteristics (47, 48).

With regard to the overall 3D image classification target
processed in this study, the aforementioned reduced size feature
causes the loss of regional lung features and decreases ACC.

High-Resolution Network maintains high-resolution
features, but it is not easy to extract deep textural features
using only high-resolution features. Therefore, the proposed
architecture preserves high-resolution features. It aims to
solve the multiscale problem through continuous shrinking.
The architecture of HRNet is similar to that of ICLR’18-
MSDNet, which works through multiscale fusion and preserves
high resolution.

The main architecture of HRNet acts to integrate each branch
of the feature map. The resolution of each feature map is different,
and the actual operation involves the use of upsampling and
downsampling to achieve integration. Although the resolution
of each branch is different, the features are fused through the
multiscale fusion method to extract meaningful information for
overall 3D image classification.

Furthermore, we used 3D HRRL and compared the ACC
values of two types of model input: The CT component of
PET-CT input, and the combined PET-CT input based on FDG
PET-CT imaging. Although most previous studies assessing the
ACC of AI algorithm in differentiating malignant from benign
lesions have taken advantage of a combination of different tests as
the reference standard, such as clinical follow-up with additional
imaging for some study participants and histopathology for
others, surgical pathology was the sole definitive reference
standard used for all individuals in this study.

The significant findings of our study are detailed as follows:
First, deep learning might be a promising technique for
the detection and differentiation of pulmonary nodules on
FDG PET-CT images. Although our study only consisted of
112 patients, the AI algorithm generally gave accurate and
reliable results. Second, the lung images could be extracted
automatically through HRRL in the absence of any manual
delineation. Third, the deep HRNet kept the high resolution
of the images intact, unlike in other well-known AI models,
such as VGG and ResNet, which compromised their resolution
at each round of k-fold cross-validation (46). Fourth, the
performance metrics of the combined PET-CT model were
generally better than those of the model derived from the CT
component solely.

CONCLUSION

This retrospective study indicates that automated 3D HRRL
with FDG-PET-CT has promising performance in distinguishing
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between malignant and benign pulmonary nodules. One of
the most significant strengths of the proposed deep learning
algorithm is that it can potentially automatically detect and
classify pulmonary nodules without any time-consuming manual
annotation. However, this study had a limited number of
participants, and an extensive multicenter study with external
validation is required for further verification of the results.
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